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 There exists a profound difficulty of communication between the people that works in the 
EMC area in circuit terms and the people that works in field terms.  
In this paper we show that when the matter is predominantly distributed along a certain 
direction in space, as for transmission lines, the electromagnetic field can be divided in two 
modes, each of them with two degrees of freedom, that are practically independent: a 
longitudinal TM (transverse magnetic) mode and a transversal TE (transverse electric) 
mode. We also show that two degrees of freedom of the longitudinal mode are the ones that 
are described by circuit’s theory. 
This formulation is based on the observation that, when the matter is macroscopically 
described by constitutive laws, the electromagnetic field within the matter can be fully 
characterized in terms of the potential fields, in total four degrees of freedom. 
Using the above formulation, we put forward a generalized formulation of the coupling of 
an external electromagnetic field to a transmission line, valid in any time scale. 
We apply the above concepts to study, in a common theoretical framework, the iconic case 
of the conducted and radiated interferences on a transmission line, and we show that:   
1-Differently than what is normally assumed in standard transmission-line theory, the 
normal operation mode and the internally-produced electromagnetic field are 
predominantly a longitudinal TM mode; 
2-The longitudinal mode is affected by both the conducted disturbances and the radiated 
disturbances; while 
3- The transverse mode is affected only by the radiated disturbances. 
Then, only for systems where the longitudinal mode is predominant, and, the longitudinal 
and the transversal modes are practically decoupled, EMI can be simulated using circuit 
simulation software’s. 
Also, to further illustrate the interpretation power of this formulation, we present some 
other application examples. 
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1. Introduction  

This paper is an extension of a work originally presented in the 
2018 Joint IEEE EMC & APEMC, which took place in Singapore 
from 14 to 17 May 2018 [1], and its main purpose is to present in 
a more detailed form both the general theoretical framework and 
the demonstration that the circuit’s theory applies to the two 
degrees of freedom of the so-called longitudinal mode: the scalar 
potential “Ф” in the conductor and the magnetic potential “Amz” 
along the conductor (the current “i” in the conductor is related to 
Amz through the concept of inductance). 

In reference [1], this theory was applied to study conducted and 
radiated interferences in transmission lines, because there exists 
confusion among the people that work in the area, in different time 
scales; which is caused, as mentioned there, by a rather loose 
definition of conducted and radiated disturbances. 

But nor the answer to the question, why do we feel that they 
are rather loosely defined? was fully explained in the text of 
reference [1], neither the primary cause of the confusion was 
identified.  

In reference [1] it was recalled that “in IEC, the disturbing 
electromagnetic fields are divided into: conducted disturbances 
(IEV 161-03-27) and radiated disturbances (IEV 161-03-28). 
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The essential difference between these disturbances, as 
established in the above definitions, resides in the manner how the 
energy is transferred to the conductors: 

- For conducted disturbances, IEV 161-03-27 says that the 
energy is transferred via one or more conductors; 

- For radiated disturbances, IEV 161-03-28 says that the energy 
is transferred through space in the form of electromagnetic waves. 
However, it notes that “The term "radiated disturbance" is 
sometimes used to cover induction phenomena”.” 

We feel that the above definitions of conducted and radiated 
disturbances are rather loosely defined because they appeal to an 
intuitive concept of energy on the part of the reader, taking 
advantage of the fact that the electromagnetic energy is very 
seldom calculated in interference problems. Besides that, the 
concept of electromagnetic energy of the people that works in 
circuit terms is very different than the concept of the people that 
works in field terms. 

IEV definition of electromagnetic energy 121-11-64 says that 
“The energy associated with an electromagnetic field, in a linear 
medium within a domain V, is given by the volume integral 

                         
( )1

2 V

E D H B dV⋅ + ⋅∫
   

 
where E, D, H and B are the four vector quantities determining the 
electromagnetic field”. 

This definition in field terms is not easy to understand for the 
people working in the low-frequency regime, which is used to 
work in circuit terms. Also, it is not frequently known what the 
relation between the above defined concept of electromagnetic 
energy and the concept of energy and power, used in circuit terms, 
is. 

Then, we can trace back the primary cause of the confusion to 
the fact that some people work in circuit terms, while other people 
work in field terms. 

As mentioned in reference [1], this is the origin of the different 
approach and the rather different language used by the people 
working in the low-frequency regime, as the power quality area, 
and the people working in the high-frequency regime, both in the 
lightning protection area and in the EMC area, facts that cause a 
certain degree of confusion and make it difficult the 
communication among the people working in these different areas. 

Also, as very well observed in reference [2], “Within IEC, 
power quality is treated within the standards on electromagnetic 
compatibility (EMC)”. This is because EMI problems, both in the 
low-frequency regime and in the high-frequency regime, are 
quantified and measured in terms of currents in the conductors and 
voltages between conductors, which is partly due to the widely 
accepted belief that the EMI on transmission lines is a completely 
known problem, and it can be simulated using various circuit 
simulation software’s. 

But this belief assumes that the problem of determining to what 
kind of electromagnetic systems the circuit theory is applicable, or 
which are the limits of the validity of the circuit theory, is a solved 
problem. Assumption that is by no means valid [3]. 

In this paper, as in reference [1], we first demonstrate that the 
characterization of the electromagnetic field in terms of the electric 
scalar potential “Ф” and of the magnetic vector potential “Am” [4], 
which Maxwell called electromagnetic momentum [5], when the 
matter can be macroscopically described by constitutive laws, is 
totally general. This characterization has in total four degrees of 
freedom. 

Second, we demonstrate that the circuit’s theory applies to the 
two degrees of freedom of the so-called longitudinal mode: the 
scalar potential “Ф” in the conductor and the magnetic potential 
“Amz” along the conductor (the current “i” in the conductor is 
related to Amz through the concept of inductance). 

This paper is organized as follows: 

In part 2, which closely follows the description given in part II 
of reference [1], we first review the different forms of description 
of the electromagnetic field within the matter [4, 6-9] showing that 
all of them have in common the equations involving the vector 
fields E (electric field strength) and Bm (magnetic flux density), 
which are commonly called “electric field” and “magnetic field”. 

Also, as in reference [1], it is shown that: 

- When the matter can be macroscopically described by 
constitutive laws, which are relations between the other fields (H, 
D and Jefr) needed to describe the electromagnetic field within the 
matter and the fields E and Bm; then, the electromagnetic field 
within the matter is fully characterized by the fields E and Bm (six 
degrees of freedom); and 

- As the common equations for the fields E and Bm can be 
solved in terms of the so-called magnetic vector potential “Am” 
and electric scalar potential “Ф”, in the case when the matter is 
described by constitutive laws, the number of degrees of freedom 
needed for the characterization of the electromagnetic field within 
the matter can be reduced from six (E, Bm) to four (Am, Ф). 

Then, as it happens in the vacuum [10], when the matter is 
macroscopically described by constitutive laws, the 
electromagnetic field within the matter is fully described by these 
two potential fields Am and Ф. 

The extension made in this paper mainly refers to alert the 
reader on the differences, arising from the different formulations 
of electromagnetic theory and not always acknowledged, between 
the formulations utilized by the different application software’s. 

In part 3, which closely follows the line of reasoning of part III 
of reference [1], we first show that when the matter is 
predominantly distributed along a certain direction in space, as for 
transmission lines, the four degrees of freedom of the potentials 
can be separated into two independent modes, each of them with 
two degrees of freedom: 

- a longitudinal mode constituted by Ф and the component of 
Am along the line, which is a TM (transverse magnetic) mode [11], 
and 

- a transversal mode constituted by the two components of Am 
transversal to the line, which is a TE (transverse electric) mode 
[11]. 
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As in reference [1], it is also shown that the longitudinal mode 
is the one described by circuit theory and the relation between its 
two degrees of freedom is given by Kirchhoff’s laws, which are 
deeply related to the existence and predominance of the 
longitudinal mode. 

As an extension made in this paper, using the longitudinal TM 
mode as the fundamental building block, instead of the TEM 
(transverse electromagnetic) mode as in traditional transmission-
line theory [12], and assuming that the longitudinal and the 
transversal modes are practically independent, we present the 
derivation of a generalized theory of the electromagnetic field 
coupling to a multiconductor line, in time domain, that, as usual, 
predicts the propagation of the scalar potential and the current 
along the line. 

For the longitudinal TM mode, as in traditional multi-
conductor transmission-line theory [12-14], the line voltages have 
a unique value, independent of the integration path from the 
reference to the conductor. 

The independent transversal mode produces additional induced 
voltages (integration path dependent) between the conductors of 
the line. 

As mentioned in reference [1], this treatment can also be 
extended to lines with imperfections, discontinuities or with 
conductors attached perpendicular to the line, such as, the 
terminations, equipment connections or groundings [15]. 

Also, as an extension and an application of the concept of 
longitudinal mode, the derivation of a general theory of the 
coupling of an external electromagnetic field to a conductor line is 
presented. This theory can be applied to different problems, such 
as, electromagnetic neural stimulation [16-20] and the calculation 
of lightning-induced voltages [13]. In order to not deviate the 
attention away from the main purpose of the paper and to avoid too 
many mathematical derivations in the main body of the paper, we 
present it in Annex 1. 

The generalized theory of the electromagnetic field coupling to 
a multiconductor line, under the proper simplifications, reduces to 
the standard coupling theories [12-14,21]. In Annex 2, we present 
a detailed comparison of this generalized theory with the most 
important classical theories of the electromagnetic field coupling 
to a multiconductor line. 

