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This work extends the development of the nonuniform Parallel Digital
Ramp Pulse Position Modulation Analog-to-Digital Converter (PDR-
ADC) architecture. The continuous to discrete transform of the PDR-
ADC is achieved by partitioning the signal amplitude axis into P nonover-
lapping partitions that sample the analog input at input signal driven
instances. Each partition contains L uniform levels with different quanti-
zation step sizes such that the dynamic range of the partitions are related
as a geometric series. It is shown that this new architecture satisfies
the Nyquist requirement on average (Beutler’s condition) and results
in a random additive sampling architecture that is alias free (Shapiro-
Silverman condition). Additionally, it is shown that the geometric parti-
tioning causes the signal-to-quantization noise ratio (SQNR) to remain
approximately constant. A comprehensive design paradigm is presented,
including circuits to affect the desired response, the format of the encoded
digital samples and the corresponding transformation to determine the
equivalent analog voltage. Lastly, although the thrust of this paper is not
reconstruction techniques, reconstruction is, nevertheless, compulsory,
and recovery and reconstruction is demonstrated through simulations.

1 Introduction

This communication is an extension of work originally
presented at a conference on Electrical and Computer
Engineering [1] and this current paper significantly
expands upon the initial concept proposed in the orig-
inal material. Although the most common form of
sampling is uniform sampling, there are many cases
where nonuniform sampling arises and is intentional
[2]. Compressed Sensing (CS) ,[3, 4], is based upon,
and operates on nonuniform samples. In CS, the goal
is to compress at the time of sampling [5]. To combine
acquisition and compression into one step necessitates
new hardware innovations. The data converter pro-
posed is a novel approach to nonuniform data acquisi-
tion.

The mathematical theory of nonuniform sampling
and reconstruction has been well studied [6], and sev-
eral hardware realizations have been described. In [7],
the concept of the Level Crossing (LC) detector for
nonuniform sampling was described and developed,
in [8], the LC concept was extended and [9], an LC
hardware design in 120nm CMOS was fabricated. In

[10], the LC concept was extended to include a trian-
gular dither signal on the input. In [11], the LC sam-
pling scheme was used in an event driven ADC appli-
cation for electrocardiogram (ECG) signal acquisition.
In [12], an adaptive LC sampling scheme was devel-
oped, whereby the levels are no longer static but rather
adapt to the required signal dynamic range. In [13],
a time based ADC was proposed using pulse position
modulation (PPM). In [14], a nonuniform sampling sys-
tem based upon PPM using a reference ramp rest was
proposed. In [15], a wideband nonuniform sampling
system using a random modulator pre-integrator, simi-
lar to direct sequence spread spectrum, was described,
and in [16] a nonuniform sampling system based upon
pseudo-randomly (PN) triggering the sample-and-hold
circuit in an otherwise standard ADC was proposed.

The new nonuniform architecture presented here
is based on a parallel implementation of the standard
Digital Ramp Pulse Position Modulators (PDR-ADC).
The architecture partitions the amplitude range into P
nonoverlapping partitions, each governed by its own
digital ramp. The ensemble of digital ramps operate
from a single counter N bit counter and a single Digital-
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to-Analog (DAC) converter, greatly simplifying the syn-
chronization and calibration process. It is shown that
our approach exhibits effective compressed sensing
performance (compression and acquisition at the same
time) at greatly reduced complexity.

2 Conventional PPM

Conventional Pulse Position Modulation (PPM) gener-
ates one sample per period of a reference ramp [1]. In
the PPM waveform generator circuit shown in Figure
1, f (t) is the input analog signal to be sampled and r(t)
is a saw tooth reference waveform with period, Tramp.
The comparator is assumed to be referenced from a
positive voltage supply, VCC , and a negative supply
voltage supply VEE . Pulse Width Modulation (PWM)
is an ouput signal and PPM is the output Pulse Posi-
tion Modulation signal generated by the monostable
multivibrator (one shot) circuit. When triggered, a one
shot produces a single pulse of fixed, finite duration.

