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This paper investigates the methods of optimal design construction for step-stress
accelerated life testing (ALT) when a Cox's hazards model is adopted with either a linear
or a quadratic baseline hazard function. We discuss multiple step-stress plans for time-
censored ALT experiments. The maximum likelihood method is utilized for estimating the
model parameters. The information matrices have been derived for both models. The
optimal stress-changing times and optimal stress levels are determined simultaneously
under three different optimality criteria. In order to demonstrate the performance of the
resulting designs, a simulation procedure is also provided. The efficiencies of our resulting
optimal three-step-stress ALT plans are compared with their competitors using both
practical examples and a simulation study. The efficiency comparison results have shown
that the three-step-stress designs obtained with two optimal stress changing times and an
optimal middle stress level are most efficient, compared to the corresponding optimal two-
step-stress designs and to the optimal three-step-stress designs with a conveniently chosen
middle stress. Furthermore, the efficient gains are most significant for hazard rate
prediction for both cases when either a linear or a quadratic baseline hazard is assumed.
Additionally, such efficiency gain is much greater for the case when the baseline function
being quadratic than the case when that being simple linear.

1. Introduction

Since ALT can shorten the lifetime of a product, we often adopt
it in order to obtain the failure information quickly within a limited

Reliability significantly influences the quality of product.
Thus, many manufacturers make great effort to enhance the
product reliability that largely determines the product
competitiveness. Such importance has brought practitioners'
attention to reliability evaluation. In life data analysis, we have to
collect the failure time of a product under normal design conditions
to quantify life characteristics of the product. However, such
failure data for lifetime are very difficult to obtain in many
situations, especially for the product with high reliability.
Nowadays, lifetimes of many products are too long and the life
testing period between design and release is limited; so, the tests
under normal design conditions are too lengthy to get any failures.
To overcome this problem, accelerate life testing (ALT) has been
developed.
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time frame. In an ALT experiment, the test units are generally
subjected to the stress levels that are higher than normal design
level. The commonly used stress factors for failure acceleration
include temperature, vibration, voltage, and pressure. Both the use
of specific accelerated stress factors and the range of stress levels
for a particular material or product are often suggested by
engineering practice. Then, the failure data obtained at accelerated
conditions have to be extrapolated through a proper model so that
the characteristics of life distribution at normal design conditions
can be estimated. A number of different types of stress loading
schemes (such as constant, cyclic, step, progressive, and random
stress loading) are available in practice when performing an ALT.
By the relation between the stress levels and testing time, these
stress loading schemes can be classified into two categories: time-
independent and time-dependent stress loadings. When the stress
loading is time-independent such as constant stress loading, the
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stress level applied to each of the test units stays the same during
the entire testing period. One of the demerits of using constant
stress loading in ALT is that it could still take too long to run for
the test experiment to observe sufficient failures when the
inappropriate testing stress levels are applied. To address this
problem, a time-dependent stress loading scheme is preferred to
assure quick failures. When a time-dependent stress loading, such
as step-stress, is adopted, test units are subjected to a stress level
that is changing over testing time. In this paper, we consider step-
stress ALT where all test units are subjected to the stress levels
increasing by steps.

This paper is an extension of our previous work [1] originally
presented in The Third IEEE International Conference on World
Computing and Big Data Analysis. In literature, almost all the
previous works done by others for Cox's proportional hazards (PH)
based ALT models are very limited on simple step-stress assuming
the baseline hazard function is simple linear. However, [2] have
indicated that the optimal multiple step-stress ALT may further
improve the quality of the reliability pre diction for a parametric
model. Therefore, this paper broadens the results of [1] where has
only addressed the optimal ALT plans for PH models with a linear
baseline function and moves on to discussing multiple step-stress
optimal designs for ALT when adopting a PH model with either a
simple linear or a quadratic baseline hazard function. In this paper,
both optimal stress levels and optimal stress-changing times for
three-step-stress ALT designs are derived under three different
optimality criteria.

2. Literature Review and Preliminaries

2.1. Optimal designs for step-stress ALTs with a non-PH model

Miller and Nelson [3] first discussed Q-optimal designs for
simple step-stress ALT tests with complete failure data assumed to
be exponentially distributed. Their optimal designs were attained
by minimizing the asymptotic variance (AVAR) of the maximum
likelihood estimator (MLE) of the mean lifetime at the normal
design stress level. Then, their work was extended to censored data
by [4] who obtained the optimal simple step-stress ALT designs
incorporating time-censoring. For some products or material, their
failure times often follows a Weibull distribution. Assuming a
Weibull distribution with a constant scale parameter, both [5] and
[6] constructed optimal simple step-stress ALT designs for time-
censoring. Bai and Kim in [5] obtained the optimal low stress level
and optimal stress-changing time in order to minimize the AVAR
of the MLE of a specific quantile of the product's lifetime
distribution at the normal design stress level whereas [6] obtained
their optimal stress-changing time in order to minimize the AVAR
of the MLE for reliability prediction instead. In addition, Hunt and
Xu in [7] further investigated optimal simple step-stress ALT plans
for a Weibull distribution; however, they assumed both the shape
and scale parameters were functions of the stress levels. Their
resulting optimal designs chosen the stress-changing time in order
to minimize AVAR of the MLE of reliability prediction at the
normal design stress level and at a pre-specified time. They also
reviewed the research work on optimal designs for step-stress
ALT. Please see the references therein. We note that all these work
previously done had provided the design construction methods
only for simple step-stress ALT plans.
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Moreover, Ma and Meeker in [8] extended the research by [5]
to provide a general method for multiple step-stress ALTs
assuming a log-location-scale family of distributions. They
discussed an approach to calculate the large-sample approximate
variance of the MLE for a percentile of the failure time distribution
at normal design conditions when the failure data were observed
from a step-stress ALT. By adopting a cumulative exposure model,
their approach allowed for both multiple step-stress loading and
censoring. Their results also showed that depending on the values
of the model parameters and certain percentile of interest, one of
the three test plans proposed could be the most preferable in terms
of optimum variance. For a Weibull lifetime distribution, however,
with possible inaccuracy in the assumed log-linear life-stress [2]
investigated the optimal stress-changing time for simple step-stress
ALT plans in order that the asymptotic mean squared error of the
underlying reliability estimator could be minimized, and the robust
choices of three-step-stress plans were also discussed with the
awareness of possible imprecision in the assumed life-stress
relationship by minimizing the asymptotic squared bias.

2.2. Optimal designs for constant stress or simple step-stress
ALTs with a PH model

Jiao in [9] first investigated the optimal design problem for a
PH model when a constant-stress ALT experiment being planned,
and then developed the optimal designs for reliability prediction
by optimally choosing both stress levels and proportion of units
allocated to each stress level in order to attain the most accurate
reliability estimate at normal design conditions. Moreover, when a
step-stress ALT experiment was planned, [9] discussed the simple
step-stress ALT plan for reliability prediction and obtained the
optimal stress level by minimizing the variance of the MLE of
hazard rate at the normal design stress level and over a pre-
specified time period. In addition, [9] also provided an algorithm
for solving the constrained nonlinear optimization problems.

