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 This paper investigates the methods of optimal design construction for step-stress 
accelerated life testing (ALT) when a Cox's hazards model is adopted with either a linear 
or a quadratic baseline hazard function. We discuss multiple step-stress plans for time-
censored ALT experiments. The maximum likelihood method is utilized for estimating the 
model parameters. The information matrices have been derived for both models. The 
optimal stress-changing times and optimal stress levels are determined simultaneously 
under three different optimality criteria. In order to demonstrate the performance of the 
resulting designs, a simulation procedure is also provided. The efficiencies of our resulting 
optimal three-step-stress ALT plans are compared with their competitors using both 
practical examples and a simulation study. The efficiency comparison results have shown 
that the three-step-stress designs obtained with two optimal stress changing times and an 
optimal middle stress level are most efficient, compared to the corresponding optimal two-
step-stress designs and to the optimal three-step-stress designs with a conveniently chosen 
middle stress. Furthermore, the efficient gains are most significant for hazard rate 
prediction for both cases when either a linear or a quadratic baseline hazard is assumed. 
Additionally, such efficiency gain is much greater for the case when the baseline function 
being quadratic than the case when that being simple linear.  
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1. Introduction  

Reliability significantly influences the quality of product. 
Thus, many manufacturers make great effort to enhance the 
product reliability that largely determines the product 
competitiveness. Such importance has brought practitioners' 
attention to reliability evaluation. In life data analysis, we have to 
collect the failure time of a product under normal design conditions 
to quantify life characteristics of the product. However, such 
failure data for lifetime are very difficult to obtain in many 
situations, especially for the product with high reliability. 
Nowadays, lifetimes of many products are too long and the life 
testing period between design and release is limited; so, the tests 
under normal design conditions are too lengthy to get any failures. 
To overcome this problem, accelerate life testing (ALT) has been 
developed. 

Since ALT can shorten the lifetime of a product, we often adopt 
it in order to obtain the failure information quickly within a limited 
time frame. In an ALT experiment, the test units are generally 
subjected to the stress levels that are higher than normal design 
level. The commonly used stress factors for failure acceleration 
include temperature, vibration, voltage, and pressure. Both the use 
of specific accelerated stress factors and the range of stress levels 
for a particular material or product are often suggested by 
engineering practice. Then, the failure data obtained at accelerated 
conditions have to be extrapolated through a proper model so that 
the characteristics of life distribution at normal design conditions 
can be estimated. A number of different types of stress loading 
schemes (such as constant, cyclic, step, progressive, and random 
stress loading) are available in practice when performing an ALT. 
By the relation between the stress levels and testing time, these 
stress loading schemes can be classified into two categories: time-
independent and time-dependent stress loadings. When the stress 
loading is time-independent such as constant stress loading, the 
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stress level applied to each of the test units stays the same during 
the entire testing period. One of the demerits of using constant 
stress loading in ALT is that it could still take too long to run for 
the test experiment to observe sufficient failures when the 
inappropriate testing stress levels are applied. To address this 
problem, a time-dependent stress loading scheme is preferred to 
assure quick failures. When a time-dependent stress loading, such 
as step-stress, is adopted, test units are subjected to a stress level 
that is changing over testing time. In this paper, we consider step-
stress ALT where all test units are subjected to the stress levels 
increasing by steps. 

 This paper is an extension of our previous work [1] originally 
presented in The Third IEEE International Conference on World 
Computing and Big Data Analysis. In literature, almost all the 
previous works done by others for Cox's proportional hazards (PH) 
based ALT models are very limited on simple step-stress assuming 
the baseline hazard function is simple linear. However, [2] have 
indicated that the optimal multiple step-stress ALT may further 
improve the quality of the reliability pre  diction for a parametric 
model. Therefore, this paper broadens the results of [1] where has 
only addressed the optimal ALT plans for PH models with a linear 
baseline function and moves on to discussing multiple step-stress 
optimal designs for ALT when adopting a PH model with either a 
simple linear or a quadratic baseline hazard function. In this paper, 
both optimal stress levels and optimal stress-changing times for 
three-step-stress ALT designs are derived under three different 
optimality criteria. 

2. Literature Review and Preliminaries 

2.1. Optimal designs for step-stress ALTs with a non-PH model  

Miller and Nelson [3] first discussed Q-optimal designs for 
simple step-stress ALT tests with complete failure data assumed to 
be exponentially distributed. Their optimal designs were attained 
by minimizing the asymptotic variance (AVAR) of the maximum 
likelihood estimator (MLE) of the mean lifetime at the normal 
design stress level. Then, their work was extended to censored data 
by [4] who obtained the optimal simple step-stress ALT designs 
incorporating time-censoring. For some products or material, their 
failure times often follows a Weibull distribution. Assuming a 
Weibull distribution with a constant scale parameter, both [5] and 
[6] constructed optimal simple step-stress ALT designs for time-
censoring. Bai and Kim in [5] obtained the optimal low stress level 
and optimal stress-changing time in order to minimize the AVAR 
of the MLE of a specific quantile of the product's lifetime 
distribution at the normal design stress level whereas [6] obtained 
their optimal stress-changing time in order to minimize the AVAR 
of the MLE for reliability prediction instead. In addition, Hunt and 
Xu in [7] further investigated optimal simple step-stress ALT plans 
for a Weibull distribution; however, they assumed both the shape 
and scale parameters were functions of the stress levels. Their 
resulting optimal designs chosen the stress-changing time in order 
to minimize AVAR of the MLE of reliability prediction at the 
normal design stress level and at a pre-specified time. They also 
reviewed the research work on optimal designs for step-stress 
ALT. Please see the references therein. We note that all these work 
previously done had provided the design construction methods 
only for simple step-stress ALT plans. 

  Moreover, Ma and Meeker in [8] extended the research by [5] 
to provide a general method for multiple step-stress ALTs 
assuming a log-location-scale family of distributions. They 
discussed an approach to calculate the large-sample approximate 
variance of the MLE for a percentile of the failure time distribution 
at normal design conditions when the failure data were observed 
from a step-stress ALT. By adopting a cumulative exposure model, 
their approach allowed for both multiple step-stress loading and 
censoring. Their results also showed that depending on the values 
of the model parameters and certain percentile of interest, one of 
the three test plans proposed could be the most preferable in terms 
of optimum variance. For a Weibull lifetime distribution, however, 
with possible inaccuracy in the assumed log-linear life-stress [2] 
investigated the optimal stress-changing time for simple step-stress 
ALT plans in order that the asymptotic mean squared error of the 
underlying reliability estimator could be minimized, and the robust 
choices of three-step-stress plans were also discussed with the 
awareness of possible imprecision in the assumed life-stress 
relationship by minimizing the asymptotic squared bias. 

2.2. Optimal designs for constant stress or simple step-stress 
ALTs with a PH model  

Jiao in [9] first investigated the optimal design problem for a 
PH model when a constant-stress ALT experiment being planned, 
and then developed the optimal designs for reliability prediction 
by optimally choosing both stress levels and proportion of units 
allocated to each stress level in order to attain the most accurate 
reliability estimate at normal design conditions. Moreover, when a 
step-stress ALT experiment was planned, [9] discussed the simple 
step-stress ALT plan for reliability prediction and obtained the 
optimal stress level by minimizing the variance of the MLE of 
hazard rate at the normal design stress level and over a pre-
specified time period. In addition, [9] also provided an algorithm 
for solving the constrained nonlinear optimization problems. 