Figure 1: PPM Generator

A comparator, in general, will produce an output
at the positive supply rail, VCC , whenever the signal
input to the noninverting amplifier terminal, V +O, is
greater than the signal input to the inverting amplifier
terminal, V -O. Similarly, the comparator output will be
at the negative supply rail, VEE , whenever V -O > V +O.
For the circuit in Figure 1, the PWM output signal as a
function of time may be expressed as:

PWM(t) =

VCC if f (t) > r(t)
VEE otherwise

(1)

Under the conditions specified, when r(t) exceeds
f (t), the one shot will trigger and a sample generated.
Assuming the bandwidth of the analog input, f (t), is

less than
1

Tramp
, one sample is generated per period of

the reference ramp and we may define the sample rate

as, FS =
1

Tramp
≡ 1
Ts

.

Figure 2 is an illustration of several cycles of the ref-
erence ramp signal. In Figure 2, rn is the nth period of
the reference signal. If we define the full scale voltage
as, VFS = VCC −VEE and let the negative supply rail be
such that, VEE = −VCC , as is typically the case, then we
may write, VFS = 2VCC . We can then define the slope

of the reference as, β =
VFS
Ts

. By direct enumeration,

rn(t) in Figure 2 is:

r0(t) = βt +VEE 0 ≤ t < t1
r1(t) = βt +VEE − βt1 t1 ≤ t < t2
r2(t) = βt +VEE − βt2 t2 ≤ t < t3

...

rn(t) = βt +VEE − βtn nTs ≤ t < (n+ 1)Ts

(2)

Substituting VEE = −VFS
2

, VFS = βTs and tn = nTs,

(2) becomes:

rn(t) = βt −
βTs
2
− βnTs

= βt − βTs
(
n+

1
2

)
n = 0,1,2, · · ·

(3)

The comparator triggers when r(t) = f (t), from (3), the
discrete sample time, τn, of the nth pulse is:

τn = nTs +
fn
β

+ td n = 0,1,2, · · · (4)

where β =
VFS
Ts

and td =
Ts
2

.

Equation (4) shows, in conventional PPM not only
is the timing of the nth sample proportional to the sam-
ple number, n, the timing is also a function of the signal
being sampled. Consequently, it is seen, conventional
PPM generates nonuniform sampling.

Figure 2: PPM Reference Ramp

3 ∆-PPM

It is possible to generate a PPM signal directly, with-
out explicitly having the PWM output trigger a one-
shot. Such a direct generation of the PPM signal is
accomplished by resetting the reference ramp after the
comparator triggers. Generating a PPM signal by re-
setting the reference ramp will be called, ∆−PPM, to
distinguish it from conventional PPM. ∆−PPM may be
generated with the circuit of Figure 3. In Figure 3, VCC
and VEE are the power supplies for the comparator,
f (t) is the signal to be sampled and r(t) is the reference
ramp. Also shown in Figure 3 is a RESET circuit that
asynchronously resets the reference ramp at each PPM
pulse.
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Figure 3: Reset PPM Generator

The previous periodicity of the reference signal is
annihilated when the reference ramp is allowed to reset
after the comparator triggers. An arbitrary response to
the asynchronous triggering is shown in Figure 4. In
Figure 4, we call rn is the nth response of the reference
signal, rather than the nth period of the reference, and
again define the full scale voltage as, VFS = VCC −VEE
and the slope of the reference as, β =

VFS
Ts

.

Figure 4: Reset PPM Reference Ramp

By direct enumeration, rn(t) in Figure 4 is:

r0(t) = βt +VEE 0 ≤ t < t0
r1(t) = βt +VEE − βt0 t0 ≤ t < t1
r2(t) = βt +VEE − βt1 t1 ≤ t < t2

...

rn(t) = βt +VEE − βtn−1 tn−1 ≤ t < tn

(5)

We note that the interval endpoints cannot be speci-
fied as constants, as was the case in conventional PPM,
because they evolve dynamically. Again, substituting

VEE = −VFS
2

with VFS = βTs, (5) becomes:

rn(t) = βt − βtn−1 −
βTs
2

tn−1 ≤ t < tn (6)

The comparator triggers when r(t) = f (t), from (6), the
discrete sample time, τn, of the nth pulse is:

τn = τn−1 +
fn
β

+ td n = 1,2,3, · · · (7)

where β =
VFS
Ts

and td =
Ts
2

.

