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Trusted systems are becoming more integrated into everyday life. Secu-
rity and reliability are at the forefront of trusted system design and are
often directed at hardware-only solutions, especially for safety critical
systems. This is because hardware has a well established process for
achieving strong, precise, and reliable systems. These attributes have
been achieved in the area of safety critical systems through the use of
consistent and repeatable development processes, and a standardized
metric for measuring reliability. However, due to the increase in com-
plexity of systems and the looming end of Moore’s Law, software is being
incorporated more into the design of these trusted systems. Unfortu-
nately, software typically uses agile development in modern design and
uses unreliable metrics for illustrating reliability. This does not make it
suitable for safety critical applications or for total system reliability in
mixed hardware/software systems. Therefore, a comprehensive process
of systems development needs to be utilized to allow for total system
specification in the beginning and a comparable reliability metric in
the end which covers software and hardware. Henceforth, we discuss
an initial solution to these problems, leading to the establishment of a
development process that allows for the proven correctness of a system
specification via formal methods. This process also establishes a testing
and error reporting process to allow software to be represented in a way
that allows the application of reliability metrics similar to those used for
hardware.

1 Notification of Intent

This paper is an extension of work originally presented
at the 2017 National Aerospace & Electronics Confer-
ence (NAECON) [1]. In this work we illustrate the
ability to utilize formal methods and automated theo-
rem proving (ATP) to discover errors in specification
development prior to implementation. A major con-
cern addressed from feedback at NEACON 2017 is the
prevention of errors in the proof environment. We
expand on that work by showing that formal meth-
ods and ATPs can be used to find errors in the proof
of function correctness. This allows for a system of
checks and balances between specification and proof
development for formal methods, verifying that both
parts adhere to the original customer requirements.

This paper also extends work originally presented
in 2016 at the Midwest Symposium on Circuits and
Systems (MWSCAS) [2]. In that paper we addressed
the use of statistical metrics to show the reliability of
software over time. This process relies on the use of
techniques we developed to define independent, ran-
dom errors for injection into our elevator controller
benchmark program. However, our presentation of
those techniques was brief due to page limitations and
the need to discuss the results of our testing procedure
for software. To address the feedback on that work, we
will be elaborating in depth on our technique for gen-
erating random, independent errors using real-world
reported error results and random number generators
(RNGs). This also includes a discussion of how we
determine the best RNG for our needs.
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Finally, this paper extends work originally pre-
sented in 2018 at MWSCAS [3]. This was originally
an expansion of our work in [2] using a different error
rate and looking at possible better statistical models
of reliability for software. Many of the commentators
on our work suggested expanding the results to more
programs and improving the results by looking into
focusing the data, as some outliers had caused degra-
dation in the results. We address both of these points
by expanding the testing and analysis to five more pro-
grams, using characteristics and style similar to our
original elevator controller benchmark, and then devel-
oping a process to remove outliers in the data through
the use of statistical measures.

2 Introduction

Embedded systems in recent years have taken a leap in
their integration with everyday society. They appear
in various forms from wearables, to cellphones, to the
vehicles we drive; it is important that these embed-
ded systems function correctly. In many fields, such
as medicine and aerospace, there is a strong focus on
these systems being secure, reliable, and robust. These
trusted and safety critical systems must work correctly
as their failure could result in injury or, in the worst
case, the loss of life of those that are dependent on
them.

Many trusted systems encountered today utilize
hardware specific embedded systems. Hardware has
a tradition of reliability and safety, because of its use
of industrial practices and standards. In VLSI design,
developers can compare their working designs to stan-
dardized benchmarks (e.g., MCNC [4], IWLS [5], and
LEKO [6]) and this generates a baseline of confidence
in the design. Beyond benchmarks, tool designers have
incorporated Model Checking [7] into their develop-
ment suites, allowing for reliability checking against
industry determined “golden models” [8–11]. These
techniques are invaluable in generating the statistical
models of reliability for hardware systems.