In part 4, as in part IV of reference [1], we apply the above 
theory to analyze the interference on a transmission line produced 
by external disturbances, which are commonly classified into 
conducted and radiated disturbances. 

As in reference [1]: 

- We assume that the normal operation mode, which is driven 
by normal lumped external excitation sources, is a longitudinal 
mode; 

- We divide the externally produced disturbances in two 
classes: longitudinal mode disturbances and transversal mode 
disturbances; 

- We divide the longitudinal mode disturbances in two classes: 
the scattered and the externally produced; these last ones are also 
divided in two classes: the remotely produced and that produced 

by the impressed current, which is injected by lumped external 
sources. 

We show that: 

- the conducted disturbances are longitudinal mode 
disturbances that affect only the longitudinal mode; but, 

- the radiated disturbances are composed of longitudinal mode 
disturbances and transversal mode disturbances, both of which 
affect the longitudinal mode; while the transversal mode is only 
affected by the transversal mode disturbances. 

This is the reason why, only when the longitudinal and the 
transversal modes are practically decoupled, EMI can be simulated 
using circuit simulation software’s. 

Also, this explains why current injection and capacitive clamp 
testing methods represent only the effect of disturbances, both 
conducted and radiated, on the longitudinal mode. 

In part 5, in order to illustrate the interpretation power of this 
approach, we present the results of other application cases together 
the important practical and engineering conclusions that has gone 
unnoticed in other calculations made with previously proposed 
approaches/software tools. Finally, in part 6 we present our 
summary and our main conclusions. 

2. Description of the Electromagnetic Field 

The description of the electromagnetic field given in this paper 
closely parallels the description given in reference [1] having only 
being added some complementary explanations, being (1) to (8) 
the same of reference [1] and our (13) is equal to (9) of reference 
[1]. 

The Maxwell-Hertz classical formulation of the 
electromagnetic theory [4,6], which refers to 5 vector fields and 1 
scalar field (E, H, D, Bm, Jefr and ρefr), is commonly called Maxwell 
equations (IEV 121-11-62): 

            
0;

;

m

m

B

BE
t

∇⋅ =

∂
∇× = −

∂






                    
;

.

efr

efr

D

DH J
t

ρ∇⋅ =

∂
∇× = +

∂




 

            (1) 

Where the four quantities determining the electromagnetic 
field (IEV 121-11-61) are: E the electric field strength (IEV 121-
11-18), H the magnetic field strength (IEV 121-11-56), Bm the 
magnetic flux density (IEV 121-11-19) and D the displacement 
(IEV 121-11-40). The vector field Jefr is the electric (conduction) 
current density (IEV 121-11-11) and the scalar field ρefr is the 
electric charge density or volumic (electric) charge (IEV 121-11-
07), which according to IEV 121-11-61 are needed to characterize 
the electric and magnetic conditions of a material medium 
together the electromagnetic field. 

 Using the following definitions: 

                 

0

0

;

;

; .

efr efr

efr mfr
efr

mfr
e efr e

M

M M
J

t

M
D B M H H

ρ

µ

µ

≡ −∇⋅

∂
≡ +∇×

∂

≡ − ≡ +



 



    

                   (2) 
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Where: Mefr and Mmfr are the electric and magnetic matter 
fields produced by the free electric charges; Be, which is called the 
electric flux density, is a vector field composed of D and Mefr.; and 
He, which is called the magnetic field intensity, is a part of the 
vector field H that is composed of He and Mmfr. 

Then, (1) can be written in a more symmetrical form [7] as: 

              
0;

;

m

m

B

B E
t

∇⋅ =

∂
= −∇×

∂






                     
0;

.

e

e
e

B

B H
t

∇⋅ =

∂
= ∇×

∂




                (3) 

Where:  

 ( ) ( )
( ) ( )

0 0

0 0

;

.

e efr eb efr eb efr

e mfr m mb mfr m mb mfr

B D M E M M E M M

H H M B M M B M M

ε ε

µ µ

= + ≡ + + = + +

= − ≡ − − = − +

        

        
   (4) 

Meb and Mmb are the electric and magnetic matter fields produced 
by the bound charges. 

It is important to note that our definition of electric flux density 
Be is different from the definition of IEV 121-11-40, where they 
call “electric flux density” to the displacement D (saying that this 
last terminology is obsolete), despite not being divergence-less. 
Also, our definition of magnetic field intensity He is different from 
the definition of H, the magnetic field strength of IEV 121-11-56. 

Equations (3) constitute the formulation of the electromagnetic 
theory that is called “Symmetrical theory of electromagnetism” 
[7]. 
The two vector equations in (3) can be interpreted as state 
equations, with the flux fields Be and Bm representing the electric 
state and the magnetic state, respectively; and the intensity fields 
(E and He) being the necessary inputs to produce a change in the 
states. 

Using (4), (1) and (3) can be written as: 

         
0;

;

m

m

B

BE
t

∇⋅ =

∂
∇× = −

∂






                
0

0
0

;

.

et

m
et

E

B EJ
t

ε ρ

ε
µ

∇ ⋅ =

∂
∇× = +

∂



 
          (5) 

Where: 

          

0

; ;

;

.

e efr eb m mfr mb

et e

e m
et

M M M M M M

M

M MJ
t

ρ

µ

≡ + ≡ +

≡ −∇⋅

∂
≡ +∇×

∂

     



 


                   (6)                                               

From (5) and (6) it is clearly seen that the sources of E and Bm 
are Me and Mn. Equations (5) constitute the Feynman’s 
formulation of the electromagnetic theory [8]. 

If instead of separating the matter fields Me and Mn into fields 
produced by free and bound charges, as in (6), we make the 
separation of the matter fields into fields produced by charges that 
are internal (Mei and Mmi) or external (Meex and Mmex) to the piece 
of matter considered; then we have: 

             
0;

;

m

m

B

BE
t

∇⋅ =

∂
∇× = −

∂






                  
' ;

'' .

ex

ex

D

DH j
t

ρ∇⋅ =

∂
∇× = +

∂




 

             (7) 

Where: 

                  

0

0
0

; ;

;

;

' ; ' .

e eex ei m mex mi

ex eex

eex mex
ex

m mi
ei

M M M M M M

M

M Mj
t

B MD E M H

ρ

µ

ε
µ

≡ + ≡ +

≡ −∇⋅

∂
≡ +∇×

∂

−
≡ + ≡

     



 


 
   

                  (8) 

Equations (7) constitute the Landau & Lifshitz’s formulation of the 
electromagnetic theory [9].                                              

All the usual formulations of the electromagnetic theory, as (1), 
(3), (5) or (7), have in common the equations of the left-hand side 
involving the vector fields E and Bm. 
Usually, these left-hand side equations are solved in terms of the 
so-called magnetic vector potential “Am” and electric scalar 
potential “Ф”: 

0 ;

0 .

m m m

m m m
m

B B A

B A AE E E
t t t

φ

∇ ⋅ = ⇒ =∇×

   ∂ ∂ ∂
= −∇× ⇒∇× + = → = − ∇ +   ∂ ∂ ∂   

 

 
  

   (9) 

In most electromagnetic theories, the potentials have not 
physical reality, then the divergent of the magnetic potential can 
be arbitrarily chosen. The most common choices are: 

( )

( )

0
0

0 ' ;

0 ' ;

0 ' .

m
m

m

m
m

A Lorenz gauge
t

A Coulomb gauge

A Maxwell gauge
t

ε φ
µ

εφ
µ

  ∂
∇ ⋅ + =  ∂ 
∇ ⋅ =

  ∂
∇ ⋅ + =  ∂ 







            (10) 

In the “Symmetrical theory of electromagnetism” [7], there exist 
potentials that have physical reality, which are those related to the 
Hertz’ potentials, which fulfill the following restriction: 

( )0
0

0.m
m e

A g c
t
ε φ

µ
  ∂

∇ ⋅ + = ≈≈  ∂ 


                       (11) 

Saying that the Lorenz’ gauge has physical reality. However, as in 
the normal Lorenz’ gauge, there exist a manifold of magnetic 
potentials that are mathematically equivalent to the real potentials, 
in the sense that they produce the same magnetic flux density and 
the same electric field strength, which are the quantities that are 
universally recognized as having physical reality. These are: 

( )

* *

*

2
2

0 0 2

; ;

;

;

0.

m m m m

m m m

m
m m m

A A
t

B A A

AE A
t t t

With
t

χχ φ φ

χφ χ φ

χχ µ ε

∂
= +∇ = −

∂
= ∇× = ∇×

∂∂ ∂ = −∇ − − +∇ = −∇ − ∂ ∂ ∂ 
∂

∇ − =
∂

 

 




        (12) 

In the macroscopic formulation of the electromagnetic theory, 
usually the vector fields appearing in the right-hand side of (1), (3), 
(5) or (7) are expressed in terms of the fields E and Bm, by means 
of the so-called constitutive laws.  
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For example, for the Maxwell-Hertz’s formulation (see (1)), 
we have: 

         ; ; .m
efr

BJ E D E Hσ ε
µ

= = =


                                 (13) 

The parameters “σ”, “ε” and “μ”, appearing in (13), are called 
electric conductivity, electric permittivity and magnetic 
permeability, respectively. 