On the other hand, Elsayed and Zhang in [10] revealed an 
optimal simple step-stress ALT plan so as to obtain the most 
accurate reliability function estimates at normal design conditions. 
They also formulated a nonlinear programming problem to 
minimize the asymptotic variance of the hazard rate estimator over 
a prespecified the period at the normal design stress level. More 
recently, Hu, Plante, and Tang in [11] briefly discussed the optimal 
low and high stress levels in a simple step-stress ALT in order to 
minimize the mean squared error of the estimated upper 
confidence bound for the cumulative failure probability of a 
product at normal design conditions, with a given stress-changing 
time. In sum, all these existing works provided the methods of 
optimal design construction only for simple step-stress ALT plans. 
Therefore, we expand the previous work of others and investigate 
the optimal designs of multiple step-stress ALT for PH models in 
this paper. 

2.3. Optimal designs for general proportional hazards models  

There is broader literature of optimal designs available for 
general proportional hazards models, which are not necessary with 
consideration of step-stress ALT plans. To name a few, Becker, 
McDonald, and Khoo in [12] constructed D-optimal designs for 
proportional hazards models with one or two parameters when its 
baseline hazard function was specified. They developed the 
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method of minimum variance design construction when various 
censoring schemes were adopted. Dette and Sahm  in [13] provided 
a standardized maximum variance design criterion which could be 
applied to obtain the optimal designs whereas McGree and 
Eccleston in [14] created compound criteria so that optimal designs 
could be derived for multi-objective scenarios. L´opez-Fidalgo, 
Rivas-L´opez, and Del Campo in [15] also proposed an algorithm 
to find optimal designs for typical Cox regression models 
incorporating censoring. More recently, Konstantinou, 
Biedermann, and Kimber investigated the general maximin D-
optimal designs for a class of models and discussed the application 
of their design construction method to the proportional hazards 
models in [16]. 

2.4. Our model and some preliminaries  

    One of the most commonly used means for predicting the 
lifetime of a product is Cox's PH model since it provides sufficient 
flexibility for identifying the effects of covariates on the failure 
rate. In this paper, a PH model with hazard ratio being independent 
of time is considered. Therefore, the hazard rate of a product can 
be expressed 

 ( ) ( ) ( )0; exp ,Tt tλ λ=s sβ  (1) 

where ( )0 tλ is a baseline hazard function, β  is a column vector of 
unknown parameters, and s  is a column vector of the covariates 
(applied or transformed stresses) for an ALT experiment, and that 
are independent of the baseline hazard. Presumably, the stresses 
are having multiplicatively effects on the hazard rate in this model. 

We conduct ALT with step-stress loading where all the test 
units begin at a prespecified stress level. After a time fraction, the 
stress level is changed to a higher stress level. The stress level can 
be raised more than once before the test completes. A simple step-
stress ALT, also called a two-step-stress ALT, only uses two stress 
levels during an ALT experiment. In contrast, in multiple step-
stress ALT, more than two stress levels are needed and the stress 
level is raised at least twice before the test ends. In this paper, we 
discuss multiple step-stress ALT experiments. We denote by Ds  
the normal design stress level. For a three-step-stress, we signify 
the low, middle and high stress levels by 1s , 2s , and 3s , the stress-
changing times by 1τ  and 2τ , and censoring time by c . 

In this paper, we assume ( )0 tλ  to be in either a linear or a 
quadratic form. For either case, we investigate the optimal three-
step-stress ALT design construction under D-optimality, A-
optimality, and Q-optimality, respectively. We obtain D-optimal 
designs in order to minimize the determinant of covariance matrix 
of the estimators for the model parameters (or equivalently 
maximize the determinant of Fisher's information matrix), A-
optimal designs in order to minimize the trace of covariance matrix 
of the estimators for the model parameters, and Q-optimal design 
to minimize the asymptotic variance of the estimator for a specific 
quantity of interest. The major quantity of interest in this paper is 
the average hazard rate over a particular period of time under 
normal design conditions. 

For the case of ( )0 tλ  being simple linear, the main part of the 
optimal design construction was presented in [1]. Therefore, we 

will only restate the necessary notations being continuously used 
here and also summarize the previous results for comparison 
purpose in this paper. For the case of ( )0 tλ  being a quadratic 
function, we will present the discussion and derivation in full. 
Furthermore, because there was no simulation study done 
previously for either case, we will demonstrate simulation and 
comparison studies for both cases in the present paper. 

The rest of this paper is organized as follows: in Section 3, the 
optimal three-step-stress ALT design results have been 
summarized for the case when the baseline hazard function ( )0 tλ  
in (1) is assumed to be a simple linear function. In Section 4, the 
optimal three-step-stress ALT design have been derived for the 
case when ( )0 tλ  is considered to be a quadratic function. The 
method of the optimal design construction involves the 
minimization for a nonlinear objective function with nonlinear 
constraints, and some practical examples are used to illustrate the 
proposed method for the construction of constrained optimal 
designs in Sections 3 and 4. We have also evaluated the 
performance of the resulting designs obtained in both Sections 3 
and 4 through simulations and comparisons in Section 5. Some 
concluding remarks are presented in Section 6. 

3. Optimal designs when ( )0 tλ  being a simple linear 
function 

Xu and Huang in [1] first focused on determining the optimal 
three-step-stress ALT designs for a PH model with time-censoring 
in the case when the baseline hazard function is considered being 
a simple linear function. They have provided detailed derivation 
for the information matrix and the optimal choices of both the 
middle stress level and stress-changing times for all cases 
considered there. For comparison reasons, we keep the same 
notations which are presented in Subsection 3.1, and their main 
results are summarized in this section. 

3.1. Notation 

Although the method of development for multiple step-stress 
ALT designs can be provided in general, we formulate our design 
construction using three-step-stress ALT experiments for its 
simplicity. A three-step-stress ALT experiment with time-
censoring involves a predefined censoring time c , and three test 
stress levels 1,s  2s , and 3,s which satisfies  1 2 3Ds s s s< < < . 
Assuming there are n  test units available for the ALT experiment, 
they are all first placed at low stress level 1s  for a time interval [0,  

1]τ . Afterwards, the test units survived by time 1τ  are subjected to 
a middle stress level 2s  for the next time interval 1( ,τ  2 ].τ  Next, 
the remaining units by time 2τ   are subjected to the highest stress 
level 3s  for the last time interval  2( ,τ  ]c . Then, the test ends at 
censoring time .c  We consider Model (1), under a stress level ,s  
where ( )0 tλ  being independent of s . 

We make use of the notations ( ); ,F t s ( ); ,f t s  ( );t sΛ

( );R t s

t , respectively, at a 
given stress level s . We also employ the cumulative exposure 
model (CEM), please see [17] for details, to address the changes 

http://www.astesj.com/


X. Xu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 101-113 (2019) 

www.astesj.com     104 

of ( ); ,F t s  in lifetime t  due to the stress step-ups in a step-stress 
ALT experiment. We denote the cdf under is  by  

( ) ( )| ,  1,2,  and 3.i iF t F t s s i= = =  

 Then, the stepwise cdf with respect to t  can be expressed by: 

( )

( )
( )
( )

( )

1 1

2 1 1 2

3 2 2

   if  ,
  if  ,
  if  ,

  if  ,  

CEM

F t t
F a t t

F t
F b t t c

P t c t c

τ
τ τ τ
τ τ

 ≤
 + − ≤ ≤=  + − ≤ ≤
 > >

 

Where a  and b  satisfy ( ) ( )1 1 2F F aτ =  and 

( ) ( )2 2 1 3F a F bτ τ+ − = . Namely, ( )1
2 1 1a F F τ−=     and 

( )1
3 2 2 1 .b F F a τ τ−= + −     

We also make use of the following three indicators, each as a 
function of stress change times 1τ , 2τ , or censoring  time ,c  and 
failure time :t  