On the other hand, Elsayed and Zhang in [10] revealed an
optimal simple step-stress ALT plan so as to obtain the most
accurate reliability function estimates at normal design conditions.
They also formulated a nonlinear programming problem to
minimize the asymptotic variance of the hazard rate estimator over
a prespecified the period at the normal design stress level. More
recently, Hu, Plante, and Tang in [11] briefly discussed the optimal
low and high stress levels in a simple step-stress ALT in order to
minimize the mean squared error of the estimated upper
confidence bound for the cumulative failure probability of a
product at normal design conditions, with a given stress-changing
time. In sum, all these existing works provided the methods of
optimal design construction only for simple step-stress ALT plans.
Therefore, we expand the previous work of others and investigate
the optimal designs of multiple step-stress ALT for PH models in
this paper.

2.3. Optimal designs for general proportional hazards models

There is broader literature of optimal designs available for
general proportional hazards models, which are not necessary with
consideration of step-stress ALT plans. To name a few, Becker,
McDonald, and Khoo in [12] constructed D-optimal designs for
proportional hazards models with one or two parameters when its
baseline hazard function was specified. They developed the
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method of minimum variance design construction when various
censoring schemes were adopted. Dette and Sahm in [13] provided
a standardized maximum variance design criterion which could be
applied to obtain the optimal designs whereas McGree and
Eccleston in [14] created compound criteria so that optimal designs
could be derived for multi-objective scenarios. L’ opez-Fidalgo,
Rivas-L opez, and Del Campo in [15] also proposed an algorithm
to find optimal designs for typical Cox regression models
incorporating  censoring. More recently, Konstantinou,
Biedermann, and Kimber investigated the general maximin D-
optimal designs for a class of models and discussed the application
of their design construction method to the proportional hazards
models in [16].

2.4. Our model and some preliminaries

One of the most commonly used means for predicting the
lifetime of a product is Cox's PH model since it provides sufficient
flexibility for identifying the effects of covariates on the failure
rate. In this paper, a PH model with hazard ratio being independent
of time is considered. Therefore, the hazard rate of a product can
be expressed

ﬂ(t;s):ﬂo(t)exp(ﬁrs), (1)

where A, (t) is a baseline hazard function, B isa column vector of

unknown parameters, and s is a column vector of the covariates
(applied or transformed stresses) for an ALT experiment, and that
are independent of the baseline hazard. Presumably, the stresses
are having multiplicatively effects on the hazard rate in this model.

We conduct ALT with step-stress loading where all the test
units begin at a prespecified stress level. After a time fraction, the
stress level is changed to a higher stress level. The stress level can
be raised more than once before the test completes. A simple step-
stress ALT, also called a two-step-stress ALT, only uses two stress
levels during an ALT experiment. In contrast, in multiple step-
stress ALT, more than two stress levels are needed and the stress
level is raised at least twice before the test ends. In this paper, we
discuss multiple step-stress ALT experiments. We denote by s,

the normal design stress level. For a three-step-stress, we signify
the low, middle and high stress levels by s,, s,,and s, , the stress-

changing times by 7, and 7,, and censoring time by c.

In this paper, we assume A, (t) to be in either a linear or a

quadratic form. For either case, we investigate the optimal three-
step-stress ALT design construction under D-optimality, A-
optimality, and Q-optimality, respectively. We obtain D-optimal
designs in order to minimize the determinant of covariance matrix
of the estimators for the model parameters (or equivalently
maximize the determinant of Fisher's information matrix), A-
optimal designs in order to minimize the trace of covariance matrix
of the estimators for the model parameters, and Q-optimal design
to minimize the asymptotic variance of the estimator for a specific
quantity of interest. The major quantity of interest in this paper is
the average hazard rate over a particular period of time under
normal design conditions.

For the case of 4, (t) being simple linear, the main part of the
optimal design construction was presented in [1]. Therefore, we
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will only restate the necessary notations being continuously used
here and also summarize the previous results for comparison

purpose in this paper. For the case of A, (t) being a quadratic

function, we will present the discussion and derivation in full.
Furthermore, because there was no simulation study done
previously for either case, we will demonstrate simulation and
comparison studies for both cases in the present paper.

The rest of this paper is organized as follows: in Section 3, the
optimal three-step-stress ALT design results have been
summarized for the case when the baseline hazard function A, (t)
in (1) is assumed to be a simple linear function. In Section 4, the
optimal three-step-stress ALT design have been derived for the
case when A, () is considered to be a quadratic function. The
method of the optimal design construction involves the
minimization for a nonlinear objective function with nonlinear
constraints, and some practical examples are used to illustrate the
proposed method for the construction of constrained optimal
designs in Sections 3 and 4. We have also evaluated the
performance of the resulting designs obtained in both Sections 3
and 4 through simulations and comparisons in Section 5. Some
concluding remarks are presented in Section 6.

3. Optimal designs when A, () being a simple linear

function

Xu and Huang in [1] first focused on determining the optimal
three-step-stress ALT designs for a PH model with time-censoring
in the case when the baseline hazard function is considered being
a simple linear function. They have provided detailed derivation
for the information matrix and the optimal choices of both the
middle stress level and stress-changing times for all cases
considered there. For comparison reasons, we keep the same
notations which are presented in Subsection 3.1, and their main
results are summarized in this section.

3.1. Notation

Although the method of development for multiple step-stress
ALT designs can be provided in general, we formulate our design
construction using three-step-stress ALT experiments for its
simplicity. A three-step-stress ALT experiment with time-
censoring involves a predefined censoring time ¢, and three test

stress levels s, s,, and s;, which satisfies s, <s, <s, <8, .
Assuming there are n test units available for the ALT experiment,
they are all first placed at low stress level s, for a time interval [0,

7,]. Afterwards, the test units survived by time 7, are subjected to
a middle stress level s, for the next time interval (z,, z,]. Next,
the remaining units by time 7, are subjected to the highest stress
level s, for the last time interval (z,, c]. Then, the test ends at
censoring time c. We consider Model (1), under a stress level s,
where 4, () being independent of s .

We make use of the notations F(;5), f(5;5), A(t;9)
R(;5)

t, respectively, at a
given stress level s. We also employ the cumulative exposure
model (CEM), please see [17] for details, to address the changes
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of F(t;s), in lifetime ¢ due to the stress step-ups in a step-stress

ALT experiment. We denote the cdf under s, by

F(t)=F(t|s=s,), i=12, and 3.