Equation (7) shows, in ∆−PPM the timing of the
nth sample is a function of the signal being sampled
and thus ∆−PPM generates nonuniform sampling, as
in conventional PPM. Additionally, from (7), ∆−PPM
samples times are a function of the previous sample
time.

Two important consequence result if the sample
times are a function of the previous sample time. First,
Shapiro and Silverman [20] showed that sampling can
be made alias free if each sample time is derived from
the previous one by the addition of an independent ran-
dom variable, from (7) it is seen that ∆−PPM provides
such a sampling scheme. Second, Beutler [21] showed
that if the sampling rate exceeds the Nyquist rate on av-
erage then the nonuniform sampling set will be stable
and can be used to reconstruct a band-limited signal.
We now show that ∆−PPM produces a sampling set
with an average sampling rate,Ravg , that approaches,

Ravg =
2
Ts
≈ 2FS.

Using (7) iteratively we may write:

τn = τo +n
Ts
2

+
1
β

k = n∑
k = 1

fk (8)

where τo is the first sampling instant.
Let n→ N , be the total number of samples such

that {N :N ∈ 1,2,3, ...∞} and let τN be the maximum
sample time, then, dividing by N:

τN
N

=
τo
N

+
Ts
2

+
1
β

 1
N

k = N∑
k = 1

fk

 (9)

The last term in (9) is the average value of f (t). If the
average value equals zero, then the average sample rate
is given by:

Ravg =
2
Ts

(
N

N + 2τo/Ts

)
(10)

The maximum value of the first sampling instant is,
τo = Ts, which corresponds to the minimum value of
Ravg , thus:

Ravg ≥
2
Ts

( N
N + 2

)
(11)

Less formally, for reasonable values of N experienced
in practice, we may regard the average sample rate in

∆-PPM as, Ravg =
2
Ts
≈ 2FS.

The significance of (7) and (11) are that ∆−PPM
is self-regulating. ∆−PPM automatically satisfies the
Nyquist requirement on average (Beutler’s condi-
tion [21]) and produces alias free random sampling
(Shapiro-Silverman condition [20]). Additionally,
∆−PPM achieves self-regulation with no a priori knowl-
edge of the signal support and does not utilize any par-
ticular code or special sequence to generate random
samples.
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4 Geometric Partitioning

The stylized, equal partitioning, presented [1], was in-
tended to provide an introduction for the essence of
the PDR-ADC. We now develop the elaboration of the
partitioning scheme, where significant benefits will be
obtained.

All data converters need an analog reference volt-
age to accomplish the continuous to discrete transform
and produce a digital word [22]. In general, the con-
verter divides an analog reference voltage, VREF , into a
fixed number of analog voltage levels, L. These analog
voltage levels are then mapped to a digital number,
typically referred to as counts. By convention, the
smallest analog voltage level is assigned digital level
0 . The remaining analog voltage levels are mapped

to digital levels by incrementing the ADC count. In
this way, it is not possible to map the analog reference
voltage, VREF , to a number that can be reached and
assigned a digital count.

All of the digital levels taken together define the
scale. In general, there will be L levels and L− 1 steps.
The reference voltage divided by the number of levels
defines the size of the analog step to reach an adjacent
level. The step size, ∆, is sometimes referred to as the
quantization step size or the least significant bit (LSB).
The maximum analog voltage that can be mapped to a
digital level is called the full scale voltage, VFS . The re-
lationship between the reference voltage, the full scale
voltage and the quantization step size are shown in
Figure 5 for a converter with L = 16 levels.