( ) 1
1 1 1

1

1  if  ,
 

0  if  ,
t

I I t
t

τ
τ

τ
≤

= ≤ =  >
( ) 2

2 2 2
2

1  if  ,
0  if  ,

t
I I t

t
τ

τ
τ

≤
= ≤ =  >

 

( )3 3

1  if  ,
0  if  ,

t c
I I t c

t c
≤

= ≤ =  >
 

where 1 20 cτ τ< < < . Taking a three-step-stress design ξ  with 
three stress levels being 1,s  2 ,s  and 3s , the log-likelihood 
function of an observed lifetime t  can be written as: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

21
1 2 3 0 1 1 0 1

21
1 2 3 0 1 2 0 2

21
2 3 0 1 3 0 3

21
3 0 3

ln ; ln exp
2

1 ln exp
2

1 ln exp
2

1 exp ,
2

L t I I I t s t t s

I I I x s x x s

I I y s y y s

I d d s

γξ γ γ β γ β

γγ γ β γ β

γγ γ β γ β

γγ β

  = + + − +    
  + − + + − +    

  + − + + − +    
  − − +    

where 1 2 2,  ,  and .x a t y b t d b cτ τ τ= + − = + − = + −   
     (2) 

As assumed the baseline hazard rate being independent of the 
covariates, according to [10], the Fisher's information matrix, F , 
for the full sample with size n  can be obtained as 

{ } { }
{ } { }

{ }

2 2

2
0 10

2 2

2
0 1 1

2

2

ln ln

ln ln

ln

0

0 ,

0 0

L L

L L

L

E E

n E E

E

γ γγ

γ γ γ

β

∂ ∂
∂∂

∂ ∂
∂ ∂

∂
∂

 − −
 
 

= − − 
 
 −
 

F  

and the covariance matrix, Σ , of the maximum likelihood 
estimators (MLE) of 0 ,γ  1,γ  β  is the inverse matrix of F : 

º( ) º )( )
º )( ) )( )

)( )

0 0 1

1
0 1 1

, 0

, 0 .

0 0

Var Cov

Cov Var

Var

γ γ γ

γ γ γ

β

−

 
 
 

= =  
 
 
 

FΣ  

 The elements of the Fisher's information matrix for  t   are the 
negative expectations of the corresponding second partial 
derivatives. We denote the non-zero elements of Fisher's 
information by  00 ,F    11,F    01,F   and  Fβ  . In [1], Xu and Huang 
have derived the expressions of these elements as follows: 

 
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

2 1

2

2

00 2
0

1 10
0

2 2
0

3 3
0

ln

1exp exp ;

1exp exp ;

1exp exp ; ,

a

a

b c

b

LF E

s t s dt
t

s x s dx
x

s y s dy
y

τ

τ τ

τ

γ

β
λ

β
λ

β
λ

+ −

+ −

 ∂ = − 
∂  

= −Λ  

+ −Λ  

 + −Λ 

∫

∫

∫

  

     (3) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

2 1

2

2

11 2
1

2

1 10
0

2

2 2
0

2

3 3
0

ln

exp exp ;

exp exp ;

exp exp ; ,

a

a

b c

b

LF E

ts t s dt
t

xs x s dx
x

ys y s dy
y

τ

τ τ

τ

γ

β
λ

β
λ

β
λ

+ −

+ −

 ∂
= − 

∂ 

= −Λ  

+ −Λ  

 + −Λ 

∫

∫

∫

  

     (4) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

2 1

2

2

01
0 1

1 10
0

2 2
0

3 3
0

ln

exp exp ;

exp exp ;

exp exp ; ,

a

a

b c

b

LF E

ts t s dt
t

xs x s dx
x

ts y s dy
y

τ

τ τ

τ

γ γ

β
λ

β
λ

β
λ

+ −

+ −

 ∂
= − 

∂ 

= −Λ  

+ −Λ  

 + −Λ 

∫

∫

∫

  

     (5) 

and 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

2 1

2

2
2
1 1 0 1 12 0

2
2 2 0 2 2

2 2
3 3 0 3 3 3 3

ln exp ; exp ;

exp ; exp ;

exp ; exp ; ; .

a

a
b c

b

LF E s s t t s t s dt

s s x x s x s dx

s s y y s y s dy s d s

τ

β

τ τ

τ

β λ
β

β λ

β λ

+ −

+ −

 ∂
= − = Λ −Λ    ∂ 

+ Λ −Λ  

 + Λ −Λ + Λ 

∫

∫
∫

       (6) 
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 We note that the derivation of these elements in this subsection 
and the expressions of the loss functions in next subsection have 
been omitted, please see [1] for details. 

3.2. Loss functions and design constraints 

In this paper, we consider the following three different design 
criteria: D-optimality, A-optimality, and Q-optimality. In [1], Xu 
and Huang has derived the corresponding three loss functions as  

2
00 11 01

1 ,
( )DL
F F F Fβ

=
−

   (7) 

  

00 11
2

00 11 01

1 ,A
F FL

FF F F β

+
= +

−
   (8) 

and 

( )2 2 2 2 312 31 0 0 1 1311 01 003
2

00 11 01

,D
Q

s T T TF T F T F TL
FF F F β

γ γ γ γ+ +− +
= +

−
 

      (9) 

respectively. 

In ALT practice, there are often some requirement needed on 
the minimum number of failures at each stress level. Similarly to 
[10] for designing optimal simple step-stress ALTs, we take 
certain practical constraints into consideration in our optimal 
design construction process for multiple step-stress ALTs. In this 
paper, we consider three design constraints as below: 

• The minimum expected number of failures (MNF) at stress 
level 1s  is required as 1w : 

1 1 1Pr ;n t s wτ ≤  ≥     (10) 

• The MNF at stress level 2s  is given as 2w  : 

( )1 1 2 2 2Pr ;n n a t s wτ τ−  + − ≤  ≥    (11) 

• The MNF at stress level 3s  is given as 3w  : 

( )1 2 2 3 3Pr ,n n n b t c s wτ − − + − ≤ ≥   (12) 

where in  is the number of failures under each stress level is ,  
1,2,3.i =   

    With these constraints, the optimal decision variables ( 1τ , 2τ ,  

2s ) can be determined by minimizing each of the above-
mentioned loss functions. Specifically, we choose the optimal 
designs in order to minimize (7), (8), or (9) with respect to ( 1τ , 2τ
, 2s ) subject to all three constraints (10), (11), and (12). We denote 
the optimal designs corresponding to the three optimality criteria 
by Dξ ,  Aξ ,  and  Qξ , which can be expressed as  

Dξ  = arg { min( DL | given (10), (11), and (12) ) }, (13) 

Aξ  = arg { min( AL  | given (10), (11), and (12) ) }, (14) 

and Qξ  = arg { min( QL | given (10), (11), and (12) ) }.  (15) 

3.3. Optimal designs when the middle stress being fixed 

In [10], Elsayed and Zhang discussed an example of 
conducting a two-step-stress ALT experiment for metal oxide 
semiconductor capacitors and estimating the hazard rate over 10 
years at design temperature 50 .o C  The total number of test units 
was n = 200 and the test was censored by c = 300 hours. In order 
to avoid any unanticipated change in failure mechanisms during 
the ALT experiment, the maximum testing temperature was 
determined to be 250o C  by the engineering experimenters. The 
initial values of the model parameters was taken as  0 0.0001γ =  ,  

1 0.5,γ =   and  3800β = − . The Q-optimal low accelerated stress 
level was found to be  145o C . 