Unfortunately, the constraints of Moore’s Law
[12, 13] and the increased complexity of system func-
tion have required a change in the design approach
of critical embedded systems. Some industry prac-
tice has attempted to maximize the resources available
for a given space [14–17], but these techniques are
fairly new, and VLSI tools and techniques are lagging
behind in allowing for these techniques, slowing adop-
tion. Other researchers are looking at maximizing the
capabilities of current hardware by focusing on imple-
menting machine learning in embedded systems [18].
However, this is difficult to achieve for safety critical
systems with the large overhead that comes with high
precision computing with machine learning [19].

Hence, software is an attractive alternative for meet-
ing the demand for complex, real-time critical systems.
Several recent disasters (e.g. [20–22]) have, however,
indicated that the current process of testing to exhaus-
tion and representing software reliability as defects

per thousand lines of code (ELOC) [23] is not sufficient.
This is especially true when taking into account the
fact that there is no industrial standard for counting
“lines of code” and factors such as size play a role in
misrepresenting results [24]. Software metrics similar
to hardware would be ideal, and theoretical work in
this area has shown software should be able to be mod-
eled with statistics [25–30]. Government agencies have
also released standards of development [31, 32] to pro-
vide a framework for illustrating reliability effectively.
However, there is no specific development process out-
lined for achieving either of these improvements.

The work presented here is a complete develop-
ment process that we propose for use in addressing
the challenges described above. This development pro-
cess allows for the establishment of a suite of bench-
mark programs, defining a baseline similar to hard-
ware which other trusted systems utilizing software
can be compared to. This suite is open ended and al-
lows for the addition of more programs in the future.
To accomplish this goal, we will address the area of
specification design through the use of formal meth-
ods, and show how errors can be eliminated early in
development with the use of ATP. This work is an ex-
pansion of work already presented in [1,33]. We will
also illustrate the development, use, and statistical re-
sults for reliable software in safety critical applications.
This approach has been briefly presented previously
in [2] and improved in [3]. We expand upon those
findings to complete the suite of small embedded pro-
grams which establishes the initial set of well-defined
benchmarks for software reliability and a baseline for
software testing.

3 Related Work

There have been several groups researching the use of
formal methods in the recent literature. This work has
targeted two main areas. The first is the use of model
checking with software, and the second is the improve-
ment of ATPs. One area of use for model checking is
for reverse engineering a system [34]. Since automated
implementation is not available yet for specifications
written in formal methods, the reverse engineering pro-
cess uses the implementation to move back to a specifi-
cation, verifying it is correct with model checking, and
then verifying the original specification and reverse
engineering specification are correct with respect to
each other. Another area is related to the development
of a tool called Evidential Tool Bus (ETB) that com-
bines both model checking and ATPs into a single en-
vironment to allow better verification of specifications
written in formal methods [35]. Finally, researchers
are looking at the inclusion of model checking into de-
velopment tools to use in verifying that object oriented
programs are correctly implemented [36]. This pro-
cess is similar to the current tools for model checking
hardware designs provided by Synopsys [7].

The research in improving ATPs has involved mak-
ing them more inclusive for developers. Currently
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systems such as ProofPower [37], although powerful,
require the user to know the formal method and ATP
language for proof verification. Some work has been
done to provide a more mathematical environment
to work in, replacing the intermediate ATP language,
i.e SML, with mathematical notation. Some of this
work includes the use of superposition calculus [38],
modal logic [39], and standard calculus [40]. Other
researchers have looked at changing the language of
formal methods and ATPs together, working to use
traditional programming languages from the begin-
ning of specification design, and this work has focused
primarily on the language LISP [41]. These changes
would require a change in the current specification
writing practices with formal methods [42, 43].

Current work in the field of software development
has focused on improving the metrics of throughput
and performance for large scale, big data [44] appli-
cations. This work includes generating heuristics for
quality assurance (QA) [45] with probabilistic analysis,
and attempting to predict where in the development
life cycle a particular project will have the most er-
rors [46, 47]. This allows developers to focus their
efforts in those areas to mitigate the time and cost for
a given project. Machine learning is assisting in this
field, where it is used to predict the optimal release
time of a given system based on the metrics of testing,
cost, and errors produced [48]. Many of these tech-
niques are being applied specifically to projects that
rely on cloud computing [48] and open source soft-
ware [49]. They are not being used to directly target
the component level reliability which is required for
safety critical systems and those relying on software in
an embedded environment.