Figure 5: Quantization Step Size

The number of levels, L, is typically designed to be
a function of the number of bits as, L = 2N , where N
is the number of bits. For the 4 bit converter shown in
Figure 5, the reference voltage is divided by 16 = 24.
The first digital level is assigned digital count 0 , and
corresponds to the digital number, 0 0 0 0 . The
maximum digital count is 15 , and corresponds to

the digital number, 1 1 1 1 . It is not possible to
encode digital count 16 with a 4 bit counter, and con-
sequently, the reference voltage, VREF in Figure 5, is
not mapped to a digital number.

The principle of the geometric partitioning is
shown in Figure 6 for a system with P = 8 partitions
and L = 4 levels. In the PDR data converter, the signal
amplitude axis in partitioned into P partitions such
that each partition contains L levels, the partitions do
not overlap and each partition has a different quantiza-
tion step size. The geometric partitioning is achieved
by relating the spans (the dynamic range) of the parti-
tions as a geometric series.

Figure 6: Geometric Partitioning: Conceptual

Figure 7: Geometric Partitioning: Detail
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The relationship between partition bias voltages,
Vbiasm , and the quantization step sizes needed to re-
alize the behavior shown in Figure 6, can be better
understood and visualized with the aid of Figure 7.
Due to the symmetry of the bias voltages, only the pos-
itive partitions, P1, P2, P3 and P4, as shown in Figure 7,
are needed.

Let the total number of partitions, P , be even, and

define the maximum partition number to be,M =
P
2

,

and let m denote the mth partition. In Figure 7, we de-
note by Vdivm the span of the mth partition. By design,
the spans of the partitions are geometrically related,
thus:

Vdiv2 = 2Vdiv1 = 2(2−1)Vdiv1

Vdiv3 = 4Vdiv1 = 2(3−1)Vdiv1

Vdiv4 = 8Vdiv1 = 2(4−1)Vdiv1

...

Vdivm = 2(m−1)Vdiv1 m = 1,2,3, · · ·M

(12)

To realize (12), a circuit that takes the output from
the DAC and applies the appropriate gain to compress
the DAC steps is required. The required step compres-
sion response is shown in Figure 8 and the circuit to
realize the response is shown in Figure 9.

Figure 8: Step Compression Voltages

The step compression circuit in Figure 9 is a non-
inverting voltage divider. To obtain design equations
for the bias voltages in terms of the reference volt-
age, VREF , the maximum number of partitions,M and
the number of levels, L, we design the step compres-
sion circuit such that the voltage drop across resistor,
VRx =

(
2(M−1) − 1

)
Vdiv1. Then, due to the geometric

design and Kirchoff’s voltage law, it must be the case:

Figure 9: Step Compression Circuit

VREF = Vdiv1 +Vdiv2 +Vdiv3 + · · ·+VdivM
VREF = Vdiv1

(
1 + 2 + 4 + 8 + · · ·+ 2(M−1)

)
VREF = Vdiv1

k=M−1∑
k=0

2k

VREF = Vdiv1

(
2M − 1

)
∴

Vdiv1 =
VREF

2M − 1

(13)

From (12) and (13), the mth voltage divider voltage
is given by:

Vdivm =
(

2(m−1)

2M − 1

)
VREF (14)

Dividing (14) by L− 1, the quantization step size, ∆, is:

∆m =
(

2(m−1)

2M − 1

)(VREF
L− 1

)
(15)

Using Figure 7 and (14) and (15), we may write the
bias voltages, Vbiasm , as:

Vbiasm = ∆1 +
k=m−1∑
k=1

(
Vdivm +∆m

)
Vbiasm = ∆1+

+
k=m−1∑
k=1

(
2(m−1)

2M − 1
VREF +

2(m−1)

2M − 1
VREF
L− 1

)

Vbiasm = ∆1 +
VREF

2M − 1

( L
L− 1

) k=m−1∑
k=1

2k−1

Vbiasm = ∆1 +
VREF

2M − 1

( L
L− 1

)[
2(m−1) − 1

]
Vbiasm =

VREF
2M − 1

( L
L− 1

)(
2(m−1) − 1 +

1
L

)

(16)

Lastly, the Full Scale voltage shown in Figure 7 may
be obtained by adding the results of (16) and (14) eval-
uating at m =M:
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Figure 10: Step Compression & Level Shifting Circuit

VFS =
VREF

2M − 1

( L
L− 1

)[
2M − 1 +

1− 2(M−1)

L

]
(17)

In terms of the external design parameters, VREF ,
M and L, the number of partitions,M will have the
most influence on the design equations, (16) and (17),

since the bias is proportional to
1

2M − 1
.