In this subsection, we use this example to compare the optimal 
two-step-stress ALT designs obtained in [10] with our proposed 
three-step-stress ALT designs. Previously, the optimal two-step-
stress ALT designs are having  1 145os C=  and 2 250os C= . For 
our three-step-stress ALT plans, we keep the number of test units, 
censoring time, and the lowest and highest stress levels all the 
same. Namely,  n = 200,  c = 300 ,  1 145os C=  and  3 250os C= . 
The initial values for the model parameters are kept the same as 
well. Conveniently, the experimenters often take 2s  as the average 
of 1s  and 3s . Therefore, we discuss two scenarios for the choice 

of  2s : (a)  being  197.5 ,o C   which is the average of  1 145os C=  

and  3 250os C= ; and (b) being optimally chosen, together with 
stress changing times, in order to minimize a specified loss 
function. We note that when temperature is taken as a stress factor 
appeared in a PH model for ALT, absolute temperature is often 
used as its measurement unit for model fitting. 

Table 1. Constraint cases for two-step-stress ALT 

Notation Constraint parameters MNF 

 12C    1 40w =  ,  2 30w =    70   

 34C    1 30w =  ,  2 40w =    70   

 55C    1 40w =  ,  2 20w =    60   

 66C    1 20w =  ,  2 40w =    60   

Table 2. Constraint cases for three-step-stress ALT  

Notation Constraint parameters MNF 

 1C  1 40w = , 2 20w = , 3 10w =  70  

 2C   1 40w = , 2 15w =  , 3 15w =   70   

 3C   1 30w = , 2 30w =  , 3 10w =   70   

 4C   1 30w = , 2 20w = ,  3 20w =   70   

 5C   1 40w = , 2 10w = ,  3 10w =   60   

 6C   1 20w = , 2 20w = ,  3 20w =   60   
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In Scenario (a), the optimal stress changing times, 1τ  and 2τ , 
can be chosen in order to minimize  ,DL    AL  , or  QL   under 
some specific constraints. We take several practical constraint 
cases with given 1w , 2w  and 3w , and these cases accompanied by 
their notations are recorded in Table 1 for two-step-stress ALT 
designs, and in Table 2 for three-step-stress ALT designs. 

 We denote the D-, A- and Q-optimal designs obtained for two-
step-stress ALT under a given constraint case kC  by  2 ,

k

D
Cξ  

2 ,
k

A
Cξ   and 2

k

Q
Cξ , where  k = 12, 34, 55, 66, and the D-, A- and Q-

optimal designs obtained for three-step-stress ALT under a given 
constraint kC  by 3( ) ,i

k

D
Cξ  3( ) ,i

k

A
Cξ  and 3( )i

k

Q
Cξ , where  k = 1, …, 6,  

and  i = 1, 2  with  i  referring to the different scenario of  is  (i = 1 
for Scenario (a), and i = 2 for Scenario (b)). Moreover, we define 
the asymptotic D-, A-, Q-efficiencies of  3( )i

kCξ   relative to  2

kCξ   as 

( )( ) ( )
( )

( )( ) ( )
( )

( )( ) ( )
( )

2

3( )

2

3( )

2

3( )

3 ,2 ,  

 
3 ,2 ,  and
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D
D CD

D
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A
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A
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Q CQ

Q
Q C

L
eff i

L

L
eff i

L

L
eff i i

L

ξ

ξ

ξ

ξ

ξ

ξ

=

=

= =

 

and the asymptotic D-, A-, Q-efficiencies of  3( )i

kCξ   relative to  3( )j

kCξ   
as 

( ) ( )( ) ( )
( )

( )( ) ( )
( )

( )( ) ( )
( )

3( )

3( )

3( )

3( )

3( )

3( )

3 ,3 ,

 3 ,3( ) ,  and

3 ,3( ) ,  for ,  1,  2.

j

k

i

k

j

k

i

k

j

k

i

k

D
D CD

D
D C

A
A CA

A
A C

Q
Q CQ

Q
Q C

L
eff i j

L

L
eff i j

L

L
eff i j i j

L

ξ

ξ

ξ

ξ

ξ

ξ

=

=

= =

 

The optimal stress-changing time(s), for both two-step-stress 
plans and the three-step-stress ALT plans with  2s   being fixed at  
197.5 ,o C  are obtained by minimizing  ,DL    AL  , or  QL ,  
respectively for all the constraint cases considered. We note that 
the resulting optimal stress-changing times are all the same for 
these three different optimal criteria although their corresponding 
relative efficiencies are not the same. The optimal stress-changing 
times and relative efficiencies for all six constraint cases (as listed 
in Table 2) are presented in Tables 3 and 4. The overall average 
efficiency gain after unitizing an optimal three-step-stress plan is 
5.44%  when  2s  being fixed at  197.5o C . 

4. Optimal designs when baseline hazard is a quadratic 
function 

4.1. Preliminary 

We have considered the PH based ALT with the case where the 
baseline hazard function is a simple linear function in Section 3. In 

many practical situations, this simple model can be under-fitted. 
Therefore, in this section, we focus on the PH model when the 
baseline hazard function is in a quadratic form. Namely, we adopt 
Model (m1) where the baseline hazard function is rather being 

( ) 2
0 0 1 2 .t t tλ γ γ γ= + +    (16) 

Table 3. D-, A-, Q-optimal stress-changing times, when 2s   = 197.5o C  

3-step-stress ALT 2-step-stress ALT 

optimal 
designs 1τ  2τ  optimal 

designs 1τ  

3(1)

1

, ,D A Q
Cξ  178.2 223.6 2

12

, ,D A Q
Cξ  183 

3(1)

2

, ,D A Q
Cξ  178.0 209.2 2

12

, ,D A Q
Cξ  183 

3(1)

3

, ,D A Q
Cξ  162.9 219.4 2

34

, ,D A Q
Cξ  156 

3(1)

4

, ,D A Q
Cξ  162.1 194.8 2

34

, ,D A Q
Cξ  156 

3(1)

5

, ,D A Q
Cξ  198.0 227.5 2

55

, ,D A Q
Cξ  201 

3(1)

6

, ,D A Q
Cξ   162.1 194.8 2

66

, ,D A Q
Cξ   156 

Table 4. D-, A-, Q- relative efficiencies, when 2s   = 197.5o C  

 1C  2C  3C  4C  5C  6C  

( )3(1),2D eff  1.06 1.04 1.10 1.06 1.04 1.06 

( )3(1),2A eff  1.06 1.03 1.09 1.06 1.04 1.06 

( )3(1),2Q eff  1.04 1.03 1.08 1.05 1.03 1.05 

 Consequently, the cdf, pdf, the cumulative hazard function, and 
the reliability function of failure time t, at a given stress level s, 
become 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 31 2
0

2 31 2
0 0

2 31 2
0

2 31 2
0

; 1 exp exp ,
2 3

; exp exp exp ,
2 3

; exp ,  and
2 3

; exp exp .
2 3

F t s t t t s

f t s t s t t t s

t s t t t s

R t s t t t s

γ γγ β

γ γλ β γ β

γ γγ β

γ γγ β

  = − − + +    
  = − + +    

 Λ = + + 
 

  = − + +    
(17) 

Then, the log-likelihood function of  t  , under a three-step-
stress design  ξ   with stress levels being  1,s    2 ,s   and  3s  , 
become  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

2 2 31 2
1 2 3 0 1 2 1 0 1

2 2 31 2
1 2 3 0 1 2 2 0 2

2 2 31 2
2 3 0 1 2 3 0 3

21 2
3 0

ln ; ln exp
2 3

1 ln exp
2 3

1 ln exp
2 3

1
2 3

L t I I I t t s t t t s

I I I x x s x x x s

I I y y s y y y s

I d d

γ γξ γ γ γ β γ β

γ γγ γ γ β γ β

γ γγ γ γ β γ β

γ γγ

  = + + + − + +    
  + − + + + − + +    

  + − + + + − + +    

− − + + ( )3
3exp ,d sβ  

    
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where x, y, and d are defined as in (2). Its first partial derivatives 
with respect to the model parameters  0 ,γ    1,γ   and  β   are the 
same as in (3) but with  ( )0 tλ   being defined as in (16) instead, 
and the one with respect to  2γ   is 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2
1 2 3 1 1 2 3 2