4 Background Knowledge

Formal methods are supported by many languages,
such as Z [50] and VDM [51], that share in common a
reliance on basic mathematical principles. These prin-
ciples include axiomatic notation [52, 53], predicate
calculus [54, 55], and set theory [56, 57]. When com-
bined with the formal methods syntax, these principles
allow us to develop specifications describing the func-
tionality of a system [22,58]. These principles are often
taught in engineering course work, and formal meth-
ods often have manuals describing how the language
operates [59], similar to a conventional programming
language such as C or Java.

One important aspect, however, is the mechanisms
through which formal methods have traditionally been
used to show that a given method in a specification
is correct. The traditional method is to prove a spec-
ification is correct through a process of refinement.
This process requires “refining” a particular part of a
specification written in formal methods to an imple-
mentation method, such as analog circuitry or Java, for
a particular portion of the specification. This decision
to refine to a particular implementation is required
ahead of time so there is a goal to achieve for the re-

finement. Later changes to the implementation require
that a new proof via refinement be performed. Under-
standing this process and why our work has moved in
a more modern direction is important and we illustrate
this process in the following example.

The example we are working with will utilize an
elevator controller benchmark as originally described
in [33] and referenced in Section 5. The elevator con-
troller discussed here has requirements presented in
Figure 8. For the refinement process, we will use Z for
the formal specification language and C as the imple-
mentation target. Note that any formal method and
implementation medium can be utilized for refinement
as long as the characteristics of each are well under-
stood and the proof can be completed. In contrast to
the original requirements of [33], some additional con-
straints need to be in place before the refinement can
proceed. In particular, the constraints are:

• The model will illustrate the action of users in
the system; specifically we will model the entry
of passengers onto the elevator

• People are unique individuals

• Entry into the elevator is sequential

• The elevator can move with or without people

• There is no max capacity

• The system contains one elevator

With these extra constraints on the system defined,
the refinement proof can begin. The first step is to de-
velop a definition of the possible group of users for the
elevator. Since we used the wording in the constraints,
we shall refer to these users as “People.” We use Z
to define “People” as a “Set,” because sets are flexible
and convenient for developer definitions in Z. Figure 1
illustrates the definition of “People” in Z.

Figure 1: Z definition of the set “People”

Now that the generic definition of “People” has
been established, we need to define a subset of “Peo-
ple” who will be using the elevator. To ensure that the
specification is as open as possible we will define the
subset of “People” who are riding the elevator via a
power set. This way any combination of members of
“People” can become “riders.” Figure 2 captures the
creation of this power set using the Z construct known
as a state in ProofPower [59].
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Figure 2: Generic state sefinition for the power set “Riders”

The final part of the initial definition is to describe
the act of getting on the elevator. In Z this can be
done using a function declaration, which will include
a change in the state of the system and a member of
the set “People” becoming a member of the power set
“riders.” Figure 3 shows the generic definition for this
function.

Figure 3: The generic function definition for boarding the elevator

Now we need to complete the same process but
with the implementation medium we have decided on.
As mentioned, we have chosen C for this task. The first
step is to define the state of the system as it would be
represented in C. We will reuse the same set “People”
we defined previously for this task. In a programming
language such as C, sets of items are usually stored in
an array or a linked list. This is what we would use to
store the members of the set “People” who board the
elevator. However, Z does not have these constructs
directly, though it does have a structure that an array
or linked list can be modeled in, and that is a sequence.
A sequence is a good comparison as a set is equal to
the range of a sequence, as shown in (1).

s = ran ss (1)

In this equation s represents the set, ran is the notation
for range, and ss represents a sequence. Now we con-
struct the state of the system with Z for C using the
sequence term seq, and generating a new, more specific
group called “riderss.” Figure 4 shows the construction
of this state.

Figure 4: State for “Riderss” in C using Z

Finally, we complete this portion by describing the
action of a new rider boarding the elevator in C. Since

we are dealing with a sequence, the mathematical no-
tation we will use is a concatenation. Figure 5 shows
the state for C as defined in Z.