5 Step Compression and Level
Shifting

We now develop the circuit to generate the parallel
digital ramps shown in Figure 6, and we call this func-
tion, step compression and level shifting (SCLS). The
step compression and level shifting circuit is shown in
Figure 10. Step compression is governed by equations
(14) and (15) and we seek now to determine design
equations for the resistance for the circuit in Figure 10.

5.1 Step Compression

The step compression gains can be realized from circuit
analysis by solving for the resistor values, in Figure
8, required to establish the voltage divider voltages,
Vdivm as given by (14).

Let
∑
Rm = R∗1 +R2 +R3 + · · ·+RM, then from circuit

analysis:

Vdiv1 = VREF

(
R∗1

Rx +
∑
Rm

)
(18a)

and in general:

Vdivm = VREF

(
R∗1 +R2 +R3 + · · ·+Rm

Rx +
∑
Rm

)
(18b)

Divide (18b) by (18a):

Vdivm
Vdiv1

=
R∗1 +R2 +R3 + · · ·+Rm

R∗1
(19)

Substituting the geometric relation given in (12) for
Vdivm :

2(m−1)R∗1 = R∗1 +R2 +R3 + · · ·+Rm =
∑

Rm (20a)

from which it is seen:

m = 2 −→ R2 = R∗1
m = 3 −→ R3 = 2R∗1
m = 4 −→ R4 = 4R∗1

...

(20b)

and in general:

Rm = 2(m−2)R∗1 for m > 1 (20c)
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Lastly, from Equation (13) and (18a):

1
2M − 1

=
R∗1

Rx +
∑
RM

Rx =
(
2M − 1

)
R∗1 −

∑
RM

(21a)

and from (20a):

Rx =
(
2M − 1

)
R∗1 − 2(M−1)R∗1

Rx =
[
2(M−1) − 1

]
R∗1

(21b)

To complete the design of the Step Compression cir-
cuit, we must specify a value for resistor R∗1. To do so,
we seek a design equation that relates the RMS noise
voltage of the resistor to the voltage of the smallest
quantization step size, ∆1 in Figure 7. We then design
the resistor value be less than this value so that the
system is limited by the quantization noise of the LSB
rather than the thermal noise of the resistor.

From (15):

∆1 =
VREF

(2M − 1)(L− 1)
(22)

Assuming the noise is Gaussian distributed, then
approximately all of the noise is contained within 6.6
standard deviations1. The peak-to-peak thermal noise
voltage of the resistor is given by:

VppNth |R∗1 = 6.6
√

(4RkTB) (23)

where R is the resistance in Ohms, k is Boltzmann’s
constant (k ≈ 1.30865×10−23J/K), T is the temperature
in Kelvin and B is the bandwidth in Hertz.

To design for the thermal noise voltage of R∗1 to be
less than ∆1, we should select R∗1, such that:

R∗1 ≤
( 1

6.6

)2 ( VREF
(L− 1)(2M − 1)

)2 ( 1
4kTB

)
(24)

5.2 Level Shifting

Level shifting is governed by the bias voltages as given
by (16). The aim of the level shifting circuit is to shift
the step compressed voltages, shown in Figure 8, to the
required bias level, shown in Figure 6. The βm signals,
in Figure 10, are the final step compressed and level
shifted signals that are feed back to the input compara-
tors [1]. From the symmetry of the design, the positive
shifted β signals are given by:

βm = Vdivm +Vbiasm for 1 ≤m ≤M (25)

and the negative shifted signals are given by:

βM+m = −
(
Vdivm +Vbiasm

)
for 1 ≤m ≤M (26)

Specifically, for the β signals shown in Figure 10,:

β1 = Vdiv1 +Vbias1 β5 = − (Vdiv1 +Vbias1)