Then, (1) can be written in terms of the potentials as: 

; ;

;

.

m
m m

m
efr

m m m

AB A E
t

A
t

A A A
t t t

φ

ε φ ρ

σ φ ε φ
µ

 ∂
= ∇× = − ∇ + ∂ 

  ∂
∇ ⋅ ∇ + = −   ∂  

      ∇× ∂ ∂∂
∇× = − ∇ + − ∇ +       ∂ ∂ ∂      


 



  

        (14) 

From the last two equations of (14) we can obtain: 

.

m m m

efrm m

A A A
t t t

A A
t t t t

σ φ ε φ
µ

ρ
ε φ σ φ

      ∇× ∂ ∂∂
∇× = − ∇ + − ∇ + ⇒       ∂ ∂ ∂      

     ∂   ∂ ∂∂
∇ ⋅ ∇ + = −∇⋅ ∇ + = −           ∂ ∂ ∂ ∂       

  

 
   (15) 

The last two equations of (14) are four scalar equations to 
determine the components of the four-vector formed by “Am” and 
“Ф/c” [10], which we will call “Aem”, whose source is the free 
electric charge density. Equations (15) says that for a conduction 
dominated medium the real source is the time variation of the free 
electric charge density. 
Then, in the case where the matter is described via constitutive 
laws, the field “Aem”, with only four degrees of freedom, fully 
describes the electromagnetic field. 
This is the formulation applied in [22]. 

When dealing with interference problems is very important to 
distinguish what belongs to the system being studied and what is 
considered an externally applied electromagnetic field. 

Then, we will write the equations corresponding to (13) and 
(14) for the Landau & Lifshitz’s formulation (see (7)), which 
makes this separation. In this case we have: 

         ( )*
*

' ; ' .mBD E E H
t t

σ ε
µ

∂ ∂
= + =

∂ ∂


                     (16) 

The parameters “σ*”, “ε” and “μ*”, appearing in (16), are also 
called electric conductivity, electric permittivity and magnetic 
permeability, respectively. 

Then, (7) can be written as: 

*
*

*

; ;

;

.
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m m m
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
 

  


 


   (17) 

Again, the last two equations of (17) are four scalar equations 
to determine the components of the four-vector “Aem”, formed by 

“Am” and “Ф/c”, whose sources are the external electric charge 
density and the external current density. Then, also in this case the 
field “Aem”, with only four degrees of freedom, fully describes the 
electromagnetic field. 

We can write the last two equations of (17) in a different 
manner: 

  
( )

( )

2 *
* * * 2

2 *

* * * * *

*

;

.

m m
m m

ex m

m m ex

A A A A
t t t

j A
t t t

A A
t t t t

ε µµ ε µ σ
µ

ε φ φµ µ σ φ µ ε µ ε

ρσ φ ε φ

 ∂ ∂∂ ∇ + + −∇ − × ∇× =  ∂ ∂ ∂   
∂ ∂ ∂   = − + ∇ +∇ −∇ ∇⋅ +   ∂ ∂ ∂   

     ∂ ∂ ∂∂
∇ ⋅ ∇ + + ∇ + = −       ∂ ∂ ∂ ∂     

 
 



 

 (18) 

Equations (18) show that, in the case of the electromagnetic 
field within the matter, even in the Maxwell’s gauge, in general, 
the equations for ϕ and Am are not separable, as in the case of the 
vacuum. Besides that, the simple retarded solutions are not 
applicable. 

For the special case of time-harmonic electromagnetic fields, 
or in frequency domain, (17) is simplified, by the fact that we can 
express the external charge density in terms of the divergence of 
the current density, and for the last two equations of (17) we have: 

   ( )( )

( ) ( )
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* * 2
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;

.

ex
m m

m
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A j i A A

ω ω
ω ω ω
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ω ω ω ω ω

ε ω σ
ω ω

σ ω σ ε ω ε
µ

 ∇ ⋅ ∇Φ ∇ ⋅ ∇Φ + = − −∇⋅ −  
  

 ∇×
∇× = − ∇Φ − + ∇Φ + 

 


 


 

 (19) 

Equations (19) show clearly that the sources of the induced 
electromagnetic field are the external electric charge density and 
the external current density. 
This is the formulation applied in [23,24]. 

3. Transmission-Lines 

As in reference [1], and our (20) to (24) are the same than (11) 
to (15) of reference [1], in the case of the transmission lines, matter 
is predominantly distributed along a certain direction in space, 
which we will call it “z”, making this a preferential direction. 
As the four-dimensional vector field “Aem” transforms as a four-
vector [10], for a transformation of coordinates between a system 
moving with a velocity “v”, along the preferential z-axis, relative 
to another “rest” system, which we denote by the index “0”, we 
have: 

0
0

0

2
0

2
0

0

( )

1; .
1

( )

m z

m x
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m y
my

mz m z

v A
c cc

AA
A vA

v cA A
c c

φφ γ

γ

φ
γ

 −         = ≡       −   −     

              (20) 

From (20) we can see that, for horizontal (along the z-axis) 
ideal transmission lines (having an uniform cross section), we can 
divide the electromagnetic field into two independent modes, each 
one with two degrees of freedom: a first one composed of “Ф” and 
“Amz”, which will be called longitudinal mode; and a second one 
composed of “Amx” and “Amy”, which will be called transversal 
mode.  
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Transmission lines constituted of insulated filamentary 
conductors, disposed along the z-axis, can internally produce only 
the longitudinal mode. The transversal mode must be externally 
produced. 
The transversal mode can only be internally produced if the 
transversal extension of the conductive matter is relevant or if the 
filamentary conductors are not insulated.    

For the longitudinal mode (Amx = Amy = 0), from the first two 
equations of (11) or (14), we have: 

; ; ;

; ; 0.

mz
x y z

mz mz
mx my mz

AE E E
x y z t

A AB B B
y x

∂∂Φ ∂Φ ∂Φ
= − = − = − −

∂ ∂ ∂ ∂
∂ ∂

= = − =
∂ ∂

             (21) 

Equations (21) say that the longitudinal mode is a TM mode, and, 
that the transversal electric field is conservative and is equal to the 
transversal gradient of the scalar potential Ф. This allows the 
definition of transverse voltages that are single valued [11, 12, 14]. 

For the transversal mode (Ф = Amz = 0), we have: 

; ; 0;

; ; .

mymx
x y z

my mymx mx
mx my mz

AAE E E
t t
A AA AB B B
z z x y

∂∂
= − = − =

∂ ∂
∂ ∂ ∂ ∂

= − = = − ∂ ∂ ∂ ∂ 

         (22) 

Equations (22) say that the transversal mode is a TE mode, with a 
non-conservative transversal electric field. 

As an example of a pure longitudinal mode, we will see first 
the special case treated by Schelkunoff [11], of an infinite 
horizontal hollow conductor of arbitrary cross-section, rigid and 
made of perfectly conducting matter. Here, if we can assume that 
“Ф” and “Amz” are separable, we have: 

( ) ( ) ( ) ( )
0

, , ; , , .mzAT x y V z t T x y I z t
µ

Φ = − = −           (23) 

Where, in equations (23) the T functions are dimensionless 
functions of x and y.  

Using (23) in (21), we have the Schelkunoff’s TM modes [11]: 

0

0 0

; ; ;

; ; 0.
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∂ ∂

= − = =
∂ ∂

         (24) 

Also, from the equations on the right-hand side of (1) and (3), 
we have: 

( )

( )

;

;

0.

x

y

T T I T T VH I V
z x x z t x x t

T T I T T VH I V
z y y z t y y t

I V
z t

ε ε

ε ε

ε

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   ∇× = − = − = =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∇× = − = − = =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
∂ ∂

→ + =
∂ ∂



   (25) 

Equations (24) and (25) display the main characteristic of 
Schelkunoff’s TM modes, which is the fact that, even in the case 
of a hollow conductor made of perfectly conducting matter, despite 
having an electric field strength value equal to zero within the 
conductor, there can be an electromagnetic field inside the 
conductor, which propagates along the z axis, following 
transmission-line equations. The existence of this longitudinal 

mode and its predominance, even for hollow conductors that are 
slowly bent, leads to the theory of waveguides. 

The other very important special case, where the longitudinal 
mode is predominant, is the case of a multi-conductor transmission 
line having, in general, many (N+1) filamentary conductors. 
Here, following the same line of reasoning and adopting the 
terminology utilized in reference [1], we will describe the 
interaction of an arbitrary external electromagnetic field with a 
straight segment of a multiconductor line. 
In Annex 1 the case of an elementary single-wire line is treated in 
detail. There we present the derivation of a general theory of the 
coupling of an external electromagnetic field to a conductor line 
and a detailed comparison of this generalized theory with the most 
important classical theories. This theory can be applied to different 
problems, such as, electromagnetic neural stimulation [16-20], the 
calculation of lightning-induced voltages [13]. 

In the case of a multiconductor line, we can obtain from (9) or 
(21) the value of the longitudinal electric field strength, at a point 
internal to the “j” conductor (see Figure 1), for j = 0 … N: 

   ( ), , , .
jj

mz
z j j

A E x y z t
z t

∂∂Φ
− − =

∂ ∂
                        (26) 

 
Figure 1 – Segment of a conductor, of length "∆z", between two scalar potential 
nodes.  