2 0 0

3
2

2 3 3 3 3
0

ln 1 1exp 1 exp
3 3

11 exp 1 exp .
3 3

L t xI I I t s I I I x s
t x

y dI I y s I s
y

β β
γ λ λ

β β
λ

   ∂
= − + − −   ∂    

 
+ − − − − 

 

 

Table 5. D-optimal designs and relative efficiencies 

3-step-stress ALT, 
  2s  = 155 

D-relative  
efficiency 

Optimal 
design 1τ  2τ  ( )( )3 2 ,2D eff  ( )( )3 2 ,3(1)D eff  

3( 2)

1

D
Cξ  152.65 247.44 1.13 1.07 

3( 2)

2

D
Cξ  148.33 226.85 1.09 1.05 

3( 2)

3

D
Cξ  152.93 247.44 1.19 1.09 

3( 2)

4

D
Cξ  143.25 211.74 1.12 1.06 

3( 2)

5

D
Cξ  179.40 245.78 1.08 1.04 

3( 2)

6

D
Cξ  161.43 211.03 1.11 1.05 

Table 6. A-optimal designs and relative efficiencies  

3-step-stress ALT, 
2s  = 155 

A-relative  
efficiency 

Optimal 
design 1τ    2τ   ( )( )3 2 ,2A eff  ( )( )3 2 ,3(1)A eff  

3( 2)

1

A
Cξ   155.20 247.47 1.13 1.07 

3( 2)

2

A
Cξ   147.99 226.84 1.09 1.06 

3( 2)

3

A
Cξ   155.13 247.47 1.19 1.09 

 3( 2)

4

A
Cξ   142.41 211.73 1.11 1.05 

3( 2)

5

A
Cξ   155.18 247.47 1.09 1.05 

3( 2)

6

A
Cξ   142.39 211.73 1.11 1.05 

Table 7. Q-optimal designs and relative efficiencies 

3-step-stress ALT,  2s  = 155 D-relative efficiency 

Optimal 
design 1τ  2τ  ( )( )3 2 ,2Q eff  ( )( )3 2 ,3(1)Q eff  

3( 2)

1

Q
Cξ  156.19 247.47 1.09 1.05 

3( 2)

2

Q
Cξ  149.81 226.86 1.07 1.04 

3( 2)

3

Q
Cξ  156.71 247.47 1.14 1.06 

3( 2)

4

Q
Cξ  144.20 211.75 1.09 1.04 

3( 2)

5

Q
Cξ  156.45 247.47 1.06 1.03 

3( 2)

6

Q
Cξ  143.98 211.75 1.09 1.04 

 

 

  

Its second partial derivatives  2
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ln ,L
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∂
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0 1
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γ γ

∂
∂   and  

2

2
ln L
β

∂
∂

  can be expressed as the same as in Xu and Huang (2018) but 

with their  0λ   and  Λ   function being defined as in (16) and (17), 
and their corresponding elements of the Fisher's information 
matrix for a single failure time t (the expected value of negative 
second derivatives) are as the same as in (3), (4), (5), and (6). The 
remaining second derivatives are  

( )
( )

( )
( )

( )

4 442
1 2 3 2 31 2 3

2 2 2 2
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1 1ln ,
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and their corresponding elements of the Fisher's information 
matrix for a single t can be derived as below: 

( )
( )
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with R function being defined as in (17). 
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As indicated in Section 3.1, the correlations between the stress 
coefficient β  and baseline parameters 0 1,γ γ  and 2γ  are equal to 
zero. Consequently, the covariance matrix ,Σ  of the MLEs of 

0 1 2, , ,γ γ γ β  can be expressed as 

º( ) º )( ) º º( )
º )( ) )( ) ) º( )
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 
  

FΣ  

where F  is the Fisher's information matrix of the full sample 
with size n and  

{ } { } { }
{ } { } { }
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2
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−  

F  

4.2. Loss functions and design constraints 

Now the loss functions under D-, A-, and Q-optimality become  
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and 
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       (20) 
respectively. 

The optimal decision variables ( 1τ  ,  2τ  ,  2s  ) are chosen by 
minimizing the loss function (18), (19), or (20) with some design 
constraints. We also keep the three constrains (10), (11), and (12)  
as the same as those in Section 3. The corresponding designs Dξ , 
Aξ  and Qξ  can also be described as (13), (14), and (15). 

4.3. Optimal three-step-stress designs 

In this subsection, we revisit the example presented in Section 
3, and discuss the optimal ALT designs when the fitting model is 
a PH model with a quadratic baseline hazard function. Suppose 
from previous experience, the initial values for the model 
parameters are 0 0.0001γ =  , 1 0.5γ = , 2 0γ = , 3800β = − . All 
other values of the design parameters in the example remain the 
same. Thus, the accelerated stress levels remain as 1 145os C= , 

3 250 .os C=  Here we also consider the six constraint cases as used 
in Section 3. 

When 2s is conveniently chosen as  197.5 ,o C   the resulting 
two-step-stress and three-step-stress optimal designs under D-, 
A, and Q-optimality criteria appeared to be the same again. 
Nonetheless, the relative efficiencies are not always better than 
their corresponding peers, the optimal two-step-stress designs. 
These designs and their relative efficiencies under D-, A-, and 
Q-optimalities are displayed in Tables 8 and 9, respectively. 

 

Table 8. D-, A-, Q-optimal stress-changing times, when 2s  = 197.5o C  

3-step-stress ALT 2-step-stress ALT 

optimal designs 1τ  2τ  optimal designs 1τ  
3(1)

1

, ,D A Q
Cξ  178.2 223.6 2

12

, ,D A Q
Cξ  183 

3(1)

2

, ,D A Q
Cξ  178.0 209.2 2

12

, ,D A Q
Cξ  183 

3(1)

3

, ,D A Q
Cξ  162.9 219.4 2

34

, ,D A Q
Cξ  156 

3(1)

4

, ,D A Q
Cξ  162.1 194.8 2

34

, ,D A Q
Cξ  156 

3(1)

5

, ,D A Q
Cξ  198.0 227.5 2

55

, ,D A Q
Cξ  201 

3(1)

6

, ,D A Q
Cξ   162.1 194.8 2

66

, ,D A Q
Cξ   156 
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Table 9. D-, A-, Q- relative efficiencies, when 2s   = 197.5o C  

 1C  2C  3C  4C  5C  6C  

( )3(1),2D eff  0.93 0.89 1.14 1.0 0.94 1.0 

( )3(1),2A eff  1.06 1.03 1.09 1.06 1.04 1.06 

( )3(1),2Q eff  0.88 0.86 1.04 0.94 0.91 0.94 

Table 10. D-optimal designs and relative efficiencies  

3-step-stress ALT, 
2s  = 155 

D-relative 
efficiency 

Optimal 
design 1τ  2τ  ( )( )3 2 ,2D eff  ( )( )3 2 ,3(1)D eff  

3( 2)

1

D
Cξ   178.05 245.70 1.91 2.05 

3( 2)

2

D
Cξ   175.60 220.01 1.42 1.60 

3( 2)

3

D
Cξ   145.65 247.10 2.80 2.46 

3( 2)

4

D
Cξ   154.65 210.94 1.79 1.79 

3( 2)

5

D
Cξ   179.37 245.61 1.47 1.90 

3( 2)