β2 = Vdiv2 +Vbias2 β6 = − (Vdiv2 +Vbias2)

β3 = Vdiv3 +Vbias3 β7 = − (Vdiv3 +Vbias3)

β4 = Vdiv4 +Vbias4 β8 = − (Vdiv4 +Vbias4)

(27)

The design is readily obtained if the inverting and
noninverting amplifiers in 10 are solved with the feed-
back resistors as arbitrary unknown resistors (2 de-
grees of freedom) and the remaining resistors fixed,
equal to resistor R∗1. A pair of inverting and noninvert-
ing amplifiers are shown in Figure 11 where R -O , is
the resistor in the inverting amplifier and R +O is the
resistor in the non-inverting amplifier.

Figure 11: Level Shifting Feedback Scaling

From circuit analysis, the node voltage, Vs is:

Vs −Vdiv
R∗1

+
Vs −Vbias

R∗1
+
Vs
R∗1

= 0

Vs =
Vdiv +Vbias

3

(28)

For the inverting amplifier we have,
Vs
R∗1

= − Vx
R -O

, from

which:

Vx = −
R -O
R∗1

(Vdiv +Vbias
3

)
(29)

The required inverting sum, as given in (27), is ob-
tained when:

R -O = 3R∗1 (30)

Similarly, for the non-inverting amplifier we have:

Vy =

1 +
R +O
R∗1

Vs, from which:

Vy =

1 +
R +O
R∗1

(Vdiv +Vbias
3

)
(31)

The required non-inverting sum, as given in (27), is
obtained when:

R +O = 2R∗1 (32)
1 6σ is often used, however, 6.6σ is becoming an industry standard.
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6 Maximum Sample Rate

Samples are generated by the precision windowed dual
slope edge detector shown in Figure 12. The edge detec-
tor triggers an asynchronous LOAD flip-flop that stores
the instantaneous value of the counter to memory. The
LOAD signal, additionally, “sets” an RS flip-flop that
drives the synchronous RESET flip-flop. On the next
CLOCK, Tclk , the RESET flip-flop resets the counter.
The counter generates a HOLD OFF signal that inhibits
additional LOAD signals until the counter has settled,
where the safety time to settle is 1 CLOCK pulse. The
sampling circuit is shown in Figure 12.

Figure 12: Windowed Synchronous One-Shot

In the PDR data converter, we must ensure that
the counter has settled before the next LOAD/RESET
cycle. The worst case signaling (fastest signal) corre-
sponds if the LOAD signal aligns with a CLOCK edge.
In such a case, a minimum of 3 CLOCKS is required
to guarantee correct conversion before the next LOAD
signal is allowed to register a new sample, this worst
case timing is shown in Figure 13.

Figure 13: LOAD/RESET Timing

To determine the maximum signal frequency that
the PDR-ADC can accommodate, we equate the max-
imum rate of change of the input signal, to the max-
imum rate of change allowable by the PDR. With an

input sinusoid of the form, f (t) = VFSsin(2πfsig t), the

maximum rate of change is:
∆V
∆t

= 2πfsigVFS . The

fastest rate of change the PDR can respond to is:
∆V
∆t

=
2VFS
3Tclk

. The maximum signal frequency is:

fsigmax =
1

3πTclk
(33)

7 The Counting Vector

In this section, we establish some important properties
of the counting vector. Each intersection of f (t) with
a reference counter step contributes to the counting
vector, α. The counting vector is responsible for de-
termining the time of each sample, the amplitude of
each sample, and the number of samples acquired. The
counting vector also contains the information about
the number of missing samples and where these miss-
ing samples are located. Information regarding the
missing samples is critically important for reconstruc-
tion as the location and number of the missing samples
(the data to be interpolated) must be known.