Figure 5: C function definition for boarding the elevator

With the set “People” we have now defined two ver-
sions of the system for boarding the elevator, a generic
one which describes the basic functionality and a more
specific one constrained by the properties of our im-
plementation medium C. This gives us a starting and
ending place. To bridge the gap between the two and
what they describe, we need to develop a proof to show
that the generic function can become the specific func-
tion. To start we build a proof implication, or goal,
illustrating this transformation. This will be done us-
ing Equation 1 for some replacements for riders and
riders’ from the generic definition in Figure 3. Fig-
ure 6 gives the initial implication, showing the end
requirement for the C definition from Figure 4 and us-
ing the previous set to sequence rule to rewrite riders
and riders’ in terms of the range for riderss and riderss’,
respectively.

To complete the proof implication, we want to drive
one side or the other to an absolute true which means
everything on the other side must hold as defined.
Since the outcome only has one statement, this is the
easier of the sides to work on. Figure 7 shows the seven
step proof indicating the implication holds and the
refinement is true.

Using set theory and rewrites of variables taken
from the specifications, we are able to show that the
generic specification can be refined to the specification
for C. This was a simple example and even then it took
seven steps to complete, along with a strong knowledge
of the constructs of Z, C, and set theory. To attempt
to complete a definition for a more complex system
and multiple functions would be very time consuming
and may cost more than just using traditional testing
methods due to the time involved. Furthermore, this
process does not define the function in a useful manner
that would assist with the conversion to an implemen-
tation, but rather shows the theoretical correctness of
the system definitions for a particular implementation
medium. Even when using an ATP to perform the
refinement steps, the final implementation may not
be correct in a functional sense, as the definitions are
mathematical, not practical. Hence our work [1, 33]
described in Section 5 and extended in Section 6 shows
the advantages of utilizing a functional specification
and proving that correct. It also provides the flexibil-
ity of being implementation neutral so a new proof
does not need to be constructed if the implementation
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Figure 6: Implication definition for showing the refinement steps

Figure 7: Proof showing the refinement of the specifications using Z

medium changes.
One final area of background work that we uti-

lize for our error analysis is the theory that software
errors can be modeled as a Non-Homogeneous Pois-
son Process (NHPP). A NHPP is defined well in the
sources [60–63]. The important factor for our work is
that software errors were shown to meet the require-
ments of a NHPP in [29], which originally had been
theorized in [25, 26, 30], and shown to fit statistical
models in [28]. The takeaway is that software errors
have been shown to fit NHPP, implying that these er-
rors occur at random intervals and that they are inde-
pendent of one another. This allows us to define our
error generation and testing procedure, discussed in
Sections 7 and 8 and in the results presented in [2, 3].

5 Specification Development with
Formal Methods

As shown in Section 4, an understanding of refinement
is important for developing specifications and proofs
for showing the system design is correct. However,
this traditional methodology limits the scope of the
system to a particular implementation method. The
implementation chosen for the proof reduction my not
be the best for a given system process later in develop-
ment. If a new implementation is chosen, then a new
proof will need to be created to drive the specification
to that implementation, resulting in the development
of new state diagrams and another refinement. This
correction in the design would be costly in the time
required for the refinement.

In previous work [33], we utilized a simple elevator
controller, in the style of Moore and Mealy Machines,
to show that an implementation independent specifi-
cation could be developed and proven correct without
the need for traditional refinement. This was done us-
ing “Z” [50] and the Automated Theorem Prover (ATP)
“ProofPower” [37]. Figure 8 shows an excerpt from [33]

with the initial customer requirements for the simple
elevator controller.

Figure 8: Customer requirements for our elevator controller

From these requirements we are able to build a
complete specification and proof illustrating our for-
mal methods design process [33]. This added step in
development does add time to the process, just like
refinement, but there are strong benefits to its use
over refinement. This includes focusing the function-
ality of the system, making it less likely errors will
occur during the implementation step [33], since the
specification is designed in a similar style to function
definitions in software. This also eases the transition
when building an implementation from customer re-
quirements. Another benefit is finding development
errors prior to implementation [1], which is usually a
cost saving measure compared to finding errors later
in development. There is also the added advantage of
not having to refine the specification to a particular
implementation, while maintaining the advantage of
proving the system correct.