Also, integrating the divergence of the last equation of (14) in 
a closed surface that involves a segment of length "∆z" of the 
horizontal “j” conductor (see Figure 2), we have: 

                     .
j j

j
LS

i I
z t

λ∂ ∂
+ = −

∂ ∂
                                (27) 

 Where, “ij” is the total current flowing through the cross-
section of the “j” conductor, “λj” is the charge accumulated on the 
surface of the “j” conductor, per unit length, and “ILS

j” is the 
conduction current flowing out of the “j” conductor through the 
lateral surface, per unit length. 

 
Figure 2 – Segment of a conductor, of length "∆z", around a scalar potential node.  

If, as usual, we assume that for this kind of transmission line, 
for which the distances among the different conductors of the line 
is much shorter than its length, the Maxwell’s concept of 
inductance and capacitance coefficients are valid [25,26]. 
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This will allow us to express the magnetic potential in a short 
segment of a filamentary conductor, at a point “z” along the line, 
in terms of the current in all the conductors at the same point “z”, 
and, the charge at the surface of a conductor, at a point “z”, in terms 
of the scalar potential at all the conductors at the same point “z”. 
Then, we have: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )* *

; ;

, ; , .

j j ext j j extj j
mz mz mz

j kj k j j
mz k k

A A A

A L i z t C z tλ

∆ ∆

∆ ∆

= + Φ = Φ +Φ

   = = Φ   
    (28) 

Where: “Amz
j(Δ)” and “Ф j(Δ)” are the potentials produced by the 

matter existing in all the conductors within the segment "∆z", at 
the point “z”; and “Amz

j(ext)” and “Ф j(ext)”, are the potentials 
produced by the matter existing in all the conductors, outside the 
segment "∆z", plus the potentials “Amz

j(ex)” and “Ф j(ex)” 
representing the externally applied field. 
Using Ohm’s law for the line conductors, we have: 

           ( ) ( )( ), , , , .j
z j j cjE x y z t R i z t=                   (29) 

Where “R(cj)” is the resistance, per unit length, of the conductor “j”. 

Extracting from the conduction current “ILS
j”, flowing out of 

the conductor through the lateral surface, the part that is due to the 
linear leakage current, we can write: 

( ) ( ) ( )* *, , .kj j j
LS k LSI z t G I z t∆ = Φ +                  (30) 

Then, (26) and (27) can be written as: 

              
( )

*
( ) ;

j extj k
j j mz

cj k
AiR i L

z t t
  ∂∂Φ ∂ + + = −  ∂ ∂ ∂ 
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and  

          ( )
( )

* * * .
kj

kj j j
k k LS

i G C I
z t

∆
∆∂ ∂Φ   + Φ + = −   ∂ ∂

          (32) 

Where: "[L*]", is the matrix of the inductance coefficients, per unit 
length; "[C*]" is the matrix of the capacitance coefficients, per unit 
length; and "[G*]" is the matrix of conductance coefficients, per 
unit length, between the segments of all conductors at the point 
“z”.   

To describe a rectilinear transmission line of a uniform cross-
section and of a finite length, we can use here again, as usual in 
transmission-line theory [12], the matrices [L], [C] and [G], which 
are calculated neglecting the retardation effects and when every 
conductor of the line is uniformly charged with a charge density, 
per unit length, which is equal to its value at the point “z”, and the 
current in all segments along the line, in any conductor, is equal to 
its value at the point “z”. The potentials produced in this situation 
are the static potentials “Amz

(st)” and “Ф (st)”. Using for every 
conductor “j” the following definitions, we have: 
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     ≡ Φ Φ ≡ Φ     

      (33) 

Where the usual summation rule over repeated index is applied. 

Then, we can write (31) and (32) as: 

          
( ) ( )( )

( ) ;
j ex j cj k

mz mzj j
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A AiR i L
z t t
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     (34) 

and  

      

( ) ( )( )
( ) ( )( ) * .

j k
j k j

k k

k ex k c
k ex k cj j j

k k LS

i G C
z t

G C I
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∂ ∂Φ   + Φ + =   ∂ ∂

∂ Φ +Φ
   = Φ +Φ + −    ∂

(35) 

As mentioned in reference [1], “the main variables in (34) and 
(35) are the scalar and the magnetic potentials, which are not 
uniquely determined (see (12)). Their values, as well as the value 
of the inductance and capacitance coefficients, are affected by the 
choice of the reference point, which is the point where the value of 
the potentials is equal to zero. 
But, as the fields E and Bm are uniquely determined and, for 
practical purposes, the important voltages are the ones occurring 
between the conductors of the line, this fact is of little or no 
importance.” 

We will choose the reference for the potentials at the infinity, 
or at a line located very far from the multiconductor transmission 
line. 
With this choice of reference, (34) can be interpreted as the 
application of Kirchhoff’s circuits law applied to a “mesh” formed 
by a segment of the conductor “j” of the line and the reference line; 
and (35) as the application of Kirchhoff’s circuits law applied to a 
potential node on the conductor “j” of the line. Then, we can see 
that the longitudinal TM mode is the one described by circuit 
theory. 

Also, (34) and (35) are completely general and rigorous 
equations that describe the interaction of an external 
electromagnetic field with the considered filamentary multi-
conductor transmission line, being the only assumptions in 
deriving these equations: the thin-wire approximation for all the 
conductors and the validity of Ohm’s law for all the conductors. 
Thus, they constitute a generalized formulation of the 
electromagnetic coupling to a transmission line that, under the 
proper simplifications, reduces to the standard coupling theories 
[12-14,21] (see Annex 2). 

One of the advantages of the time domain formulation of the 
longitudinal mode is that (34) and (35) can also be written as state 
equations: 
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(34a) 

and  
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(35a) 
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Then, (34a) and (35a), which are a generalization of (21a) and 
(22a) of reference [1], as already mentioned in reference [1], “can 
be interpreted as saying that the scalar potential “Фj” and the 
current “ij” represent the time evolving state of the system, at a 
point internal to the “j” conductor.” Showing that the essence of 
the circuit theory is to assume that the longitudinal mode is 
predominant. 

Equations (34a) and (35a), after being spatially discretized into 
N segments (for n = 1...N), can be written as: 

( ) ( )

( ) ( )( )

1 1 1
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;
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               (34b) 

and  
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−Φ      = − Φ − +      ∆
 ∂ Φ +Φ
    + Φ +Φ +    + ∂
 
  −   

(35b) 

Equations (34b) and (35b), as also mentioned in reference [1], 
“are a system of coupled ordinary differential equations (ODE), for 
the scalar potential at potential nodes and the current at current 
nodes.” Also, as already mentioned in reference [15], “this system 
of coupled ordinary differential equations can then be solved using 
the powerful ODE solvers now existing” [27]. 

The main advantage of describing uniform lines by per-unit 
length parameters, calculated using the static potentials is that 
these parameters are constant and easy to calculate, particularly, 
when the reference is taken at the infinity, because it is a reference 
independent of the direction of the line. 
For obtaining approximate solutions of non-uniform lines, 
assuming that the longitudinal mode is predominant, the non-
uniform line is usually modeled as a cascade of uniform sections, 
conductively connected [28]; or in the case of lines with 
periodically varying cross-section, such as the cables composed of 
twisted-wire pairs, the line is modeled as an equivalent line, having 
per-unit length parameters equal to the average over the period 
[29]. 

Up to now, we have studied the uniform or slowly non-uniform 
part of the line. 
As mentioned in reference [1], using reference [15], “we will take 
advantage of this formulation that allows to include the interaction 
of a segment of conductor with any known arbitrary external 
electromagnetic field, which can be described by Ф(ex) and A(ex), to 
include the terminations of the line, the discontinuities or even 
conductors attached perpendicular to the line, such as, groundings 
or other equipment connected.”. 
Considering that the longitudinal mode is predominant, we can 
model them as circuit elements located between two potential 
nodes, which are displaced in space along a certain direction. 

For a vertical conductor (y axis direction) that is relatively 
small (compared to the minimum wavelength of interest), so that 
we can neglect the corrections due to the time delay in the 

production of the potentials, and neglecting also the non-linear 
transversal conduction current ILS

*, we have in a manner analogous 
to (31) and (32): 
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This is the explanation of the important remark quoted in the 
conclusions of reference [14] “When using the scattered-voltage 
formulation, it must be remembered that the vertical component of 
the incident electric field appears as a voltage source in the line 
terminations.” 

If, like in the case of a grounding of the reference conductor, 
the vertical conductor is connected at the potential node “Фn

0”, the 
modified equations for this node are: 
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   (39) 

Where, in this case, only “in
01”, which is the current in the first 

segment of the vertical conductor, is different from zero. 

As mentioned in reference [1], “this formulation allows 
representing the groundings not as a connection to the ground, but 
as a connection to the grounding electrodes, whose potential is to 
be considered as one of the states of the system. 
This is very convenient for the real cases where the ground is not 
perfectly conducting, and it is considered as the return conductor 
of the line.”. 

Finally, as in reference [1], to include the effect of the 
transversal mode, we will define the so-called conductor voltages.
  