1

Then, the stepwise cdf with respect to ¢ can be expressed by:

F (1) if t<t,
Fz(a+t—r,) if 7,<t<7,),
Fy(b+t-1,) if 7,<t<c,

P(t>c) if t>c,

Fepy (1)=

Where a and b satisfy F(7,)=F,(a) and
Fy(a+t,-7,)=F,(b). Namely, a=F,'[ F,(7,)] and
b=F;' [Fz(a+r2 —f,)].

We also make use of the following three indicators, each as a
function of stress change times r,, 7,, or censoring time ¢, and

failure time ¢ :

L=1(t<7) 1if <7, L=1(t<z,) 1if t<7,,
= <7 )= = 57, )=

b Voloifese, 27? Yo if >,
] I(t<) 1if t<c,

= SC)=

20 0 if t>c,

where 0<7, <7, <c. Taking a three-step-stress design & with

three stress levels being s, s,, and s, , the log-likelihood

function of an observed lifetime ¢ can be written as:
nL(6:E)= 11,1, {m(% s rd)+ B, —(m +%t2jexp(ﬂsl )}
+(1-1,) 1,1, {ln(yo +7,X)+ Bs, — (;/Ox +%x2jexp(ﬂs2 )}
(1 _zz)z{m(% +7,0)+ Bss —(yoy+%y2]exp(ﬂs3):|

_(l—Iz)K;de+%d2jexp(ﬁs3)},
wherex=a+t-7, y=b+t—1,, andd =b+c—7,.
@

As assumed the baseline hazard rate being independent of the
covariates, according to [10], the Fisher's information matrix, F',
for the full sample with size # can be obtained as

) sl o

97y oron

— &’ In &%In
F=n E{_ anmL} E{_ ayEL} 0 >
o0 By

and the covariance matrix, X~ , of the maximum likelihood
estimators (MLE) of y,, #,, f isthe inverse matrix of F:
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Var(;eo) Cov(;eo,y)l) 0
T=F'= Cov(}eo,jz) Var(jz) 0
0 0 Var(g’)

The elements of the Fisher's information matrix for ¢ are the
negative expectations of the corresponding second partial
derivatives. We denote the non-zero elements of Fisher's
informationby Fy, F,, F,, and F, .In[1], Xuand Huang

have derived the expressions of these elements as follows:

*InL
Fz)():E{_ ; }
07,

= exp(ﬁsl)j

a1
° A (1)

exp[ —A(t;s,) | dt

a+t,-1

+exp(ﬁs2)‘|‘a 1 tx)

Z+c—rz /10 zy) exp [—A (y; S5 ):| dy,

exp |:—A (x;5, )J dx

+exp(Bs, )j
)

a+1, -1, xZ
© A
b+c-t,

yZ
b A(y)

+exp(ﬁs2)j exp I:—A(x;s2 )j dx

+exp(/3s3)j exp[—A(y; s, )] dy,

“4)

t

A (1)

a+t, -1, X
© A)

Z+c—rz lo Ey) exp[—[\ (y; S5 ):| dy,

exp [—A (t;s, ):| dt

+exp(fs, )I exp [—A(x; s, )J dx

+exp(fs;) I
)

and

2
F_E _8 lnzL
op

y } =57 exp(Bs, )f;'ﬂ.o (1)A(t:s,)exp[ -A(5;s, ) |t
+s; exp(fs, )J‘:Hﬂ'ﬁo (x)A(x;s, )exp[—A()c;s2 )]dx

w5t exp(fs) |2 (9)A(ss: Jexp[-A(vis,) Jdy +53A(dss,).
(6)
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We note that the derivation of these elements in this subsection
and the expressions of the loss functions in next subsection have
been omitted, please see [1] for details.

3.2. Loss functions and design constraints

In this paper, we consider the following three different design
criteria: D-optimality, A-optimality, and Q-optimality. In [1], Xu
and Huang has derived the corresponding three loss functions as

1

S — (7
° (E)()Fh _E)zl)F/;
Fy,+F 1
Ly=—0tin ()
FVOOFII _En F,B
and
| _ET-F+iR,T’ +S§(73T+%71T2 +17T?)
Q - b
E)OEI _E)zl Fﬁ
©
respectively.

In ALT practice, there are often some requirement needed on
the minimum number of failures at each stress level. Similarly to
[10] for designing optimal simple step-stress ALTs, we take
certain practical constraints into consideration in our optimal
design construction process for multiple step-stress ALTs. In this
paper, we consider three design constraints as below:

e The minimum expected number of failures (MNF) at stress
level s, is required as w:

nPrlt<zls, |2 w; (10)
e The MNF at stress level s, 1is givenas w, :

(n—nl)Pr[a+t—rl£72|s2]2w2; (11)
e The MNF at stress level s; is given as w; :

(n—nl—nz)Pr[b+t—IZSc|s3]2w3, (12)

where n, is the number of failures under each stress level s, ,
i=1,2,3.

With these constraints, the optimal decision variables (z,, 7,,
s, ) can be determined by minimizing each of the above-

mentioned loss functions. Specifically, we choose the optimal
designs in order to minimize (7), (8), or (9) with respect to (z,, 7,

, §,) subject to all three constraints (10), (11), and (12). We denote
the optimal designs corresponding to the three optimality criteria
by P&, *&, and &, which can be expressed as

D =arg { min( L, | given (10), (11),and (12) )}, (13)

g =arg {min(L, |given (10),(11),and (12))}, (14)
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and 2¢& = arg { min( L, | given (10), (11), and (12)) }. (15)
3.3. Optimal designs when the middle stress being fixed

In [10], Elsayed and Zhang discussed an example of
conducting a two-step-stress ALT experiment for metal oxide
semiconductor capacitors and estimating the hazard rate over 10

years at design temperature 50°C. The total number of test units
was n = 200 and the test was censored by ¢ = 300 hours. In order
to avoid any unanticipated change in failure mechanisms during
the ALT experiment, the maximum testing temperature was

determined to be 250°C by the engineering experimenters. The
initial values of the model parameters was taken as y, =0.0001 ,
7,=0.5, and B =-3800. The Q-optimal low accelerated stress

level was found to be 145°C'.

In this subsection, we use this example to compare the optimal
two-step-stress ALT designs obtained in [10] with our proposed
three-step-stress ALT designs. Previously, the optimal two-step-

stress ALT designs are having s, =145°C and s, =250°C . For

our three-step-stress ALT plans, we keep the number of test units,
censoring time, and the lowest and highest stress levels all the

same. Namely, n =200, c=300, s, =145°C and s,=250"C.
The initial values for the model parameters are kept the same as
well. Conveniently, the experimenters often take s, as the average

of s, and s, . Therefore, we discuss two scenarios for the choice

of s,:(a) being 197.5°C, which isthe average of s, =145°C

and s, =250°C; and (b) being optimally chosen, together with
stress changing times, in order to minimize a specified loss
function. We note that when temperature is taken as a stress factor
appeared in a PH model for ALT, absolute temperature is often
used as its measurement unit for model fitting.