The error now is in the proof goal set by the in-
dependent tester, causing the goal statement to be
calling f loor? ≥ starting f loor?, which is shown in
Figure 10.

6 Using Formal Methods to Elimi-
nate Design Errors

An important advantage to using Formal Methods is
to allow for design flaws to be determined prior to the
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Figure 9: “Moving Up” function represented in Z

Figure 10: Proof goal for “Moving Up” with an incorrect math statement

system reaching implementation. Often a customer’s
requirements may have conflicting or impractical goals
which cannot be determined until they are built into
the system. Formal Methods proves those require-
ments are sound prior to implementation, decreasing
the time of development and the cost to remove errors
later in development. However, human error can still
plague the development life cycle.

Human error in development can come in many
forms, but one such error in software design comes
from the developer accidentally injecting an error into
the system. For example, misspelling a variable name
so it matches a similar variable could cause a drastic
change in the functionality of the system. Another ex-
ample is changing an addition to a subtraction, which
could be accomplished with an errant key stroke. To
combat these errors, independent verification is used
in testing, helping to eliminate the bias a developer
may put unknowingly into their own tests. This con-
cept works equally well with Formal Methods.

In our work [1] we previously showed that inde-
pendent verification during the proof of a specification
enabled errors to be found and eliminated prior to im-
plementation. Feedback on this process noted that the
error could be propagated from the specification to
the proof, causing it not to be caught. We emphasize
that specification and proof development should be
completed by separate individuals, allowing for inde-
pendent verification. It is unlikely that two developers
would make the same mistake by misinterpreting the
customer requirements. This does however bring up a
separate issue, i.e, that the mistake could be with the
proof and not with the specification. Would the proof
environment be able to locate an error in the proof
statement, given a correct specification? This is the
question that was posed, and this is what we have set
out to determine.

In [1] we utilized the “Moving Up” function as test
and that is the function utilized here for consistency.
Our work in [1] showed that a slight change in the spec-
ification over the customer requirements could cause a

dramatic change in how the system functioned. In this
case the original requirements, as shown in Figure 8,
require that, if the elevator moves up, the floor it is
going to has to be a higher value than the floor the
elevator starts on. This is represented in the specifica-
tion as calling f loor? ≥ starting f loor?, where ≥ has
replaced the correct term >.

Now, consider the reverse situation. The original
requirements have remained the same from Figure 8,
and now the specification for “Moving Up” is correct
as it is in [33], shown in Figure 9.

With this mistake in the proof, the proof begins
with a goal that is less strict than the specification,
in that “greater than or equal to” is more inclusive
than “greater than.” Much like our previous use of
ProofPower in [1, 33], we need to drive the proof to
completion, attempting to resolve all goals defined in
Figure 10 via a series of commands issued to the ATP.
Figure 11 shows the current steps we will use to try to
prove the specification is correct.

Step 10 in Figure 11 is where the proof fails. Fig-
ure 12 shows the output from ProofPower when the
exception is thrown and the proof can not be com-
pleted. ProofPower is reporting that the original goal
as stated can not be proven given the assumptions and
constraints on the proof, which were set in the original
specification.

Unlike the original error recognition test in [1], the
semantics error takes longer to find when the error is
in the proof goal; nevertheless the error was found,
even when it was within the proof goal definition and
was weaker than the original specification. Overall, the
exception shows that there is an issue with the system,
either with the specification or the proof. At this point
it would be up to the proof writer and the developer
to review their respective sections with regards to the
customer requirements and to determine where the
error occurred.

Finding errors early in development, as in this ex-
ample or previously in [1], is invaluable to the develop-
ment process. This allows you to find semantic errors
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Figure 11: The steps necessary to complete the proof to show the goal is correct

Table 1: PSP program line count and error results

Language Program Total Lines of Code Total New Lines of Code Number of Errors

C++ 1 82 82 12
2 233 233 31
3 463 263 24
4 236 129 15
5 178 104 19
6 568 299 40
7 678 86 20
8 458 298 47
9 824 258 35

10 1202 379 62
TOTAL 4922 2131 305
Eiffel 1 70 N/A 6

2 82 N/A 17
3 214 N/A 19
4 220 N/A 8
5 182 N/A 13
6 396 N/A 28
7 286 N/A 11
8 444 N/A 20
9 784 N/A 23

10 766 N/A 36
TOTAL 3444 N/A 181

that are caused by developer mistakes prior to those
errors being propagated into the implementation. If
this were to occur, there is no guarantee that the error
would be caught in the testing phase, and thus it could
require a change to the system after release, costing
extra time and money. Finding errors earlier in the de-
velopment process is usually more cost effective, and
utilizing a well developed ATP like ProofPower should
help eliminate development errors prior to implemen-
tation.