6

D
Cξ   154.65 210.94 1.79 1.79 

  
Table 11. A-optimal designs and relative efficiencies 

 

3-step-stress ALT,   
2s  = 155 

A-relative 
efficiency 

Optimal 
design 1τ  2τ  ( )( )3 2 ,2A eff  ( )( )3 2 ,3(1)A eff  

3( 2)

1

A
Cξ   155.20 247.47 1.13 1.07 

3( 2)

2

A
Cξ   147.99 226.84 1.09 1.06 

3( 2)

3

A
Cξ   155.13 247.47 1.19 1.09 

3( 2)

4

A
Cξ   142.41 211.73 1.11 1.05 

3( 2)

5

A
Cξ   155.18 247.47 1.09 1.05 

3( 2)

6

A
Cξ   142.39 211.73 1.11 1.05 

Very similar to the results found in Section 3 when the 
baseline hazard function being simple linear, the resulting 
designs with an optimal middle stress level provide much more 
efficiency gains than those with a fixed middle stress level when 
the baseline hazard function being quadratic. The optimal 
stress-changing times and the optimal middle stress levels, 
under D-, A, and Q-optimality criteria, for Model (1) with (16) 
are displayed in Tables 10, 11, and 12, respectively. These 
tables also include the efficiencies of the resulting optimal 
three-step-stress designs relative to both their corresponding 

 

optimal two-step-stress designs and optimal three-step-stress 
designs listed in Table 8, under D-, A-, and Q-optimalities. 

Table 12. Q-optimal designs and relative efficiencies 

3-step-stress ALT,  2s  = 
155 

Q-relative efficiency 

Optimal 
design 

 
1τ   

 
2τ   

( )( )3 2 ,2Q eff  ( )( )3 2 ,3(1)Q eff  

3( 2)

1

Q
Cξ   178.15 245.96 1.71 1.94 

3( 2)

2

Q
Cξ   177.96 224.53 1.39 1.62 

3( 2)

3

Q
Cξ   148.51 247.29 2.36 2.27 

3( 2)

4

Q
Cξ   162.04 210.97 1.62 1.72 

3( 2)

5

Q
Cξ   198.03 241.97 1.37 1.51 

3( 2)

6

Q
Cξ   162.04 210.97 1.62 1.72 

We note that these three-step-stress ALT designs with optimal 
middle stress level have largely reduced the loss function for all 
cases. From Tables 10-12, the efficiency gains among all the cases 
considered are of a minimum of 9% and a maximum of 180% with 
respect to the optimal two-step-stress designs. The overall average 
efficiency gain is as high as 55.4% over the optimal two-step-stress 
designs and 59.7% over the optimal three-step-stress designs with 
a fixed middle stress. Such efficiency gains are much higher than 
the efficiency gains when adopting a PH model with a simple 
linear baseline function. The resulting optimal stress-changing 
times vary under three criteria, but all the optimal middle stress 
levels are equal being the lower bound of 2s . For all three criteria, 
the most efficient design occurs when the constraint case is 3C . 
Therefore, if the experimenter is uncertain which constraints 
should be applied, we would recommend to apply optimal designs  

3( 2)

3

D
Cξ   or  3( 2)

3

A
Cξ   for better model parameter estimation and  3( 2)

3

Q
Cξ   

for more accurate hazard rate prediction. 

5. Simulations 

In order to demonstrate the performance of resulting designs 
obtained in Sections 3 and 4 with a given sample size, we carry out 
a simulation study. We first provide a procedure to simulate data 
from a given step-stress ALT experimental design, then we 
examine and compare the performances of the optimal designs 
constructed by the previous sections. 

5.1. A simulation procedure 

The following four steps describe our simulation procedure: 

Step 1: Generating the number of failures and the failure times 
under the low stress level, 1s : 

Given the initial values of true model parameters with the stress 
levels and stress-changing times of an optimal design, we can use 
a binomial distribution to simulate the data. We divide [ ]10, ,τ

1τ , into 1m  

subintervals: 10 11[ , ],t t   ( ]11 12, ,t t   ...,  ( 1 11, 1 1,m mt t−  , where  
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110 11 1 10 mt t t τ= < < < =L . Let iX  be the failure number over the  

i  th subinterval ( 1, 1 1,i it t−  , we assume that the distribution of iX  
is a binomial distribution; namely, 

1

1 1
1

,  , 1,..., ,
i

i j i
j

X B n X p i m
−

=

 
∼ − =  

 
∑  

where 1ip  is the failure rate within the ith interval  ( 1, 1 1,i it t−    
under the low stress level,  1s  . Then,  1ip   can be derived as 
follows: 

( ) ( )

1 1, 1 1 1 1, 1 1 1 1

2 3 2 31 2 1 2
0 1, 1 1, 1 1, 1 1 0 1 1 1 1

{ } ( ; ) ( ; )

exp exp exp exp .
2 3 2 3

i i i i i

i i i i i i

p P t t t s R t s R t s

t t t s t t t sγ γ γ γγ β γ β

− −

− − −

= < ≤ = −

      = − + + − − + +            

  

Note that when the baseline function is a simple linear 
function, we let  2 0.γ =   Then, we generate  iX   failure times 
randomly from a uniform distribution within each subinterval  
( 1, 1 1,i it t−   . Therefore, the total number of failure times generated 

under 1s  is 1
11

m
i in X== ∑ . 

Step 2: Generating the number of failures and the failure times 
under the middle stress level, 2s : 

Similarly to Step 1, we divide the second time period ( ]1 2,τ τ  

into 2m  subintervals: ( ]20 21, ,t t  ( ]21 22, ,t t  ...,    ( 2 22, 1 2,m mt t−  , 

where 
21 20 21 2 2.mt t tτ τ= < < < =L   Let  iY   be the failure 

number over the ith interval  ( 2, 1 2, ,i it t−    the distribution of  iY   
can be assumed as 

( )
1

1 2 2
1

,  , 1,..., ,
i

i j i
j

Y B n n Y p i m
−

=

 
∼ − − =  

 
∑  

where  2ip   is the failure rate within the ith interval  ( 2, 1 2,i it t−    
under the middle stress level,  2s  . Then,  2ip   can be computed 
by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2, 1 2 2

2 31 2
0 2, 1 2, 1 2, 1 2

2 31 2
0 2 2 2 2

{ }

exp exp
2 3

exp exp ,
2 3

i i i

i i i

i i i

p P a t t a t s

a t a t a t s

a t a t a t s

γ γγ β

γ γγ β

−

− − −

= + < ≤ +

  = − + + + + +    
  − − + + + + +    

where  ( )1
2 1 1 .a F F τ−=      Then, we generate  iY   failure times 

randomly from a uniform distribution within  ( 2, 1 2,i it t−    for each  
i  . Therefore, the total number of failure times generated under 

2s  is 2
12

m
i in Y== ∑ . 

Step 3: Generating the number of failures and the failure times 
under the high stress level, 3s : 

Now, we divide the third time period ( ]2 ,cτ  into  3m   

subintervals: ( ]30 31, ,t t  ( ]31 32, ,t t  ...,  ( 3 33, 1 3,m mt t−  , where 

32 30 31 3mt t t cτ = < < < =L . Let  iZ   be the failure number over the  

ith interval  ( 3, 1 3, .i it t−   The distribution of  iZ   can be assumed as 

( )
1

1 2 3 3
1

,  , 1,..., ,
i

i k i
k

Z B n n n Z p i m
−

=

 
∼ − − − = 

 
∑  

where  3ip   is the failure rate within the ith interval ( 3, 1 3,i it t−   
under the high stress level, 3s . Then, 3ip  can be derived as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 3, 1 3 3

2 31 2
0 3, 1 3, 1 3, 1 3

2 31 2
0 3 3 3 3

{ }

exp exp
2 3

exp exp ,
2 3

i i i

i i i

i i i

p P b t t b t s

b t b t b t s

b t b t b t s

γ γγ β

γ γγ β

−

− − −

= + < ≤ +

  = − + + + + +    
  − − + + + + +    

 

where  ( )1
3 2 2 1 .b F F a τ τ−= + −     Then, we generate  iZ   failure 

times randomly from a uniform distribution within ( 3, 1 3,i it t−    for 
each ,i  and finally the total number of failure times generated 
under 3s  is 3

13
m
i in Z== ∑ . 