Table 1. Constraint cases for two-step-stress ALT

Notation Constraint parameters MNF
C, w, =40, w,=30 70
G, w, =30, w, =40 70
Cis w, =40, w,=20 60
Ces w =20, w,=40 60

Table 2. Constraint cases for three-step-stress ALT

Notation Constraint parameters MNF

G w, =40, w, =20, w, =10 70

C, | w=40,w,=15,w,=15 70

G, w, =30, w, =30, w; =10 70

C, | w=30,w,=20, w,=20 70

C, | w=40,w,=10, w;=10 60

C, w =20, w, =20, w, =20 60
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In Scenario (a), the optimal stress changing times, 7, and 7,,
or L,
some specific constraints. We take several practical constraint
cases with given w;, w, and w;, and these cases accompanied by

their notations are recorded in Table 1 for two-step-stress ALT
designs, and in Table 2 for three-step-stress ALT designs.

can be chosen in order to minimize L,, L under

A °

We denote the D-, A- and Q-optimal designs obtained for two-
step-stress ALT under a given constraint case C, by L §ék ,

1&, and °&, , where k=12, 34, 55, 66, and the D-, A- and Q-
optimal designs obtained for three-step-stress ALT under a given
constraint C, by 5‘3” éfk”, and Qé“’, where k=1, ..., 6,

and i=1,2 with 7 referring to the different scenario of s, (i=1

for Scenario (a), and i = 2 for Scenario (b)). Moreover, we define
the asymptotic D-, A-, Q-efficiencies of f”’ relative to §é as

Deﬁ‘(3(i),2):%§2‘))),

Aeff(3(i),2)=j: ((é:)) and

%eff (3(i).2) = LQQ((;);:))) fori=1, 2;
and the asymptotic D-, A-, Q-efficiencies of & relativeto &;”
as

o 06020 -

eff (3(i).3()) = Z E:Z:; and

Ceff (3 ()3@):%, fori, j=1, 2

The optimal stress-changing time(s), for both two-step-stress
plans and the three-step-stress ALT plans with s, being fixed at

197.5°C, are obtained by minimizing L,, L, ,or L

4 (O3
respectively for all the constraint cases considered. We note that
the resulting optimal stress-changing times are all the same for
these three different optimal criteria although their corresponding
relative efficiencies are not the same. The optimal stress-changing
times and relative efficiencies for all six constraint cases (as listed
in Table 2) are presented in Tables 3 and 4. The overall average

efficiency gain after unitizing an optimal three-step-stress plan is
5.44% when s, being fixed at 197.5°C .

4. Optimal designs when baseline hazard is a quadratic
function

4.1. Preliminary

We have considered the PH based ALT with the case where the
baseline hazard function is a simple linear function in Section 3. In
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many practical situations, this simple model can be under-fitted.
Therefore, in this section, we focus on the PH model when the
baseline hazard function is in a quadratic form. Namely, we adopt
Model (m1) where the baseline hazard function is rather being

io(t):7o+71t+72t2~ (16)

Table 3. D-, A-, Q-optimal stress-changing times, when s, =197.5°C

3-step-stress ALT 2-step-stress ALT

optimal 7, 7, optimal 7,

designs designs

D, A, ngm 178.2 223.6 D,A4,0 §Z 183
ClZ

D.4, ng) 178.0 209.2 D, 4,0 &£ 183
CIZ

D, A, Qegz(n 162.9 2194 D, 4,0 §Z 156
Cy

D.4, Q§3(l) 162.1 194.8 D, 4,0 &£ 156
Cyy

D, 4, Qgsm 198.0 227.5 D, 4,0 & 201
CSS

D.A4, Qgsu) 162.1 194.8 D, 4,0 &£ 156
C66

Table 4. D-, A-, Q- relative efficiencies, when 5, =197.5°C

¢ ¢, [c [c Ja Jc,

Deﬁ’(B(l),Z) 1.06 | 1.04 | 1.10 | 1.06 | 1.04 | 1.06

Aeﬁf(3(1)’2) 1.06 | 1.03 | 1.09 | 1.06 | 1.04 | 1.06

Qeﬂ(3(1),2) 1.04 | 1.03 | 1.08 | 1.05 | 1.03 | 1.05

Consequently, the cdf, pdf, the cumulative hazard function, and
the reliability function of failure time ¢, at a given stress level s,
become

F(t;s)=l—exp|: (7ot+};‘t +7;2t )exp(ﬁs)},

f(t:s)=2, (t)exp(ﬁs)exp|: (7Ot+7;' 2+ 732 £ jexp(ﬁs):|,
A(t;s)= (70t+ }; £+ 7;2 £ jexp(ﬂs), and

R(t;5)= exp[f[y0t+%t2 +%t3jexp(ﬂs)}.

(17)

Then, the log-likelihood function of ¢ , under a three-step-

stress design & with stress levels being s, s,, and s, ,
become

lnL(t;é):111213|:ln(yU+ylt+yzt2)+ﬂsl—(;/Ot+%t2+%t3jexp(ﬁsl)}
+(1711)1213|:1n(;/0+y|x+}/2xz)+ﬂsz7(}/0x+}; 737 3jexp(ﬁvz)}
Jr(l—lz)l{ln(yu+;/1y+y2y2)+ﬂs3 [70y+%y2+% 3jexp(ﬁs})}
—(1—13)|:(70d+}/'d2 };Zdj’]exp(ﬂ%)},
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where x, y, and d are defined as in (2). Its first partial derivatives
with respect to the model parameters y,, 7, and S are the

same as in (3) but with A, (¢) being defined as in (16) instead,

and the one with respectto y, is

dlnL R of 1
L:[Jz[}t {—;exp(ﬂsl)}+(l—1])lzl3x {%(x)—;exp(ﬂsz)}

7, A1)
H-L)Ly Lozy)_ﬁexp(ﬂ%)}(l-zs)‘fexp(ﬂss).
Table 5. D-optimal designs and relative efficiencies
3-step-stress ALT, D-relative
s, =155 efficiency
Gl | n | m | er(3(2).2)] "er (3(2).30)
§3m 152.65 | 247.44 1.13 1.07
D é( 2) 148.33 | 226.85 1.09 1.05
guzv 152.93 | 247.44 1.19 1.09
§3<2) 143.25 | 211.74 1.12 1.06
gw» 179.40 | 245.78 1.08 1.04
ézzm 161.43 | 211.03 1.11 1.05
Table 6. A-optimal designs and relative efficiencies
3-step-stress ALT, A-relative
s, =155 efficiency
gepstiigfﬁal 7, 7, off (3(2).2) | “eff (3(2).30)
53(7) 155.20 | 24747 | 1.13 1.07
é:sm 147.99 | 226.84 | 1.09 1.06
4 ém 155.13 | 24747 | 1.19 1.09
Agg}) 142.41 | 211.73 | 1.11 1.05
éw; 155.18 | 247.47 | 1.09 1.05
écsm 142.39 | 211.73 | 1.11 1.05

Table 7. Q-optimal designs and relative efficiencies

3-step-stress ALT, s, =155 D-relative efficiency
%22;;31 7 n | 2 (3(2).2) | 2eff(3(2).30)
0z 156.19 | 247.47 1.09 1.05
g 149.81 | 226.86 1.07 1.04
0 éauzm 156.71 | 247.47 1.14 1.06
g 14420 | 211.75 1.09 1.04
0 éazju 156.45 | 247.47 1.06 1.03
Qéam 143.98 | 211.75 1.09 1.04
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. . . 2 2 2
Its second partial derivatives %, Zhl - gl - gnd
0

oy on ?