7 Developing Repeatable Errors
from Real World PSP Results

Before moving into implementation and testing, it is
crucial to have repeatable results. In our case, this

means not repeatedly injecting the exact same system
errors. This is important as the premise of some of our
work goes back to the work done by Yamada [29, 64],
as explained in Section 4. Our errors need to be ran-
dom and independent of one another for them to fit
into the model of an NHPP. This will not be the case
if the same errors are used for every evaluation of our
procedure. To that end we turned to the work of Vic-
tor Putz [65] who created examples using PSP [66] to
illustrate its ability to assist a developer in becoming
more proficient in software development. Through
the posted results we are able to catalog the findings,
developing metrics to allow us to generate error rates
and determine errors for replication in our test system.

Putz performed a self-exploratory study through
PSP, publishing the information for each step in the
training process, along with the code he developed, his
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Figure 12: “ProofPower” output from failing step ten in the reduction process

thoughts, issues, experience, and results [67]. He used
a chart system to categorize each error that he made
for each program, and an example of this report can
be found in [68].

There are altogether ten programs developed
through the PSP training, and many of the previous
programs build on one another. In Putz’s analysis of
the training, he went through the process using two
different languages, C++ and Eiffel. Each language had
its own unique set of code [67], and statistics for each
based on the program developed. C++ did have better
reporting as compared to Eiffel, but regardless, based
on the information and programs reported for each
chapter, we were able to collect data from the study.
Table 1 shows the results we collected from what was
presented by Putz.

Between the two programs, C++ had total lines de-
veloped and total new lines added (for programs that
were expanded upon), whereas Eiffel just had the lines
for each program developed. Despite this we are able
to determine several error rates, two from C++ and one
from Eiffel. Eiffel’s error rate was calculated by taking
the total number of errors committed and dividing it
by the number of developed lines. This rate is 5.26%.
C++ programs yielded two error rates, one from total
developed lines and one from total new lines added,
with both being divided into the total number of errors
committed in the ten programs. This gives us two very
different rates for C++, with one being below ten errors
per lines of code (ELOC) and one over. The high error

rate for C++ is 14.31% and the low error rate is 6.2%.
Now that we have rates to use to inject errors into

a system per one hundred lines of code, we next need
to establish what error groups were reported. From
the result tables, like the one in [68], we can see that
each error is coded, and a text description of the error
and/or its resolution is provided. We refer to the chart
Putz posted on his site to get the categories and their
meaning [69]. Using this information we are able to
generate a list of the errors that appeared during his
independent study of PSP. From the error categories
and definitions, along with examining the code, we
were able to break the errors into groups. We then
determined the errors made for each type in each pro-
gram for C and Eiffel. Table 2 lists the errors of each of
the types for each program along with their totals.

Based on the categories of errors presented, we
determined what errors could and could not be repli-
cated using automation. The errors categorized as “Al-
gorithm Alteration,” “Missing Algorithm,” “Specifi-
cation Error,” or “Unknown” are more overarching,
sometimes requiring a redesign of a whole algorithm,
and would be too difficult to reproduce automatically.
Those errors should occur anyway in the implemen-
tation and testing process for a developer, so our pro-
grams should have representatives of these errors in-
cluded in them naturally. The remaining errors could
be replicated via selection, which is addressed in Sec-
tion 8, because they affect a specific point in the code,
requiring up to only a few changes to correct. Table 3
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shows the final selection of errors chosen for replica-
tion along with the rate at which they occur during the
PSP process. These rates were calculated by taking the
total found for a specific error and dividing it by the
total number of errors for error types we can replicate.