We denote by α, the number of counts accumulated
by the counter. If the counter is strictly counting up,
then the time to accumulate α counts, tα = (α + 1)Tclk ,
where Tclk is the clock period. The time of the nth

sample, t[n], is the cumulative sum of the tα’s:

t[n] = Tclk
i=n∑
i=1

(αi + 1) (34)

If, instead, the counter is strictly counting down,
we denote by αc (the complement of α) the number
of counts accumulated by the counter. In this way,
αc = (L− 1)−α, where L− 1 is the maximum value of
the counter. In this case, the time of the nth sample is:

t[n] = Tclk
i=n∑
i=1

(L−αi) (35)

The direction of the counter can be changed, by using a
toggle flip-flop clocked on each RESET signal, and the
system will continue to maintain the correct timing of
each sample.

To recover the signal requires a method to resolve
the counter slope, the partition number and the count
value. We append, to the counting vector, additional
bits that correspond to the counter slope and the parti-
tion number. As a specific example of accommodating
partition encoding, suppose a PDR-ADC is designed
with P = 8 partitions and L = 256 levels per partition.
The partition encoder requires 3 bits, the count slope
requires 1 bit and the count value requires 8 bits, the
data word stored in memory will be of the form:

rawData =

Slope︷︸︸︷
B12

Partition number︷             ︸︸             ︷
B11 B10 B9

Count value︷                                       ︸︸                                       ︷
B8 B7 B6 B5 B4 B3 B2 B1
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In this example, the partition number in each data
word is determined by:

mi = rawDatai [B11 : B9][ 4 2 1 ]T (36)

and each αi is determined by:

αi = rawDatai [B8 : B1]WT

≡ BiW
T (37)

where, W = [ 128 64 32 16 8 4 2 1 ].
In general, once the ith partition number, mi , and

the ith count, αi , have been determined, the sampled
voltage value is given by:

Vi = αi∆mi +Vbiasmi (38)

where ∆m is given by (15) and Vbiasm is given by (16).
Lastly, since αi + 1 is the number of clocks to obtain

αi counts, then αi is equal to the number of missing
samples if the signal had been sampled at a rate equal
to Tclk .

8 Signal to Quantization Noise Ra-
tio (SQNR)

The signal to noise ratio (SNR) is always equal to the
ratio of the signal power, Psig , to the noise power, PNQ .
In data converters, the “noise” added by the system
due to the act of approximating (truncating) a continu-
ous function to finite precision is quantization noise,
and the ratio of interest is the signal to quantization
noise, SQNR = Psig /PNQ . In uniform quantizers, the
quantization noise power is well approximated by, [17],
[23]:

PNQ =
∆2

12
(39)

In the PDR data converter, from (15), for any adja-
cent partitions:

∆m
∆m+1

=
1
2

(40)

from (39) and (40):

PNQm =
PNQm+1

4
(41)

For the PDR, (41) states, the quantization noise
power decreases by a factor of 4 when transitioning
from a higher partition to a lower level partition. This
effect is shown in the bottom panel in Figure 14, where,
for comparison, we have also plotted the quantization
error of a uniform quantizer in the top panel.

Let a signal of the form, y = Aosin(ωot), be input
to a uniform quantizer with quantization noise power,
PNQu , the SQNR is given by:

SQNRu =
Psig
PNQu

=
A2
o

2
1

PNQu
(42)

Figure 14: Quantization Error Comparison

Now suppose a signal of the form, y =
Ao
2
sin(ωot)

is input to this uniform quantizer, the SQNR becomes:

SQNRu =
(1

4

) A2
o

2
1

PNQu
(43)

From (42) and (43), in a uniform quantizer, when the
input signal amplitude decreases by a factor of 2, the
SQNR degrades by a factor of 4.

Now consider a signal of the form, y = Aosin(ωot),
input to the nonuniform PDR quantizer with quantiza-
tion noise power, PNQnu , the SQNR is given by:

SQNRnu =
Psig
PNQnu

=
A2
o

2
1

PNQnu
(44)

Again, suppose the input signal amplitude decreases

by a factor of 2 and let y =
Ao
2
sin(ωot) be input to the

nonuniform PDR quantizer, then, by (41), the SQNR
becomes:

SQNRnu =
(1

4

) A2
o

2
1

PNQnu /4

=
A2
o

2
1

PNQnu

(45)

From (44) and (45), it is seen, the geometric partition-
ing of the PDR-ADC attempts to maintain the signal-to-
quantization noise ratio constant, this is a significant
improvement compared to uniform quantization data
converters.