@BIT“L can be expressed as the same as in Xu and Huang (2018) but
with their 4, and A function being defined as in (16) and (17),

and their corresponding elements of the Fisher's information
matrix for a single failure time ¢ (the expected value of negative
second derivatives) are as the same as in (3), (4), (5), and (6). The
remaining second derivatives are

&L LIt (1-1)LLx" (1-1,)Ly"
o &) A A (y)
&L LI (1-1)LLx" (1-1,)5y
. A1) &%) A(y)
&L LI (1-1)LLx (1-1,)Ly
o, A &%) Z GO

and their corresponding elements of the Fisher's information
matrix for a single # can be derived as below:

azlnL 7 t4
E =E{— = tys, )dt
" { ay;} bz )

b+c-1, y4

4 (»)

f(yis;)dy

a

oy
+I 2 lgx(x)f(x 38, dx+_[

—exp(ﬂsl)j R(t;s,)dt

" A1)
+exp( fBs, )J‘(Mz !

R(x;s,)d
10 (x) (x S2) X
b+c—1, y4

S~ R(yisy)dy,
b /10 (y) ( 3)

o*InlL o 1 att-n, x2
Fo=E{-CRE L 1" r () S,
[ e 2

bt+c-1, yz o \d
+f 200 (is;)dy

exp(ﬂsl)_[

+exp(ﬁs3)J

S(x35,)dx

2
X

R(t; sl)dt+exp(,6's2)‘|wH Tlm

0/;( ] R(x;s, )dx

+exp(ﬂs3)jb+c " T))Ey) R(y:s;)dy,

and

6 InL 7 t3 a+7,-n x3
F,=E t;s,)dt —5—f(xs,)dx
{ } A M

oy,
btc-1, y3 ) y
+.[b ﬂol(y)f(yass) ly
_CXp(ﬂS])J-O 1 ( )R(t Sl)dl"i'exp(ﬂsz)"‘aﬁ - lx(x)R(x;sz)dx
+exp(ﬂs3)'[h+c sziR(y;S3)dy’

()
with R function being defined as in (17).
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As indicated in Section 3.1, the correlations between the stress
coefficient £ and baseline parameters y,,7, and y, are equal to

zero. Consequently, the covariance matrix ¥, of the MLEs of
Yos1-72, 3 can be expressed as

Var(}eo) Cov(;o,jz) Cov(;?o,;ez) 0
~ COV(}?O,]Z) Var(y)l) Cov(}fl,yez) 0
Cov(;o,jc/)z) Cov(;%,;cf)z) Var(;cf’z) 0

0 0 0 Var( })

where F is the Fisher's information matrix of the full sample
with size n and

pl-2u) pf-gu) pl-gu} o
F_nE{‘ﬁ} Ef-2u) E(-22) 0 BRI
E{—‘”—“L} E{_szlr}L} E{_lenf} 0 F, F, F, 0
072 onrn o7 0 0 0 F/;
0 0 0 E{—%%%}

4.2. Loss functions and design constraints

Now the loss functions under D-, A-, and Q-optimality become
M o o ) o o
Var(;/o) Cov(}/o,yl) Cov(;/o,;/z) 0

Cov()?(,,y)]) Var(y)l) Cov(}/)],}cjz) 0

LD =detn o o ) o o
Cov(}/o,;/z) Cov(;/],;/z) Var(}fz) 0
0 0 0 Var(,g)
-1
Fo Fy Fy 0
F, F, F 0
—det| |1 11 12
Fy, F, F, 0
0 0 0 Fﬂ
_ 1
(FooFi]Fzz +2F FyFy - E)()Fé - FllE)zz - FzzE)zl)Fﬂ
(18)
r o o ) o o
Var(yo) COV(]/O,}/I) Cov(;/o,yz) 0
o ) ) o
Cov(;/o,yl) Var(yl) Cov(yl,j/z) 0
LA :trn o o ) o o
Cov(}/o,}/z) Cov(;/l,]/z) Var(}/z) 0
0 0 0 Var(})
-1
E) E)] FOZ O
Fy B K, O
=tr
F, F, F 0
0 0 0 Fy
— FE)OFH+F00F22+FHF22_F021_FE)22_E§ +L
FooFquz + ZFE)IFE)ZFIZ _E)oFé - FnFozz - FzzFozl Fﬂ
(19)
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and
L, =exp(—2ﬂsn)j:11 Var[z(t;sp )} dt
= exp(—ZﬂsD)J.ZnVar[(;o + }2[ + ;ztz )exp ﬁsD}dt

T T
— _ o 0 0A 0A 04 -l oa o4 or  aA
_exp( 2ﬁ30)j0[em o o aﬂJF |:8y0 o on 6,/1’] dt

(PP =F )20 ForFan—Fon R )+1*(2FrFia=2 Fi Foy+ Foo Py = s )26 (FogFia=Fon P 41 (Fao = Fo )

dt

7} 3 3
_ J‘T FooF1Fn+2FoFonFro=FooFia—FnFop—Fn o1
0

Blrorrrnt)
T

(FiFo = F3 )T =(FyFyy = Fyo B ) T+ (2Fy =2, Fyy + Fy Fyy = F ) T
—4(FoFyy = Fy Fo ) T* + 4 Foo 7, = F ) T°
FUUFIlez + 2Ft)1Fo2Flz - FuuFli - FnFuzz - FzzFuzl

sp (BT +yanT? + 42D 4 2274 4 277

Fy

+

(20)
respectively.
The optimal decision variables ( 7, , 7, , s, )are chosen by

minimizing the loss function (18), (19), or (20) with some design
constraints. We also keep the three constrains (10), (11), and (12)

as the same as those in Section 3. The corresponding designs ”¢& ,
1£ and 2¢& can also be described as (13), (14), and (15).

4.3. Optimal three-step-stress designs

In this subsection, we revisit the example presented in Section
3, and discuss the optimal ALT designs when the fitting model is
a PH model with a quadratic baseline hazard function. Suppose
from previous experience, the initial values for the model
parameters are y,=0.0001 , ,=0.5, y,=0, f#=-3800. All

other values of the design parameters in the example remain the
same. Thus, the accelerated stress levels remain as s, =145°C,

s, =250°C. Here we also consider the six constraint cases as used
in Section 3.