Usually, in standard transmission-line theory, the conductor 
voltages are defined relative to one of the conductors chosen to be 
the reference [12, 30]. This was the choice indirectly adopted in 
reference [1]. 
Here, we will define the conductor “j” voltage, at a point “z” along 
the conductor, as the integral of the transversal electric field 
strength “Et” between the conductor “j” and the reference of the 
potentials: 
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http://www.astesj.com/


P.E. Munhoz-Rojas / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 125-140 (2019) 

www.astesj.com     133 

Where we will assume that “Amt” is the externally produced field, 
but, as mentioned in reference [1], “the formulation also allows to 
include the transversal field produced by transversal conductors.”. 
Then, we can modify (34) and (35), by means of (40), and obtain: 

           
( )

( )( ) ( )

( )

,
;j j

j k
j j

cj k

ex j cx yj ex mt mz
mz t

V iR i L
z t

A AA dl
t z t∞

∂ ∂ + + = ∂ ∂
 ∂ ∂∂

= − − ⋅ −  ∂ ∂ ∂ 
∫




            (41) 

and 

    
( )

( )

( )
( )

* .

k exj k
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k c
k cj j j

k k LS

i V VG V C G V C
z t t

G C I
t

∂ ∂ ∂       + + = +       ∂ ∂ ∂
 ∂Φ   + Φ + −     ∂ 

   (42) 

Where, as mentioned in reference [1], “we can see that writing the 
equations in terms of the conductor voltages produce new terms in 
(41) and (42), due to the existence of induced voltages (integration 
path dependent) produced by the external transversal mode.” 

For the special case of time-harmonic electromagnetic fields, 
or in frequency domain, (41) and (42) can be written as:  

              ( ) ( ) ( ) ( );
j

j j k j
k k E

dV z
R i L I z S z

dz
ω

ω ωω   + + =         (43) 

and     

      ( ) ( ) ( ) ( ).
j

j j k j
k k H

dI z
G i C V z S z

dz
ω

ω ωω   + + =             (44) 

Which, without the sources, are the standard transmission-line 
equations in frequency domain, such as shown in (2) of reference 
[30] or (6.7) and (6.8) of reference [31]. 

As already mentioned in reference [1], “we must note that, for 
the longitudinal mode, the important values of the externally 
produced field are at points located inside the conductors, and its 
effect can be represented as a voltage or a current source; while, 
for the transversal mode, the important values of the externally 
produced field are at points located in the dielectric between the 
conductors, and its effect is to produce an induced voltage between 
the conductors.”. 

Also, as mentioned in reference [1], “it must be emphasized 
that, in order to define the concept of voltage associated with one 
point of the line, it is necessary to introduce a reference. 
When the reference is at the infinity, or in the case of an 
imperfectly conducting Earth where the “Reference perfect 
conductor plane” is located at a remote position within the Earth, 
both the conductor “j” voltage and the scalar potential of the “j” 
conductor, will have embedded the complexities of the 
electromagnetic field distribution in the ground. 
Calculate the electromagnetic field distribution within the Earth is 
a very difficult task, but fortunately, the voltages and the potential 
differences between aerial conductors, which are the ones of 
practical importance, will not depend directly on those 
complexities.”. 

4. Interferences produced by external Disturbances 
In this part, as in part IV of reference [1], we will apply the 

generalized theory of the electromagnetic coupling to a 
transmission line, developed in part 3, to analyze the interference 

on a transmission line produced by external disturbances, which 
are commonly classified into conducted and radiated disturbances. 

To study the interference due to an external disturbance, we 
must first separate the sources of the externally produced 
electromagnetic fields in two classes: the normal external sources 
and the disturbing external sources. 

In the interconnections, which are multiconductor transmission 
lines, the dominant mode is the longitudinal mode, and, the 
longitudinal and the transversal modes are practically decoupled. 
Then, as in reference [1], we will assume that the normal operation 
mode, which is driven by normal lumped external excitation 
sources, is a longitudinal mode.  

IEV 161-03-27 says, for conducted disturbances, that the 
energy is transferred via one or more conductors. So, conducted 
disturbances are locally produced. 
IEV 161-03-28 says, for radiated disturbances, that the energy is 
transferred through space in the form of electromagnetic waves; 
and, it notes that “The term "radiated disturbance" is sometimes 
used to cover induction phenomena”. Then, radiated disturbances 
are always remotely produced. 

Here, as in reference [1], “we will divide the externally 
produced disturbances in two classes: the first class that produce 
Ф and Amz, which will be called longitudinal mode disturbances; 
and the second class that produce Amx and Amy, which will be 
called transversal mode disturbances.”  

 Also, as in reference [1], within the internally-produced 
longitudinal mode, “Ф (int)” and “Amz

(int)”, we must make a 
distinction between the scattered part and the part that is produced 
by the current that is injected by lumped external sources, both 
normal and disturbing.  

Then, we have: 
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Φ = Φ +Φ ≡ Φ +Φ +Φ +Φ
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 ⇒ = + + = + 

= =

(45) 

Where: the index “N” indicates normal, the index “D” indicates 
disturbing and the index “exinj” indicates produced by the lumped 
external sources, conductively connected to the line, that injects 
current in the line. Our (45) is equal to (33) of reference [1]. 

In this paper, neglecting the internally-produced transversal 
magnetic potential, which is produced by the current in the 
transversal conductors and the transversal leakage currents, we 
have assumed, as in reference [1], that the transversal mode is 
produced only by the radiated disturbances. 

As mentioned in reference [1], the effect of the transversal mode 
is: 
- to produce an induced voltage between the conductors, and 
 - to act as a lumped voltage source located at the transversal 
conductors, such as the line terminations and groundings. 

Then: 
- The so-called “conducted disturbances” (IEV 161-03-27) are 
characterized by the fields Ф(exinjD) and Amz

(exinjD), which are 
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produced by a current locally injected into the line, by lumped 
disturbing external sources conductively connected to it; and 
- The so-called “radiated disturbances” (IEV 161-03-28) are 
characterized by the fields Ф(ex), Amz

(ex), Amx
(ex) and Amy

(ex), which 
are produced by remotely located sources. 

 The confusing note existing in IEV 161-03-28 that “The term 
"radiated disturbance" is sometimes used to cover induction 
phenomena”, can be explained because the electromagnetic field, 
produced by remotely located sources, includes both the induction 
field and the radiation field: 

             

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

;

;

;

.

j ex j ind

j ex j ind j rad
mx mx mx

j ex j ind j rad
my my my

j ex j ind j rad
mz mz mz

A A A

A A A

A A A

Φ = Φ

= +

= +

= +

                        (46) 

Where: the index “ind” indicates induction field, which is 
negligible in the far field region, and the index “rad” indicates 
radiation field. 

From equations (45) we can see that: 
1- The conducted disturbances, “Ф(exinjD)” and “Amz

(exinjD)”, which 
produce scalar potentials and inject currents into the line, are 
longitudinal mode disturbances that affect only the longitudinal 
mode; while 
2- The radiated disturbances, which are composed of longitudinal 
mode disturbances, Ф(ex) and Amz

(ex), and transversal mode 
disturbances, Amx

(ex) and Amy
(ex), affect: 

-  The longitudinal mode, directly by the longitudinal mode 
disturbances through the scalar potential “Ф(ex)” and the magnetic 
potential “Amz

(ex)” along the conductors; and indirectly by the 
transversal mode disturbances through the lumped voltage sources 
at the transversal conductors and terminations, which represent the 
effect of “Amt

(ex)” along the transversal conductors; 
 - The transversal mode, through the magnetic potentials Amx

(ex) 
and Amy

(ex), which produce an induced voltage between the 
conductors. 

This is the reason why, only when the longitudinal is 
predominant, and, the longitudinal and the transversal modes are 
practically decoupled, EMI can be simulated using circuit 
simulation software’s. 

Also, this explains why current injection and capacitive clamp 
testing methods represent only the effect of disturbances on the 
longitudinal mode. 

Examples of radiated disturbances, where the longitudinal 
mode disturbances are dominant, can be seen in references 
[14,21,32], which deal with lightning-induced voltages; and in 
reference [33], which deal with voltages induced in twisted-wire 
pairs by a parallel wire excited by a voltage source. 

Examples of radiated disturbances, where the transversal mode 
disturbances are important can be seen in: 
- reference [14], where the exciting source is a lumped voltage 
source, which represents the induced voltage produced by the 
transversal mode disturbance, along a transversal conductor at 
input terminal of the line; 
- reference [34], where the induced voltage, produced by the 
transverse mode disturbance, is an important part of the total 
voltage, and even the dominant part for the first three 
microseconds.  

In reference [2], the conducted disturbances are defined as 
“Any deviation from the ideal voltage or current waveform”, 
meaning the presence of a disturbing scalar potential or a 
longitudinal magnetic potential produced by the current, which is 
locally injected by lumped disturbing external sources. 
Examples of common types and new types of power quality 
disturbances can be seen in reference [2]. 

5. Application Case Results 

To show the usefulness of this formulation, we present, as in 
reference [1], the results of some application cases to real 
transmission lines with transversal conductors, which are 
connected to the earthing electrodes, in the case of a real ground 
that is not a perfect conductor. Adding here, in order to show the 
interpretation power of this formulation, some important practical 
and engineering conclusions that had gone unnoticed in other 
calculations made with previously proposed approaches/software 
tools. 

Firstly, as in reference [1], we present in Figure 3 that 
corresponds to Figure 1 of reference [1], the results of the 
calculation of the phase-to-neutral voltage, induced by a vertical 
return stroke that strikes close to a line, which have a neutral wire 
grounded at only one point, with a grounding resistance of 100 Ω. 