Step 4: Estimating the parameters: 

For simplicity, we keep the length of all subinterval equal to  
q   hours in this paper. The log-likelihood function can be 
expressed as 

( ) ( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

1

2

3

21
1 1 0 1 0 1

1

21
2 2 0 1 0 2

1

21
3 3 0 1 0 3

1

; ln exp
2

ln exp
2

ln exp
2

m

i
i

m

i
i

m

i
i

n s X qi qi qi s

n s Y a qi a qi a qi s

n s Z b qi b qi b qi s

n n

γξ β γ γ γ β

γβ γ γ γ β

γβ γ γ γ β

=

=

=

   = + + − +   
   

   + + + + − + + +   
   

   + + + + − + + +   
   

− −

∑

∑

∑

l β

( ) ( ) ( ) ( )21
1 2 3 0 2 2 3exp .

2
n n b c b c sγγ τ τ β  − − + − + + −    

       (21) 

 For each simulation run, we can compute the maximum 
likelihood estimates of the model parameters by maximizing (21). 

Let  r   be the number of simulation runs. We may use these  
r   estimates to calculate the simulated squared bias (SBIAS 2 ), 
simulated variance (SVAR), and simulated mean squared error 
(SMSE) of each parameter estimator. We define SBIAS 2 ,  SVAR, 
and SMSE for an estimator  θ

)
  as: 

( )

( )

( ) ( )

2

2
0

1

2

1 1

2

0
1

1SBIAS ,

1 1SVAR ,
1

1and SMSE ,

r

j
j

r r

j j
j j

r

j
j

r

r r

r

θ θ θ

θ θ θ

θ θ θ

=

= =

=

 
= −  

 

 
= −  −  

= −

∑

∑ ∑

∑

) )

) ) )

) )

   

    (22) 
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where 0θ  is the given true parameter value, jθ
)

 is the estimate of 

0θ from the jth simulation run. By these definitions, we can 

compute SBIAS 2 ,  SVAR, and SMSE respectively for  º0γ  ,  
)

1γ  ,  
º

2γ  , and  
)
β   using the resulting designs from the example 

obtained in Sections 3 and 4. We can also compute SBIAS 2 ,  
SVAR, and SMSE of the MLE of hazard rate over T  under normal 
design conditions for our resulting designs. The true hazard 
function over T   under normal design stress level Ds  can be 
expressed as 

( ) ( ) ( )2 31 2
00

; exp
2 3

T

D Dg t s dt T T T sγ γλ γ β = = + + 
 ∫α (23) 

with [ ]0 1 2, , , .Tγ γ γ β=α  By the invariance property of MLEs, the 
MLE of (g1true) is 

) º
) º )( )2 31 2

0 exp .
2 3 Dg T T T sγ γγ β

 
= + +  

 
  (24)  

Then, SBIAS 2  , SVAR, and SMSE of  
)
g   can also be computed 

by (22). 

5.2. Performance of the optimal designs obtained in Sections 3 
and 4 

Taking n = 200,  c = 300 hours, and 1000r = , the length of all 
subintervals to be 5 hours, we use the simulation procedure 
introduced in Section 5.1 to evaluate the performance of our 
resulting designs. We adopt the constraint case  1C   for a 
demonstration.  

For the PH model with a simple linear baseline function, from 
Section 3.3, 3(1)

1

, ,D A Q
Cξ having  1[ 178.2,τ =   2 223.6,τ =  

2 197.5]s = , is the D-, A-, and Q-optimal design with fixed middle 

stress at  2 197.5os C= . After we update  2s   to the optimal middle 
stress level, we get new D-, A-, and Q-optimal designs for  1C . 
Since the resulting D-, A- and Q-optimal designs are similar, we 
only present the simulation result for our Q-optimal design. The 
Q-optimal design we obtained in Section 3.4 for 1C  is  3( 2)

1

Q
Cξ   with 

1[ 156.19τ =  ,  2 247.47τ =  ,  2 155]s = . We denote the 
efficiencies of a design  Aξ   relative to another design  Bξ   in 

terms of SBIAS 2 , SVAR, and SMSE as  ( ),B A Beff ξ ξ , 

( ),V A Beff ξ ξ , and ( ), ,M A Beff ξ ξ  respectively. Based on these  

1000 simulation runs, we compute all the SBIAS 2 , SVAR, and 
SMSE of the MLE for 0γ , 1γ , β , and g  when each of the two 

different designs, 3( 2)

1

Q
Cξ  and  3(1)

1

Q
Cξ , is adopted. Table 13 shows 

the efficiencies of  3( 2)

1

Q
Cξ   relative to  3(1)

1

Q
Cξ   in terms of SBIAS 2 , 

SVAR, and SMSE of 
)

,β  º0 ,γ  
)

1,γ  and (24) respectively. We note 
that since these are Q-optimal designs and therefore the efficiency 
gains appear more for estimating .g  This is consistent with the 
previous finding of the asymptotic efficiency gains as discussed in 
Section 3. The simulation results indicate that the most efficiency 

gains appear in variance reduction with an extreme for 0γ . The 
reason behind is that the optimal designs constructed was aiming 
to minimize the asymptotic variances. 

In Section 3, the Q-optimal designs are obtained by minimizing 
the asymptotic variance of the 

)
g . As expected, when 3( 2)

1

Q
Cξ  was 

adopted, we have gained the most efficiency (as high as 76.57%) 
in terms of the SVAR(

)
g ) compare to 3(1)

1

Q
Cξ . The SVAR of MLE 

of the model parameters are all very much reduced, and their 
efficiency gains of  3( 2)

1

Q
Cξ   relative to  3(1)

1

Q
Cξ   in terms of SVAR(

º
0γ ), SVAR(

)
1γ ), and SVAR(

)
β ) are all higher than 100%. 

Moreover, SBIAS 2  and SMSE of 
)
g  are also being reduced. All 

the results confirm that 3( 2)

1

Q
Cξ  outperforms the design 3(1)

1
.Q

Cξ   

Table 13. The efficiencies of  3( 2)

1

Q
Cξ   relative to  3(1)

1

Q
Cξ in terms of 

SBIAS 2 , SVAR, and SMSE 

 

 )
β  º

0γ  
)

1γ  
)
g  

( )3( 2) 3(1)

1 1
,Q Q

B C Ceff ξ ξ  0.9824 0.9803 1.0 1.0175 

( )3( 2) 3(1)

1 1
,Q Q

V C Ceff ξ ξ  2.2207 24508114.61 2.0038 1.7657 

( )3( 2) 3(1)

1 1
,Q Q

M C Ceff ξ ξ  0.9838 0.9851 1.0 1.0345 

For the PH model with a quadratic baseline function, the 
optimal design 3(1)

1

, ,D A Q
Cξ 1[ 178.15τ = , 2 223.57τ = , 

2 197.5]s =   (please see Table 8) is the D-, A, and Q-optimal 

designs with a fixed middle stress at 2 197.5os C= . When we 
simultaneously choose an optimal middle stress together with 
optimal stress-changing times, the D-, A-, and Q-optimal designs 
become  3( 2)