When s, is conveniently chosen as 197.5°C, the resulting

two-step-stress and three-step-stress optimal designs under D-,
A, and Q-optimality criteria appeared to be the same again.
Nonetheless, the relative efficiencies are not always better than
their corresponding peers, the optimal two-step-stress designs.
These designs and their relative efficiencies under D-, A-, and
Q-optimalities are displayed in Tables 8 and 9, respectively.

Table 8. D-, A-, Q-optimal stress-changing times, when §, = 197.5°C

3-step-stress ALT 2-step-stress ALT
optimal designs | 7, 7, | optimal designs | 7,
D.A,Qéagn 178.2 | 223.6 D,4,0 & 183
D,4,0 e 178.0 | 209.2 D,4,0 & 183
D,4,0 £ 1629 | 2194 D,4,0 & 156
D.4.0 £ 162.1 | 194.8 D, 4,0 & 156
D, 4,0 £ 198.0 | 227.5 D, 4,0 e 201
D,4,0 £ 162.1 | 194.8 D, 4,0 e 156
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Table 9. D-, A-, Q- relative efficiencies, when 5, =197.5°C

C G, C, C; C
Deﬁ’(3(1),2) 0931089 | 1.14 | 1.0 | 094 1.0
4 eﬁ’(3(1),2) 1.06 | 1.03 | 1.09 | 1.06 | 1.04 1.06
Qeﬁ”(3(1),2) 0.88 1 0.86 | 1.04 | 0.94 | 0.91 0.94
Table 10. D-optimal designs and relative efficiencies
3-step-stress ALT, D-relative
s, =155 efficiency
o || P (3(2).2) | e (3(2)30)
D e 178.05 | 245.70 1.91 2.05
D > 175.60 | 220.01 1.42 1.60
D > 145.65 | 247.10 2.80 2.46
D 2 154.65 | 210.94 1.79 1.79
D 2 179.37 | 245.61 1.47 1.90
D 2 154.65 | 210.94 1.79 1.79

Table 11. A-optimal designs and relative efficiencies

3-step-stress ALT, A-relative
s, =155 efficiency
Optimal T T A g A pr
dovign 1 > | e (3(2),2) | ‘e (3(2).30)
4 g3 155.20 | 247.47 1.13 1.07
G
4 £30) 147.99 | 226.84 1.09 1.06
G
45 155.13 | 247.47 1.19 1.09
C3
4 g£30) 14241 | 211.73 1.11 1.05
¢
4 g3 155.18 | 247.47 1.09 1.05
ce.
4 g£30) 142.39 | 211.73 1.11 1.05
Cs

Very similar to the results found in Section 3 when the
baseline hazard function being simple linear, the resulting
designs with an optimal middle stress level provide much more
efficiency gains than those with a fixed middle stress level when
the baseline hazard function being quadratic. The optimal
stress-changing times and the optimal middle stress levels,
under D-, A, and Q-optimality criteria, for Model (1) with (16)
are displayed in Tables 10, 11, and 12, respectively. These
tables also include the efficiencies of the resulting optimal
three-step-stress designs relative to both their corresponding

WWwWw.astesj.com

optimal two-step-stress designs and optimal three-step-stress
designs listed in Table §, under D-, A-, and Q-optimalities.

Table 12. Q-optimal designs and relative efficiencies

3-step-stress ALT, s, = Q-relative efficiency
. 155
doeitigal . . Ceff (3(2).2) | Zeff(3(2).3()
Qfé(lz) 178.15 | 245.96 1.71 1.94
Qgé(;) 177.96 | 224.53 1.39 1.62
Qféf:’ 148.51 | 247.29 2.36 2.27
Qézé:m 162.04 | 210.97 1.62 1.72
Q‘fé:) 198.03 | 241.97 1.37 1.51
Qézé(:) 162.04 | 210.97 1.62 1.72

We note that these three-step-stress ALT designs with optimal
middle stress level have largely reduced the loss function for all
cases. From Tables 10-12, the efficiency gains among all the cases
considered are of a minimum of 9% and a maximum of 180% with
respect to the optimal two-step-stress designs. The overall average
efficiency gain is as high as 55.4% over the optimal two-step-stress
designs and 59.7% over the optimal three-step-stress designs with
a fixed middle stress. Such efficiency gains are much higher than
the efficiency gains when adopting a PH model with a simple
linear baseline function. The resulting optimal stress-changing
times vary under three criteria, but all the optimal middle stress
levels are equal being the lower bound of s, . For all three criteria,

the most efficient design occurs when the constraint case is C;.

Therefore, if the experimenter is uncertain which constraints
should be applied, we would recommend to apply optimal designs

3(2)

D g32) A4 g£302) 3 3 [
o, or “&e” forbetter model parameter estimationand “ &

for more accurate hazard rate prediction.

5. Simulations

In order to demonstrate the performance of resulting designs
obtained in Sections 3 and 4 with a given sample size, we carry out
a simulation study. We first provide a procedure to simulate data
from a given step-stress ALT experimental design, then we
examine and compare the performances of the optimal designs
constructed by the previous sections.

5.1. A simulation procedure

The following four steps describe our simulation procedure:

Step 1: Generating the number of failures and the failure times
under the low stress level, s, :

Given the initial values of true model parameters with the stress
levels and stress-changing times of an optimal design, we can use

a binomial distribution to simulate the data. We divide [0, T, ],

7,, into m,
subintervals: [t,,,2,],  (f,0,], . (tl,ml—l’tlml:' , where
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0=1,<t, <L <t,, =7,. Let X, be the failure number over the Now, we divide the third time period (7,,c] into m,
i th subinterval (¢, .1, ] we assume that the distribution of X, subintervals: (f3,%,,],  (f,.6,], - (tS,ms_l,tM}] , where
is a binomial distribution; namely, 7, =t, <t <L <t;, =c.Let Z, bethe failure number over the
( S:X », J - ith interval ( 3.0l 311 The distribution of Z, can be assumed as

o D =1 my,

Zi~B[ n nl—n2 sz’p&j’ =1,...,m;,

where p,. is the failure rate within the ith interval (tLH,t&}

where p,, is the failure rate within the ith interval (tLH,tUJ

under the low stress level, s, . Then, p,, can be derived as

follows: . .
under the high stress level, s, . Then, p,, can be derived as

Py =Pl <1< tli‘sl} =Rt _55) — R(435)

Pib+t,.  <t<b+t,
=eXP{—(7&., . e Lg ]+ﬁ 7. JGXP(ﬁsl)}—CXF{ (ynt, +721t +732 ‘Jexp(ﬁs )}pzz b+t 31|S3}

2 3 ) 3
Note that when the baseline function is a simple linear - exp[—{yo (b T ) +%(b + t3si-1) +%(b + tli-l) }exp(ﬂ% ))
function, we let y, =0. Then, we generate X, failure times
randomly from a uniform distribution within each subinterval — exp(—[yo (b+1,)+ ﬁ(b +1,) + ﬁ(b +1,) } exp( s, )j,
(tu " ] Therefore, the total number of failure times generated 2 3

where b=F,'[F,(a+7,~-7,)]. Then, we generate Z, failure
under s, is n, =YX, . . . P i
times randomly from a uniform distribution within (t3, i ,t3l.] for
Step 2: Generating the number of failures and the failure times

. each i, and finally the total number of failure times generated
under the middle stress level, s, :

. m
under s, is n, =57, .