As mentioned in reference [1], the purpose of this example is to 
show that, in this case, the impinging electromagnetic pulse, 
composed of both a longitudinal mode disturbance and a 
transversal mode disturbance, initially practically produces only 
common mode on the line, and, the phase-to-neutral voltage is 
negligible until the instant when the electromagnetic disturbance 
reaches the grounding conductor of the neutral wire. 

  
Figure 3 - Phase-to-neutral voltage induced by a 100 kA (2x40 µs) return stroke, 
with velocity 0.3c, which strikes at z = 4000 m, at 100 m from a line, with a neutral 
wire having an isolated grounding at z = 4500 m, with Rg = 100 Ω. Data taken 
from [15] 

Then, due to the presence of the transversal grounding conductor 
of the neutral wire, when the electromagnetic transversal mode 
disturbance reaches the grounding conductor, the current 
produced by the impinging electric field along the conductor 
generates voltage reduction waves, which are different in size in 
the different conductors, thus producing a phase-to-neutral 
voltage pulse, which propagates in both directions along the line, 
representing the conversion of common mode into differential 
mode. 

This effect that had gone unnoticed in other calculations made 
with previously proposed approaches/software tools [15,35], has 
the important engineering conclusion that the main mitigating 
effect for the induced voltages is not produced by the shielding 
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wire acting as an extended protective device but by the shielding 
wire grounding acting as a localized protective device. 

As a second example, we present in Figure 4 that corresponds 
to Figure 2 of reference [1], the results of the calculation of the 
phase-to-neutral voltage, induced by a vertical return stroke that 
strikes close to a line, having a neutral wire that is periodically 
grounded. 

Figure 4 - Phase-to-neutral voltage, in a line periodically grounded each 500 m (Rg 
= 10 Ohms), produced by a 30kA return stroke (0.3x40 µs), occurring at z=2375 m, 
50 m from the line. Data taken from [15]. 

From Figure 4 it can be seen, as already observed in Figure 3, 
that the impinging electromagnetic pulse produces initially only a 
common mode perturbation on the line, which propagates in both 
directions starting from the point of the line which is closest to the 
stroke location, and the phase-to-neutral voltage is negligible until 
the instant when the electromagnetic disturbance reaches a 
transversal grounding conductor of the neutral wire. Then, a 
phase-to-neutral voltage pulse is produced, due to the injection of 
current in the transversal wire, which propagates in both 
directions along the line. 

In this case, the effect of the presence of the transversal periodic 
grounding conductors is to confine the bigger phase-to-neutral 
overvoltage in the region of the line which is closest to the return 
stroke location.  

Also in this case, the calculations pointed to an effect, which had 
gone unnoticed in other calculations made with previously 
proposed approaches/software tools [36], that the presence of the 
grounding reduces the overvoltage at its location and behind it 
(seen from the return stroke location), and also it reduces the 
overvoltage in front of it, but only within a certain distance, fact 
which defines an “effective distance”. 
Then, as mentioned in reference [15], “the shielding wire 
groundings not only do not protect the line span in front of the 
return stroke location, but they also produce big positive phase-
to-neutral overvoltage”. 

In the next example, we present in Figure 5 that corresponds to 
Figure 3 of reference [1], the results of the calculation of the 
voltage induced on the conductors of a line, by a vertical return 
stroke that strikes close to a line, having surge arresters placed 
periodically on one of the conductors. 

From Figure 5, we can see that the effect of the presence of the 
transversal surge arresters, with its grounding conductors, is: 
- On the conductor with surge arresters, to confine the phase-to-
reference ground overvoltage, which is oscillating, in the region of 
the line close to the return stroke location, being the bigger 

overvoltage, in the region of the line closest to the return stroke 
location; and, 
- On the conductor without surge arresters, to produce just a mild 
dampening of the overvoltage, produced by the impinging 
electromagnetic pulse, outside the region of the line closest to the 
return stroke location. 

Figure 5– Voltages along a line with surge arresters on one of the conductors, at 
each 450 m (Rg = 10 Ohms), produced by a 45kA lightning discharge (2x40 μs) 
propagating with a velocity v = 0.3 c, which strikes at z =4800 m, at 70 m from the 
line. Data taken from [37]. 

As a result, they produce a conversion of common mode into 
differential mode overvoltage. 
Also, in this case, the calculations pointed to an effect that had 
gone unnoticed in other calculations made with previously 
proposed approaches/software tools [36] and which has 
engineering importance. As mentioned in reference [37], “Multiple 
surge arresters, placed at periodic intervals along the line, protect 
the line outside the span in front of the lightning strike location; 
but the protection afforded to the span in front of the lightning 
strike location depends on the risetime of the induced voltages. 
Consequently, any statement on the effectiveness of an interval 
between arresters should be qualified by a risetime for which it is 
valid.”  

6. Summary and Conclusions 

We have shown that, when the matter is macroscopically 
described by constitutive laws, the electromagnetic field within the 
matter can be fully described by the potentials: the magnetic vector 

 
 

 
a) Voltage at the conductor with surge arresters. 

 
b) Voltage at the conductor without surge arresters. 
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potential “Am” and the electric scalar potential “Ф”, with its four 
degrees of freedom. 
This conclusion is valid for any time scale and for any frequency, 
provided the constitutive laws are valid.   

We have shown that, when the matter is predominantly 
distributed along a certain direction in space, as in a transmission 
line, the electromagnetic field can be divided into two practically 
independent modes, each one with two degrees of freedom: a 
longitudinal mode having “Ф” and “Amz”, and, a transversal mode 
having “Amx” and “Amy”. 
Kirchhoff’s laws and circuit theory applies to the two degrees of 
freedom of the longitudinal mode: the scalar potential “Ф” and the 
current “i” in the conductor, which is related to “Amz” by the 
concept of inductance. They represent the time evolving state of 
the system, at points internal to the conductors. 

Using the longitudinal mode as the fundamental building 
block, and if the longitudinal and the transversal modes are 
practically independent, we present the derivation of a generalized 
theory of the electromagnetic field coupling to a multiconductor 
line, in time domain, that, as usual, predicts the propagation of the 
scalar potential and the current along the line. 
We have shown that this generalized coupling theory, under the 
proper simplifications, reduces to the standard coupling theories 
and the transmission-line equations there obtained also reduce to 
the standard transmission-line equations. 

We have also shown that, when the longitudinal is 
predominant, the theory can be extended to include the 
terminations of the line, the discontinuities or even conductors 
attached perpendicular to the line. 
Also, this formulation allows representing the groundings not as a 
connection to the reference ground, but as a connection to the 
grounding electrodes, whose potential is to be considered as one of 
the states of the system. This is very convenient for the real cases 
where the ground is not perfectly conducting. 

Analyzing the interference produced by external disturbances 
in these terms, we have assumed that the normal operation mode, 
which is a differential mode driven by normal lumped external 
excitation sources, is a longitudinal mode. 

We also have divided the externally produced disturbances in 
two classes: longitudinal mode disturbances and transversal mode 
disturbances. 

We have shown that the conducted disturbances are 
longitudinal mode disturbances that affect only the longitudinal 
mode, and the radiated disturbances are composed of longitudinal 
mode disturbances and transversal mode disturbances, both of 
which affect the longitudinal mode. 

We have shown that the transversal mode disturbances, which 
are part of the radiated disturbances, affect also the transversal 
mode. The transversal mode produces induced voltages 
(integration path dependent) in the insulation between the 
conductors of the line, and, between any conductor and the 
reference adopted. 

This is the reason why, only when the longitudinal is 
predominant, and, the longitudinal and the transversal modes are 
practically decoupled, EMI can be simulated using circuit 
simulation software’s.   

In order to illustrate the usefulness of this interpretation, we 
have presented the results of the application of this formulation to 
real lines having perpendicular conductors attached to them, some 
of them connected to earthing electrodes. We have shown that the 

main effect of the presence of these conductors is to produce the 
conversion of common mode into differential mode.  

Acknowledgment 

The author would like to thank to LACTEC for supporting this 
work, and, to thank to the members of CIGRE WG C4.44, to his 
colleagues at LACTEC and to two anonymous reviewers for their 
comments and questions.  

Annexes 

1. Electromagnetic Field Coupling to a Conductor Line 

Here, following the same line of reasoning utilized in part 3 
and adopting the terminology utilized in reference [1], the very 
important special case of an infinite horizontal filamentary solid 
conductor submitted to an externally applied electromagnetic field, 
which has been studied since Maxwell’s time, will be studied. 

Historically, firstly it was studied the electromagnetic field 
produced by it, when the externally applied field impressed a 
sinusoidal current in the conductor [38]; but lately, it has been 
studied the scattered field produced by it, when excited by an 
externally impinging full-wave electromagnetic field (time-
harmonic electromagnetic field) [13]. 

In this paper, we will study the case of a horizontal filamentary 
solid conductor, of an infinite extent, submitted to an arbitrary 
externally applied electromagnetic field. 

For the value of the longitudinal electric field strength, at a 
point internal to the conductor (see Figure I-1), from (9) we 
have: 

  ( ) ( ) ( )1 1 1 1
1 1

, , , , , ,
, , , .mz

z
x y z t A x y z t

E x y z t
z t

∂Φ ∂
− − =

∂ ∂
       (1-1) 

 
Figure I-1 – Segment of the conductor, of length "∆z", between two scalar potential 
nodes.  