Table 2: Total erors made by type for C++ and Eiffel

Error Type C++ Eiffel Total

Spelling 29 26 55

Used Wring Type 52 26 78

Missing Header Information 21 6 27

Incorrect Math Operation 28 33 61

Incorrect String Operation 11 10 21

Error Handling 13 2 15

Passing Parameters 12 3 15

Conditional Error 10 11 21

Incorrect Method 16 16 32

Missing Block/End Line Character 30 12 42

Algorithm Alteration 31 18 49

Missing Algorithm 37 15 52

Specification Error 11 2 13

Unknown 4 1 5

Table 3: Percentage of Errors Made by Type

Error Type Percentage

Spelling 14.99

Used Wrong Type 21.25

Missing Header Information 7.36

Incorrect Math Operation 16.62

Incorrect String Operation 5.72

Error Handling 4.09

Passing Parameters 4.09

Conditional Error 5.72

Incorrect Method 8.72

Missing Block/End Line Character 11.44

From the diagnosis of Putz’s results we have been
able to develop error rates to use for injecting errors
into our system, and rates for error types that we can
replicate. This will be valuable and completes the first
step, namely the need for independent errors. The next
step will be formulating a way to determine which er-
rors will occur, how many will occur, and where each
will be injected into the system.

8 Generating Random Errors for
Insertion Into a System

Previously in [2] we briefly discussed an analysis to
determine a good RNG for use in replicating random
errors. A critique from the results presented was the
need to test the RNGs at all. The most critical response
to this is that the errors being generated need to be
random and independent of one another such that
the errors will fit the aforementioned NHPP. Unfortu-
nately, RNGs for general computing, such as rand()
that comes with C/C++, are only pseudo-random. This
means that there is a pattern to the numbers being gen-
erated and it could be predicted. If the values are pre-
dictable then the numbers generated are not random
and therefore will not fit NHPP.

Tests have been generated over the years to deter-
mine the randomness of an RNG, e.g., by Knuth [70,71]
and Marsaglia [72]. However, these tests are singular
and require the tester to input parameters to constrain
the test. This allows an RNG developer to design their
generator to defeat one or two of the tests chosen to
show randomness. Fortunately L’Ecuyer has provided
a solution to this issue with the TestU01 package [73].
This C package combines multiple tests from multiple
authors, and has been calibrated in such a way that
each test is given the correct parameters for the level of
testing being performed [74]. For this work we will be
utilizing the test suite L’Ecuyer calls SmallCrush as it
is described as sufficient for determining if an RNG is
suitable for general computation [73]. All inputs and
test generations for TestU01 have been determined by
L’Ecuyer using statistical analysis [74], and in the case
of SmallCrush the total number of values generated
for each test is approximately 5 million values, which
we validated through testing.

Using SmallCrush we can determine an RNG that
can be considered sufficiently random and allow for
meeting the requirements for NHPP. Rand() was de-
cided upon as a baseline for utilizing SmallCrush and
generating results to see what tests it would pass.
Rand() was also chosen as the baseline since it is the
default RNG included with the C/C++ library. Test-
ing with SmallCrush was completed three times for
consistency, on integer and decimal values, and was
initially seeded at the start of each test with the cur-
rent time to prevent starting at the same value for each
test. Figure 13 shows the an example of the output
from SmallCrush using rand() to generate integer val-
ues, and Figure 14 shows the final results for rand()
generating integer values.

The results show that rand() for C/C++ fails
twelve of the total fifteen tests (passing only three).
This is consistent for the next two runs, failing the
same twelve tests each time. Now with this baseline
we can move on to see if we can find a better RNG,
needing one that can pass all fifteen tests to be consid-
ered “random.”

We want to minimize the development of tools and
inclusion of extra libraries, so finding a generator that
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can be random for both integer and decimal values
is optimal. Researching the literature, one in particu-
lar that appears to meet these requirements is PCG32
by O’Neal [75]. This RNG has a small extended foot-
print with its included libraries, and the results show
that PCG32 has already passed SmallCrush. We will
independently re-evaluate these claims. Other RNG
designs were considered, such as SBoNG [76], but they
have already been shown not to be “random” [77] via
SmallCrush.