We shall now be concerned with determining this
constant. In an N bit uniform quantizer, the quantiza-
tion step size, ∆u , is:

∆u =
2VFS

2N − 1
(46)

Suppose we have a PDR data converter, with max-
imum partition number, M, and L = 2N levels per
partition, where N is the same as the uniform quan-
tizer in (46). In the PDR, the largest quantization step
size is given by (15), evaluated at m =M.

∆M =
(

2(M−1)

2M − 1

)( VREF
2N − 1

)
≈

(1
2

)( VREF
2N − 1

) (47)
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Figure 15: Parallel Digital Ramp ADC Overall Block Diagram

Using (46), we may write (47) as:

∆M ≈
(1

4

)(2VREF
2N − 1

)
=

2VREF
2(N+2) − 4

(48)

In a PDR data converter, with L = 2N levels per parti-
tion, (48) states, the PDR has gained approximately 2
bits of resolution compared to a uniform quantizer.

The results of (45) and (48) may be summarized
as, given a PDR data converter with L = 2N levels, the
SQNR of the system will be approximately equivalent
to a uniform system with L = 2(N+2) levels and the PDR
will attempt to maintain this performance for all input
signal levels.

9 Simulation Results

The proposed parallel digital ramp ADC was modeled
and simulated in Simulinkr and the reconstruction
performed in Matlabr. The overall block diagram of
the new ADC is shown Figure 15.

9.1 Linearity

The linearity of the PDR was analyzed empirically us-
ing a triangle wave, as shown in Figure 16, since, by
design, the sampled data is not equally spaced. This
approach was taken because the data converter figure
of merit, Differential Non-Linearity (DNL), is a func-
tion of the difference of consecutive samples with a
constant step size, as given by (49), where for an ideal
ADC, the DNL = 0 [18]. In the PDR, since large gaps
appear in the data and the step size is not constant,
linearity is more easily performed graphically.

DNL[k] =
ADCout[k]−ADCout[k − 1]

∆LSB
− 1 (49)

Figure 16: Reconstructed Linear

9.2 Electrocardiogram (ECG) Reconstruc-
tion

To test the new PDR data converter to acquire and
reconstruct an analog signal from its nonuniform sam-
ples, a simulated electro-cardiogram (ECG) signal [25]
was used. These signals have a wide dynamic range
and “contain the QRS complex, which ensures oscilla-
tions near the Nyquist rate” [26] and are thus useful
in exercising the nonuniform sampling architecture of
the PDR.

The simulated ECG signal was modeled with a 1mV
peak amplitude with 0.3mV DC offset and zero mean
Gaussian noise with noise variance σN o ≈ 0.058nW
was added to the signal.

A wide view of the simulated run time of 10 sec-
onds is shown in Figure 17, which demonstrates the
PDR’s ability to maintain the count. A zoom view of
the reconstructed signal is shown in Figure 18, high-
lighting the features of the QRS pulse. When the signal
is “idle” (DC like), and loiters near 0 Volts, the system
continues to generate samples and is not adversely
affected by the lack of signal dynamics.
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Figure 17: Reconstructed (simulated) ECG: Wide View

Figure 18: Reconstructed (simulated) Noisy ECG:
Zoom View

10 Conclusion

A novel Analog-to-Digital Converter architecture
based on partitioning the signal amplitude axis as a ge-
ometric series has been described. A detailed analysis
of the design requirements to achieve the geometric
partitioning has been provided and the essential cir-
cuits to realize the design presented. To extract the
information content in each nonuniform digital sam-
ple, a proposed format of the nonuniform data was
established, where it was shown that the partition num-
ber must be included in the digital word. Using reset
∆−PPM was shown to cause the system to satisfy the
Nyquist requirement on average, and the geometric
partitioning was shown to cause the SQNR to attempt
to remain approximately constant. Lastly, the linearity
of the PDR and the reconstruction of a simulated ECG
signal were illustrated through simulation.
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