Also, from the equations on the right-hand side of (1) and (3), 
we have: 

   
0.efreB DJ J

t t t
ρ∂ ∂ ∂

∇ ⋅ = ∇ ⋅ + = ∇ ⋅ + = ∂ ∂ ∂ 

 
               (1-2) 

Integrating (1-2) in a closed surface that involves a segment of 
length "∆z" of the horizontal conductor (see Figure 1-2), we 
have: 

                ( ) ( ) ( ), ,
, .LS

i z t z t
I z t

z t
λ∂ ∂

+ = −
∂ ∂

                   (1-3) 

Where: “i” is the total current flowing through the cross-section 
of the conductor, “ILS” is the conduction current flowing out of the 
conductor through the lateral surface, per unit length, and “λ” is 
the free electric charge accumulated on the surface of the 
conductor, per unit length. 

 
Figure I-2 – Segment of a conductor, of length "∆z", around a scalar potential node. 
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Equation (1-3) can be interpreted as the application of the 
Kirchhoff’s law to that particular “potential node”. 

If we separate the potentials produced by the matter existing 
within the segment "∆z" (“Amz

(Δ)” and “Ф (Δ)”), from the potentials 
produced by the rest of the matter, we have: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )* *
1 1 1 1

; ;

, , , , ; , , , , .

ext ext
mz mz mz

mz

A A A

A x y z t L i z t z t C x y z tλ

∆ ∆

∆ ∆

= + Φ = Φ +Φ

= = Φ
   (1-4) 

Where: the potentials produced by the rest of the matter,  “Amz
(ext)” 

and “Ф (ext)”, are the potentials produced by the matter existing in 
the conductor, outside the segment "∆z", plus the potentials 
“Amz

(ex)” and “Ф (ex)” representing the externally applied field; and, 
"L*" and "C*" are, respectively, the inductance per unit length and 
the capacitance per unit length of the segment "∆z" of the 
conductor. 

Using Ohm’s law for the conductor, we have: 

                              ( ) ( )1 1, , , , .z cE x y z t R i z t=                           (1-5) 
Where, “Rc” is the resistance, per unit length, of the conductor. 

Then, (1-1) and (1-3) can be written as: 
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and  
( ) ( ) ( )1 1* * , , ,

, .
ext

LS

x y z ti C C I z t
z t t

∂Φ∂ ∂Φ
+ = −

∂ ∂ ∂
        (1-7) 

As normally, at least a part of the conduction current “ILS”, 
flowing out of the conductor through the lateral surface, is due to 
the linear leakage current, we can write: 

  ( ) ( ) ( ) ( )* *
1 1, , , , , .LS LSI z t G x y z t I z t∆= Φ +                  (1-8) 

And (1-7) can be written as: 
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Equations (1-6) and (1-9) have the form of transmission-line 
equations, and, they are completely general and rigorous 
equations that describe the interaction of an external 
electromagnetic field with a straight finite segment of a single-
wire line, being the only assumptions in deriving these equations: 
the thin-wire approximation and the validity of Ohm’s law for the 
conductor. 
They can be applied to short horizontal single-wire lines and to 
long horizontal single-wire lines; also, they can be applied to bent 
lines, because, in (1-6) and (1-9), “z” represents the direction of 
the segment of conductor being described, which can be any 
direction in real space. 
Then, they can be applied to different problems, such as, 
electromagnetic neural stimulation and the calculation of 
lightning-induced voltages. 

As mentioned in reference [1], the main variables in (1-6) and 
(1-9) are the potentials, which we have seen are very useful for 
classification purposes. But they are not uniquely determined. 

Their values, as well as the value of the inductance and capacitance 
coefficients, are affected by the choice of the reference point, 
which is the point where the value of the potentials is equal to zero. 
The reference point is normally chosen at the infinity, and with this 
choice, from (5) we have, in the Lorenz’ gauge, the usual retarded 
potentials [4]: 
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               (1-10) 

Another usual choice assumes the existence of a line along the 
z direction, where: 

      ( ) ( ) ( ) 0.z mz mE ref A ref ref= = Φ =                    (1-11) 

This line, which is taken as the reference, could be located at 
the infinite or very far from the structures of interest, in such a way 
that the potentials produced by the matter behind the reference are 
negligible. 
Sometimes the reference is chosen on a perfectly conducting 
conductor. When this perfect conductor has an infinite plane 
surface, the potentials produced by the matter behind the reference, 
are represented by the potentials produced by the images of the 
matter on the perfect conductor plane [13]. 
   With any choice of reference, as also mentioned in reference 
[1], Ф in (1-6) and (1-9), can also be interpreted as the potential 
difference between the conductor and the reference, at a value of 
z and t. 

 In the classical transmission-line theory, which is geared for 
long horizontal transmission lines, the values utilized, for the 
capacitance per unit length “C” and for the inductance per unit 
length “L” of the line, are those calculated, neglecting the 
retardation effects, for an infinite straight line which is uniformly 
charged with a charge density, per unit length, equal to “λ” and 
with a current “i” equal in all segments along the line [12]. In this 
situation, the potentials produced are the so-called static potentials 
“Amz

(st)” and “Ф (st)”. 
We will define the so-called internally-produced potentials 
“Amz

(int)” and “Ф (int)”, which are the potentials really produced by 
the matter existing in the conductor; and, we will also define the 
potentials “Amz

(c)” and “Ф (c)”, which are the difference between 
the internally-produced potentials and the static potentials. 

    

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

int int

int int

*

; ; , ;

;

; ; , ;

; .

ex c st st
mz mz mz mz mz mz mz

st ex c
mz mz mz mz

ex c st st

st ex c st

A A A A A A A Li z t

A A A A

z t C

G G

λ
∆

≡ − ≡ − =

→ = + +

Φ ≡ Φ −Φ Φ ≡ Φ −Φ = Φ

→Φ = Φ− Φ +Φ Φ = Φ

(1-12) 

Writing (1-6) and (1-9) in terms of the quantities defined in (1-
12), we have: 

                      
( ) ( )( )

;
ex c

mz mz
c

A AiR i L
z t t

∂ +∂Φ ∂
+ + = −

∂ ∂ ∂
              (1-13) 

and  
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( ) ( )( )
( ) ( )( ) * .
ex c

ex c
LS

i G C
z t

G C I
t

∂ ∂Φ
+ Φ + =

∂ ∂

∂ Φ +Φ
= Φ +Φ + −

∂

  (1-14) 

To allow an easy comparison with the equations utilized by the 
people interested in lightning-induced voltages, we will write (1-
13) and (1-14) in terms of the internally-produced scalar potential. 
Then, we have: 

           
( ) ( ) ( ) ( )int

;
ex cex

mz mz
c

A AiR i L
z t z t t

 ∂ ∂∂Φ ∂ ∂Φ
+ + = − + −  ∂ ∂ ∂ ∂ ∂ 

     (1-15) 

and  

( )
( ) ( )

( )
int

int * .
c

c
LS

i G C C G I
z t t
∂ ∂Φ ∂Φ
+ Φ + = + Φ −

∂ ∂ ∂
  (1-16) 

For the special case of time-harmonic electromagnetic fields, 
or in frequency domain, (1-15) and (1-16) can be written as: 

( )

( ) ( ) ( )
int

;ex c
c z mz

d R i L I E i A
dz
ω

ω ωω ωΦ
+ + = −             (1-17) 

and     

      ( ) ( ) ( ) ( )int * .c
LS

dI G i C G i C I
dz
ω

ω ω ωω ω+ + Φ = + Φ −   (1-18) 

To show the generality of (1-15) and (1-16), we will compare 
(1-17) and (1-18) with reference [13]; where the problem of a 
single-wire line above a perfectly conducting ground, in presence 
of an impinging electromagnetic field, is considered. 
The result there presented is a system of “generalized” or “full-
wave” equations, containing electrodynamics corrections 
(including radiation) to the standard theory of transmission lines. 
Before making the comparison we must note that: 
- In reference [13], the total fields are not divided in: internally 
produced by the single-wire and externally produced, but, they are 
divided in what they call “scattered fields”, which are produced by 
both: the single-wire line and its image in the perfectly conducting 
ground, and what they call “the exciting electric field “Ee”, which 
is obtained by the sum of the incident field “Ei” and the ground-
reflected field “Er”, both determined in the absence of the wire”. 
- Reference [13] only considers an externally impinging 
electromagnetic field, neglecting the eventual localized external 
sources conductively connected to the single-wire. Then, the 
internally-produced potentials reduce to the scattered potentials. 
Reference [13] calculates the potentials produced by the matter 
really existing in the conductor, outside the segment "∆z", 
considering the time delay in the production of the potentials. They 
in fact calculate the potentials “Amz

(c)” and “Ф(c)”. 
Then, when the perfectly conducting ground is taken as the 
reference for the potentials, neglecting the conductor resistance, 
per unit length, “Rc” and the transversal currents “ILS”, (1-17) and 
(1-18) reduce to (9) and (10) of reference [13]. 

2. Comparison of our Field Coupling model with 
standard coupling theories 

Here, as in part 3, we will adopt the same terminology utilized 
in reference [1]. 