Similarly to Step 1, we divide the second time period (7,7, | Step 4: Estimating the parameters:

info m, subintervals: (t20’t21]’ (t21’t22]’ e (tlmrl’tmz J’ For simplicity, we keep the length of all subinterval equal to
where 7, =1,, <t,, <L <t,, =7,. Let ¥, be the failure q hours in this paper. The log-likelihood function can be

. e expressed as
number over the ith interval (tZ,i—l’tZij|’ the distribution of Y, P

can be assumed as 1 (B:&)=n,ps, +§:[X{1n(yo +7 (qi))—(}/o(qi)+%(qi)2)exp(ﬂsl )H
Y, ~B{ n— nl Z pzl], =1,...,m,, +n2ﬂs2+2{Yi[ln(7o+7l(a+qi))—[7o(a+qi) };‘(a+q1) jexp(ﬁsz)ﬂ
< : AN
where p,, is the failure rate within the ith interval (tzyH,tzt.] s, +;{Z"[ln(7"+7‘ (b+ql))_[y°(b+ql) Sorai) ]eXp(ﬂs'*)H
E;der the middle stress level, s, . Then, p, canbe computed (n=m -, —%)Kn (bte—r,)+ % (b+c—rz)2]exp ( ﬂsg)}.
2
Py =Pla+t,;  <t< a+t2i|s2} For each simulation run, we can compute the maximum

likelihood estimates of the model parameters by maximizing (21).

=exp| — (a+t )+ﬁ<a+t )2+ﬁ(a+t )3 ex (,Bs ) : .
=CXp| —| 7o 2i1) T 2,i-1 3 2,i-1 PP, Let » be the number of simulation runs. We may use these
r estimates to calculate the simulated squared bias (SBIAS?),
—exp| —| 7o (a+1,;)+ s Da+e ) +&(a+t ) exp(s,) simulated variance (SVAR), and simulated mean squared error
Pl = 7 2)75 2i 3 2i P\PSy) |
(SMSE) of each parameter estimator. We define SBIAS ?, SVAR,

where a=F," [F1 (7, )] Then, we generate Y, failure times and SMSE for an estimator & as:

randomly from a uniform distribution within (tzg i ,tz,} for each

2
i . Therefore, the total number of failure times generated under SBIAS? (é) = [1 ZZO - HOJ ,
r -
s, 1s my = 3U5Y
. . Lo )1 )
Step 3: Generating the number of failures and the failure times SVAR(G) = Z 6’ - 29
Jj=1

under the high stress level, s, : ) )
and SMSE(0) = fz(ej -0,

rio

(22)
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. . A .
where 6, is the given true parameter value, &; is the estimate of
¢, from the jth simulation run. By these definitions, we can

. J
compute SBIAS?, SVAR, and SMSE respectively for ;30 s Vs

2 . . .
732 , and B wusing the resulting designs from the example

obtained in Sections 3 and 4. We can also compute SBIAS ?,

SVAR, and SMSE of the MLE of hazard rate over T under normal
design conditions for our resulting designs. The true hazard
function over 7 under normal design stress level s, can be

expressed as

T

g(a):joﬂ(t;sD)dt:(70T+%T2 +%T3jexp(ﬂsD) (23)

with & =[7,.7.7,.5 ]T . By the invariance property of MLEs, the
MLE of (gltrue) is

) ° 7)1 2 792 3 %
g= ;/OT+?T +?T exp( SD). 24)

)
Then, SBIAS”® , SVAR, and SMSE of g can also be computed
by (22).

5.2. Performance of the optimal designs obtained in Sections 3
and 4

Taking n =200, ¢ =300 hours, and » =1000, the length of all
subintervals to be 5 hours, we use the simulation procedure
introduced in Section 5.1 to evaluate the performance of our
resulting designs. We adopt the constraint case C; for a

demonstration.

For the PH model with a simple linear baseline function, from
Section 3.3, ”*°&" having [r;=1782, r,=223.6,
s, =197.5], is the D-, A-, and Q-optimal design with fixed middle
stressat s, =197.5°C . After we update s, to the optimal middle

stress level, we get new D-, A-, and Q-optimal designs for C,.

Since the resulting D-, A- and Q-optimal designs are similar, we
only present the simulation result for our Q-optimal design. The

Q-optimal design we obtained in Section 3.4 for C, is Qggl“ with
[r,=156.19 , 7,=24747 , s,=155] . We denote the

efficiencies of a design &, relative to another design &, in
terms of SBIAS ®, SVAR, and SMSE as effy(&,.¢;) .

effy (£4.65) , and effy, (£,,¢;), respectively. Based on these

1000 simulation runs, we compute all the SBIAS*, SVAR, and
SMSE of the MLE for y,, 7,, 8, and g when each of the two

different designs, Qggl“ and Qfé‘]", is adopted. Table 13 shows
the efficiencies of Qggj’ relative to Qfé‘l” in terms of SBIAS ?,

V. J .
SVAR, and SMSE of j, ;?0, 7,, and (24) respectively. We note

that since these are Q-optimal designs and therefore the efficiency
gains appear more for estimating g. This is consistent with the

previous finding of the asymptotic efficiency gains as discussed in
Section 3. The simulation results indicate that the most efficiency

WWwWw.astesj.com

gains appear in variance reduction with an extreme for y,. The

reason behind is that the optimal designs constructed was aiming
to minimize the asymptotic variances.

In Section 3, the Q-optimal designs are obtained by minimizing
the asymptotic variance of the g . As expected, when ché:” was
adopted, we have gained the most efficiency (as high as 76.57%)
in terms of the SVAR( ,é ) compare to Qggl” . The SVAR of MLE

of the model parameters are all very much reduced, and their

efficiency gains of Qggj’ relative to Qfé‘l” in terms of SVAR(

;30 ), SVAR(;{ ), and SVAR( é ) are all higher than 100%.
Moreover, SBIAS* and SMSE of é are also being reduced. All

3(2)

the results confirm that ¢ & outperforms the design Q§é(‘".