1

D
Cξ   having 1 2[ 178.15, 245.96]τ τ= = , 3( 2)

1

A
Cξ  having  

1[ 155.20,τ = 2 247.47],τ =  and 3( 2)

1

Q
Cξ  having  

1 2[ 178.15, 245.96],τ τ= =  and they all are with 2 155.s =  We 
note that the D-optimal design and Q-optimal design are quite 
similar. Thus, we only present the simulation results for our 
resulting A- and Q-optimal designs in this example. Based on the 
1000 simulation runs, we compute all SBIAS 2 , SVAR, and SMSE 
of the MLE for 0γ , 1γ , 2γ , β  and g  when each of the three 

different designs, 3(1)

1

, , ,D A Q
Cξ  3( 2)

1

A
Cξ , and 3( 2)

1
,Q

Cξ  is adopted. Tables 

14 and 15 display the efficiencies of 3( 2)

1

A
Cξ  and 3( 2)

1

Q
Cξ  relative to  

3(1)

1

, ,D A Q
Cξ  in terms of SBIAS 2 , SVAR, and SMSE of 

)
β ,  º0 ,γ   

)
1γ

, º2 ,γ  and (24) respectively. The simulation results have shown that 

the designs, 3( 2)

1

A
Cξ  and 3( 2)

1
,Q

Cξ  by optimally selecting the middle 
stress level and stress-changing time simultaneously can reduce 
SVAR(

)
g ) by 282% and 183% compared to 3(1)

1

, ,D A Q
Cξ . We also 

note that not all of SVARs of MLE of model parameters have been 
reduced much by using 3( 2)

1

A
Cξ  or 3( 2)

1

Q
Cξ . Only SVAR( º

0γ ) and 

SVAR( º
2γ ) have significantly lessened among all SVARs. 
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Further, we uncover that both SBIAS 2  and SMSE of all º0γ , 
)

1γ , 
º

2γ , 
)
β ,  and 

)
g  are reduced by adopting either 3( 2)

1

A
Cξ  or 3( 2)

1

Q
Cξ . 

The efficiencies of  3( 2)

1

A
Cξ   or  3( 2)

1

Q
Cξ   in terms of SMSE(

)
g )  are 

more than 50 and 39 times higher than 3(1)

1

, ,D A Q
Cξ . This indicates 

that unitizing  3( 2)

1

A
Cξ   or  3( 2)

1

Q
Cξ  can provide a great efficiency gain 

when experimenters are interested in estimating a hazard rate. 

Conclusion 

Optimal three-step-stress ALT designs for PH models, with 
either a linear or a quadratic baseline function, have been 
constructed in this paper. For a three-step-stress ALT, the 
practitioner often naturally set the average of high and low stress 
as the middle stress level. Nevertheless, from the results of both 
simulated and asymptotic efficiency comparison, we have revealed 
that the optimal three-step-stress ALT designs with both optimal 
stress-changing times and with an optimal middle stress level 
outperform the most among all the designs and for all the scenarios 
considered. Therefore, the three-step-stress plans with both 
optimal stress-changing times and optimal middle stress level are 
recommended especially when the hazard rate prediction is 
interested. 

In Section 3, we have presented the resulting optimal designs 
for a practical ALT example when fitting a PH model with a simple 
linear baseline hazard function. Taking six different MNF 
constraint cases, we have found the optimal allocations of the 
stress-changing times and the optimal middle stress level that can 
minimize the loss function DL , AL , or QL . Thus, we have solved 
the minimization problem for a nonlinear objective function with 
multiple nonlinear constraints (MNF at different stress levels), and 
obtained the constrained optimal designs under each of D-, A-, and 
Q-optimality. The resulting optimal designs under three different 
criteria are quite similar. In addition, we have also found that the 
middle stress level should be kept as close to the lower bound of 
the middle stress level as possible as long as the constraint 
condition is satisfied. 

Table 14. The efficiencies of  3( 2)

1

A
Cξ   relative to  3(1)

1

, ,D A Q
Cξ in terms of 

SBIAS 2 , SVAR, and SMSE 

 

 )
β  º

0γ  
)

1γ   º2γ   
)
g   

( )3( 2) 3(1)

1 1

, ,,A D A Q
B C Ceff ξ ξ   1.0098 21.256

1 
1.000
4 

504.67
33 

313.20
65 

( )3( 2) 3(1)

1 1

, ,,A D A Q
V C Ceff ξ ξ   0.9713

6 
11.492
4 

0.027
7 

420.46
43 

2.8329 

( 3( 2) 3(1)

1 1

, ,,A D A Q
M C Ceff ξ ξ   1.0097 14.017

3 
1.000
4 

42.756
5 

40.255
4 

In Section 4, we have derived the optimal designs when 
fitting a PH model with a quadratic baseline hazard function. 
The optimal stress-changing times and the optimal middle stress 
level are also chosen in order to minimize the loss functions 
under given nonlinear constraints. Similarly to the case with a 
linear baseline hazard, under these constraints, the optimal 
middle stress level can be located as close to the low stress level 
as possible as long as such constraints are satisfied. For each of 
D-, A-, and Q-optimality, six different constrained optimal 

 

designs have been obtained. We also reveal that designing a 
three-step-stress ALT with a fixed middle stress seems only 
helping reduce the value of loss function under A-optimality. 
Thus, we suggest not conveniently taking the average of other 
two stress levels as the middle stress level, especially when a 
quadratic baseline hazard function is considered. We conclude 
that optimal three-step-stress designs have gained efficiency on 
an average of 68% for a hazard rate prediction compared to the 
corresponding optimal two-step-stress designs, which means 
that there is 7.56 times higher efficiency gain attained than the 
case when the baseline function is simple linear. 

Table 15. The efficiencies of  3( 2)

1

Q
Cξ   relative to  3(1)

1

, ,D A Q
Cξ  in terms of 

SBIAS 2 , SVAR, and SMSE 

 )
β  º

0γ  
)

1γ   º2γ   
)
g  

( )3( 2) 3(1)

1 1

, ,,Q D A Q
B C Ceff ξ ξ  1.027

1 
31.459
9 

1.000
4 

199.040
5 

280.627
9 

( )3( 2) 3(1)

1 1

, ,,Q D A Q
V C Ceff ξ ξ  0.789

8 
6.8388 0.014

9 
309.285
5 

3.8197 

( 3( 2) 3(1)

1 1

, ,,Q D A Q
M C Ceff ξ ξ  1.025

8 
9.8674 1.000

4 
29.3142 51.1622 

In Section 5, we have evaluated the performance of our 
resulting designs from both Sections 3 and 4 by simulations. The 
design for a three-step-stress ALT with an optimal middle stress 
level and two optimal stress-changing times has greatly increased 
the simulated efficiency of the hazard rate estimator. It is 
confirmed that the optimal designs with optimal middle stress 
significantly outperform those ones with the middle stress level 
fixed at the average of other two stress levels. 

We note that although the design construction in this paper has 
been demonstrated by optimal designing three-step-stress ALT 
experiments when a single stress factor is involved, the method 
developed can be easily extended to conducting the optimal 
designs for more complicated multiple step-stress ALT, such as 
step-stress ALT with more than three steps, and/or ALT with 
multiple stress factors (but one of them engaged in conducting 
step-stress plans). We also notice that the inaccuracy of the 
assumed baseline hazard function can cause unavoidable 
prediction bias. Although the proposed designs perform very well 
when the model assumed is correct, they seem not helping much 
in reducing such bias when the assumed model is incorrect. If 
possible imprecision of the assumed PH model is suspected, then 
robust design approach should be considered. Some discussion on 
robust design for a PH model can be seen in [18]. 
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