In order to allow an easy comparison with classical transmission-
line theories, we will write (34) and (35) in terms of the internally-
produced scalar potential. Then, we have: 

     
( )

( )
( )int

( ) ;
j cj k

j exj j mz
cj k z

AiR i L E
z t t

  ∂∂Φ ∂ + + = −  ∂ ∂ ∂ 
     (2-1) 

and 

             

( )
( )

( )
( )

int
int

* .

kj
kj j

k k

k c
k cj j j

k k LS

i G C
z t

G C I
t

∂ ∂Φ   + Φ + =   ∂ ∂
∂Φ   = Φ + −    ∂

            (2-2) 

Also, in order to compare our results with reference [14], which 
is considered to represent the classical transmission-line theory 
[13], for this quasi-longitudinal mode (because of the presence of 
“ILS”), neglecting the transversal magnetic potential “Amt” 
produced by the transversal current “ILS”, we will define the 
internally-produced line voltage with respect to the reference 
conductor, as in reference [14]: 

( ) ( ) ( ) ( ) ( ) ( )int int 0 int
0 0, , , , , , , .j j

j jV z t x y z t x y z t= Φ −Φ     (2-3) 

 The internally-produced line voltage, defined in (2-3), when 
the external sources conductively connected to the line are not 
considered, is identical to the so-called scattered line voltage, 
defined in (7) of reference [14], which is usually adopted in the 
transmission-line theory utilized by the people interested in 
lightning-induced voltages [13]. 

Using the definition of (2-3), (2-1) and (2-2) can be written as: 

   

( )

( )
( ) ( )( )

( ) ( )

int
0

( )

0
00

( 0) ;

j k
j j

cj k k

j c c
j ex ex mz mz

z c z

V iR i L L
z t

A AE R i E
t t

 ∂ ∂   + + − =    ∂ ∂ 

∂ ∂
= + − − +

∂ ∂

    (2-4) 

and 

 

( )
( )

( )

( )
( )

( )

int
int 0 int

0 int
* .

kj
kj j j

k k k

k c
k cj j j j

k k k LS

i VG V C G
z t

C G C I
t t

∂ ∂     + + = − Φ +     ∂ ∂
 ∂Φ ∂Φ     − + Φ + −       ∂ ∂ 

     (2-5) 

If we separate, from the current in the reference conductor, the 
part corresponding to the return current of the other conductors, we 
can define: 

                    0 0*

0
.k

k
i i i

≠
= − ∑                         (2-6) 

Then, (2-4) can be written as: 

( )

( )
( ) ( ) ( ) ( )( )

int
0

0 00*
( 0) ;

j k
j k j

k k k

j ex ex j c c
z z c mz mz

V iR i L L
z t

E E R i A A
t

 ∂ ∂     + + − =      ∂ ∂ 
∂

= − + − −
∂

    (2-7) 
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To show the generality of (34) and (35), we will compare (2-7) 
and (2-5), which are equivalent to (34) and (35), with the 
corresponding equations of reference [14]: 
- Neglecting the differences between the static magnetic potentials 
and the internally-produced magnetic potentials, the unbalanced 
current in the reference conductor, and if, from the externally 
applied electromagnetic field, only the externally impinging or 
incident electromagnetic field is considered, (2-7) reduce to (16) 
or (33) of reference [14]; 
- Neglecting the differences between the static magnetic potentials 
and the internally-produced magnetic potentials (the 
electrodynamics corrections (including radiation) mentioned in 
reference [13]), the non-linear conduction current  ILS

*, flowing out 
of the “j” conductor through the lateral surface, and assuming that 
the internally-produced line voltage is equal to the scattered line 
voltage, (2-5) almost reduce to (32) of reference [14]. 
 The terms remaining in the right-hand side of (2-5) come from an 
assumption that is made here, which is different from the 
respective assumption made in reference [14]: The capacitance 
coefficients are here defined in the Maxwell’s way, in terms of the 
scalar potentials in the conductors; while in reference [14] they are 
defined in terms of the scattered line voltages with respect to the 
reference conductor. 
Then, as the scattered line voltages represent only differential 
modes, the remaining terms represent the conversion of common 
mode into differential mode. 

When the internally-produced line voltage “Uj”, in the 
conductor “j”, is defined with respect to the reference line for the 
potentials, we have: 

     ( ) ( ) ( ) ( )int int, , , , .j j
j jU z t x y z t= Φ                (2-8) 

Using the definition of (2-8), (2-1) and (2-2) now read as: 

                
( )

( )
( )int

( ) ;
j cj k

j exj j mz
cj k z

AU iR i L E
z t t

  ∂∂ ∂ + + = −  ∂ ∂ ∂ 
  (2-9) 

and    

           

( )
( )

( )
( )

int
int

* .

kj
kj j

k k

k c
k cj j j

k k LS

i UG U C
z t

G C I
t

∂ ∂   + + =   ∂ ∂
∂Φ   = Φ + −    ∂

            (2-10) 

Equations (2-9) and (2-10), which are equivalent to (34) and 
(35), are also completely general and rigorous equations that 
describe the interaction of an external electromagnetic field with 
the considered filamentary multi-conductor transmission line, 
being the only assumptions in deriving these equations: the thin-
wire approximation for all the conductors and the validity of 
Ohm’s law for all the conductors.  

Now, if we compare (2-9) and (2-10), with the corresponding 
equations of reference [14]:  
- Neglecting the differences between the static magnetic potentials 
and the internally produced magnetic potentials (the 
electrodynamics corrections (including radiation) mentioned in 
reference [13]), and if, from the externally applied electromagnetic 
field, only the externally impinging or incident electromagnetic 
field is considered, (2-9) reduce to (16) or (33) of reference [14]; 

- Neglecting all the terms of the right-hand side of (2-10) that 
represent electrodynamics corrections (including radiation) and 
the non-linear transversal conduction current ILS

*; and, assuming 
that the internally-produced line voltage is equal to the scattered 
line voltage, (2-10) reduce to (32) of reference [14]. 
Then, we also obtain the advantage for the numerical solution of 
the system of equations, claimed in reference [14], of having the 
source term appearing in only one kind of equations. 
In fact, this is the formulation utilized for the numerical examples 
shown in reference [14], which refer to a two-conductor line over 
a perfectly conducting ground that is taken as a reference plane, 
not as a reference conductor. 

Equations (34) and (35), which are a generalization of (21c) and 
(22c) of reference [1], as mentioned in reference [1], also represent 
a generalization of Rusck’s coupling theory [21], by including, 
besides the corrections due to the time delay in the production of 
the potentials, the effect of the externally produced magnetic 
potential along the direction of the line (a shortcoming of that 
theory pointed out a long time ago [39]) and also the effect of the 
conductive imperfections of the matter, both of the conductors and 
of the dielectrics between the conductors. 

To include the effect of the transversal mode, we will define 
the so-called conductor voltages.   
Usually, in standard transmission-line theory, the conductor 
voltages are defined relative to one of the conductors chosen to be 
the reference [12,30]. Then, to include the effect of the transversal 
mode, here, we will also define the conductor “j” voltage as the 
integral of the transversal electric field strength “Et” between the 
conductor “j” and the reference conductor: 

( ) ( ) ( )
( )

( )

( )

( )

( )

0 0

0 0

,int

,

,0

,

,

.

j j

j j

x yj j ex j
t tx y

exx yj mt
tx y

V V V z t E dl

A dl
t

+ = ≡ − ⋅ =

∂
= Φ −Φ + ⋅

∂

∫

∫






    (2-11) 

Where, as usual, neglecting the transversal magnetic potential 
produced by the transversal currents, “Amt” is the externally 
produced field. 

Then, we can modify (34) and (35), by means of (2-11), and 
obtain: 

    ( )
( ) ( )

( )
( ) ( )( )

0

0 00*
( 0) .

j k
j k j

k k k

j ex
j ex ex j c c

z z c mz mz

V iR i L L
z t

VE E R i A A
z t

 ∂ ∂     + + − =      ∂ ∂ 

∂ ∂ = − + + − − ∂ ∂ 

  (2-12) 

and  

 
( )

( )

( ) ( )( ) ( ) ( )( )0 int 0 int *

k exj k
k exj k j j j

k k k k

k c k cj j j
k k LS

i V VG V C G V C
z t t

G C I
t

∂ ∂ ∂       + + = + +       ∂ ∂ ∂
∂    + Φ −Φ + Φ −Φ −     ∂ 

(2-13) 

In equations (2-12) and (2-13), which are a generalization of (28) 
and (29) of reference [1], we can also see, as mentioned in 
reference [1], that writing the equations in terms of the conductor 
voltages produce new source terms in (2-12) and (2-13), due to the 
existence of induced voltages produced by the externally applied 
electromagnetic field. 
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Apart from the assumptions of the thin-wire approximation and the 
validity of Ohm’s law for all the conductors, and the assumption 
that the transversal mode is only externally produced, (2-12) and 
(2-13) are quite general. Neglecting the terms that appear within 
the parenthesis in the right-hand side of (2-12) and (2-13), they 
reduce to (3a) and (3b) of reference [12]. 

For the special case of time-harmonic electromagnetic fields, 
or in frequency domain, (2-12) and (2-13) can be written as: 

( ) ( ) ( ) ( );
j

j j k j
k k E

dV z
R i L I z S z

dz
ω

ω ωω   + + =         (2-14) 

and         

  
( ) ( ) ( ) ( ).

j
j j k j

k k H

dI z
G i C V z S z

dz
ω

ω ωω   + + =          (2-15) 

Which, without the sources, are the standard transmission-line 
equations in frequency domain, such as shown in (2) of reference 
[30] or (6.7) and (6.8) of reference [31]. 
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