. . 0 £302) . 0 g30) .
Table 13. The efficiencies of éc. relative to écl in terms of

SBIAS 2, SVAR, and SMSE

o5 Aol
eff, (Qgé(lz»,Q é_,én) 0.9824 | 0.9803 1.0 1.0175
eff, (Qféjz),g gé(]l)) 2.2207 | 24508114.61 | 2.0038 | 1.7657
eff, (Qgé(lz)’g é:é(]“) 0.9838 | 0.9851 1.0 1.0345

For the PH model with a quadratic baseline function, the
optimal design D’A’Qafé‘l” [r,=178.15 , 7,=223.57 ,
s, =197.5] (please see Table 8) is the D-, A, and Q-optimal

designs with a fixed middle stress at s, =197.5°C . When we

simultaneously choose an optimal middle stress together with
optimal stress-changing times, the D-, A-, and Q-optimal designs

become “& having [z, =178.15,7, =245.96], “& having
[7, =155.20, 7, = 247.47], and Q.fé‘f‘

[7, =178.15,7, =245.96], and they all are with s, =155. We

note that the D-optimal design and Q-optimal design are quite
similar. Thus, we only present the simulation results for our
resulting A- and Q-optimal designs in this example. Based on the
1000 simulation runs, we compute all SBIAS 2 SVAR, and SMSE
of the MLE for y,, 7,, 7,,  and g when each of the three

different designs, ™9 £, &7 and ©&7, is adopted. Tables

having

14 and 15 display the efficiencies of Afé'lz‘ and Qéé‘l“ relative to

DAL 20 in terms of SBIAS ®, SVAR, and SMSE of £, 7,, 7,

, ;0/2, and (24) respectively. The simulation results have shown that
the designs, * " and Qﬁé‘f‘, by optimally selecting the middle
stress level and stress-changing time simultaneously can reduce
SVAR(é) by 282% and 183% compared to D’A’szfl” . We also
note that not all of SVARs of MLE of model parameters have been
reduced much by using Aéé'lz‘ or Q.fé‘f' . Only SVAR( jc/)o ) and

SVAR( ;32 ) have significantly lessened among all SVARs.
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Further, we uncover that both SBIAS * and SMSE of all ;?0 , 7{ ,

2 ) . . P 32
;/;2 , B, and g are reduced by adopting either Acfé{“’ or chc‘] "

The efficiencies of Ag‘é‘]“ or Qééfl“ in terms of SMSE( é) are
more than 50 and 39 times higher than ”*¢£:" . This indicates
that unitizing o or Qféff’ can provide a great efficiency gain
when experimenters are interested in estimating a hazard rate.
Conclusion

Optimal three-step-stress ALT designs for PH models, with
either a linear or a quadratic baseline function, have been
constructed in this paper. For a three-step-stress ALT, the
practitioner often naturally set the average of high and low stress
as the middle stress level. Nevertheless, from the results of both
simulated and asymptotic efficiency comparison, we have revealed
that the optimal three-step-stress ALT designs with both optimal
stress-changing times and with an optimal middle stress level
outperform the most among all the designs and for all the scenarios
considered. Therefore, the three-step-stress plans with both
optimal stress-changing times and optimal middle stress level are
recommended especially when the hazard rate prediction is
interested.

In Section 3, we have presented the resulting optimal designs
for a practical ALT example when fitting a PH model with a simple
linear baseline hazard function. Taking six different MNF
constraint cases, we have found the optimal allocations of the
stress-changing times and the optimal middle stress level that can
minimize the loss function Z,, L, ,or L, . Thus, we have solved

the minimization problem for a nonlinear objective function with
multiple nonlinear constraints (MNF at different stress levels), and
obtained the constrained optimal designs under each of D-, A-, and
Q-optimality. The resulting optimal designs under three different
criteria are quite similar. In addition, we have also found that the
middle stress level should be kept as close to the lower bound of
the middle stress level as possible as long as the constraint
condition is satisfied.

Table 14. The efficiencies of az’ relative to ¢ fg]” in terms of

SBIAS 2, SVAR, and SMSE

roTn 17 s T2
eﬁB(Afé‘.maD’A'Q été:\) 1.0098 %1.256 41‘.000 2(3)4.67 2;3.20
eff‘V(A aZI’D,A.Qéén (6).9713 41‘1.492 (7).027 350.46 2.8329
eff“M(A é:m,D,A,ng:C»:u 1.0097 ;4.017 41‘.000 ;12.756 30.255

In Section 4, we have derived the optimal designs when
fitting a PH model with a quadratic baseline hazard function.
The optimal stress-changing times and the optimal middle stress
level are also chosen in order to minimize the loss functions
under given nonlinear constraints. Similarly to the case with a
linear baseline hazard, under these constraints, the optimal
middle stress level can be located as close to the low stress level
as possible as long as such constraints are satisfied. For each of
D-, A-, and Q-optimality, six different constrained optimal

WWwWw.astesj.com

designs have been obtained. We also reveal that designing a
three-step-stress ALT with a fixed middle stress seems only
helping reduce the value of loss function under A-optimality.
Thus, we suggest not conveniently taking the average of other
two stress levels as the middle stress level, especially when a
quadratic baseline hazard function is considered. We conclude
that optimal three-step-stress designs have gained efficiency on
an average of 68% for a hazard rate prediction compared to the
corresponding optimal two-step-stress designs, which means
that there is 7.56 times higher efficiency gain attained than the
case when the baseline function is simple linear.

Table 15. The efficiencies of & é(l Y relativeto 9 & é(l " in terms of

SBIAS 2, SVAR, and SMSE

é 790 74 ?c/’z é
eff, ( Q(,“’gf',D’A’Q & %.027 31 459 41;'000 ;99.040 380.627
eﬁrV(Qfan’D,A,Q &Y 2.789 6.8388 8.014 209.285 3.8197
eff, (Qfé:zv,D,A,Q EX 513.025 9.8674 41;'000 29.3142 | 51.1622

In Section 5, we have evaluated the performance of our
resulting designs from both Sections 3 and 4 by simulations. The
design for a three-step-stress ALT with an optimal middle stress
level and two optimal stress-changing times has greatly increased
the simulated efficiency of the hazard rate estimator. It is
confirmed that the optimal designs with optimal middle stress
significantly outperform those ones with the middle stress level
fixed at the average of other two stress levels.

We note that although the design construction in this paper has
been demonstrated by optimal designing three-step-stress ALT
experiments when a single stress factor is involved, the method
developed can be easily extended to conducting the optimal
designs for more complicated multiple step-stress ALT, such as
step-stress ALT with more than three steps, and/or ALT with
multiple stress factors (but one of them engaged in conducting
step-stress plans). We also notice that the inaccuracy of the
assumed baseline hazard function can cause unavoidable
prediction bias. Although the proposed designs perform very well
when the model assumed is correct, they seem not helping much
in reducing such bias when the assumed model is incorrect. If
possible imprecision of the assumed PH model is suspected, then
robust design approach should be considered. Some discussion on
robust design for a PH model can be seen in [18].
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