Figure 13: Output from SmallCrush testing rand() RNG

Figure 14: Final results for rand() when tested with SmallCrush

Figure 15: Final results for PCG32 when tested with SmallCrush

PCG32 was tested three times each for consistency,
just like previously with rand(). Figure 15 shows the

results for one run of PCG32 generating integer val-
ues. All three runs through SmallCrush resulted in
the same outcome.

The results from this testing are impressive. The
results show that PCG32 performs as claimed [75], pass-
ing each of the tests for all three runs. It has proven
to be sufficiently random for general computation and
allows us to generate the random values necessary for
compliance with NHPP.

9 Random Error Generation

Before we can evaluate our testing procedure, we need
to generate random errors for the system using the
error rates we determined in Section 7. This is subdi-
vided into three parts:

1. Count the lines of code for each benchmark pro-
gram in a consistent manner

2. Determine the possible injection points for each
error we will replicate; this will need to be done
for each benchmark program

3. Randomly select the number of errors to occur,
which errors will occur, and where in the pro-
gram using the derived data from the PSP analy-
sis

Item 1 is the first to be addressed. An automated
method for determining the number of lines for each
program is critical for the count to be consistent and
accurate for each benchmark program. Unfortunately
there is no industry standard for counting lines. Many
reports have proprietary methods of counting lines,
such as compiled compared to written, or counting
spaces versus not counting spaces. This is typically
used to help improve the error rate for ELOC repre-
sentation, as mentioned earlier. In our case, in re-
viewing the lines reported by Putz, and reviewing our
own benchmark programs, it was determined that the
fairest and most consistent measure would be to count
the lines of written code that would be compiled. This
means only complete lines would be looked at, and un-
necessary spaces and trialing lines with braces would
need to be eliminated. This would compress the writ-
ten code down into lines to be compiled while allowing
each required statement to be on its own line. Figure 16
shows an excerpt of code from our elevator controller
benchmark after it has been compressed by the line
counter.

The results show the extent of the function of our
counter, removing unnecessary space for the functions
of the code (usually they are for clarification), and
comments (which are not necessary for function and
skipped by the compiler). Also, braces have been
moved to the last complete line that requires them
(meaning that some lines have multiple braces from
nesting). Overall, this makes for a compact and fair
result. Each of our six benchmark programs was pro-
cessed through the counter. Table 4 shows the final
lines counted for each program.

www.astesj.com 240

http://www.astesj.com


J. Lockhart et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 231-247 (2019)

Figure 16: Elevator controller code after being parsed by our line counter

Table 4: The line counter results

Program Total Lines Counter

Elevator Controller 96
Automatic Door Controller 62

Security System 89
Streetlight 83
Tollbooth 54

Vending Machine 61

The next step is Item 2. This proved difficult to
automate, as the C library is vast, and developing a
parser to incorporate all the possible injection sites for
each of the error types could not be completed. In the
future we plan to automate this process, but for now
this was completed by hand through scanning the code
for each error type and marking an injection site with
a value, and then counting the number of places an
error could be injected. Some errors had overlap, so
care will need to be taken to incorporate both errors
if there is overlap when injection sites are randomly
selected.

Finally, Item 3 is completed. Our program allows
us to input the number of lines determined from the
line counter program, and the number of places each
error can be injected. The error selector is hard coded
with the C++ high and low error rates determined in
Section 7, as those will not change. The algorithm uses
the rate, which is a percentage, the average errors seen
per one hundred lines of code, and then determines
the number of errors that should be injected into the
current program. For example, if the program had two
hundred lines of code, then, based on the high error
rate, 28.62 errors should be injected into this program.
Since we can not generate fractional errors, the system
rounds up to the nearest integer for rates x.y where

.y ≥ .5 and rounds down to the nearest integer for rates
x.y where .y < .5. In a similar fashion, using the total
number of injected errors just calculated, the program
calculates the number of errors of each type to gener-
ate. This is done by having PCG32 generate a decimal
value z within the range 0 ≤ z ≤ 100. The previous er-
ror percentages are now on a scale from 0 to 100, with
subdivisions ending with their rate plus the previous
rate. Table 5 shows the range for each error.

Table 5: Repeatable error ranges for random generation

Error Type Decimal Range

Spelling 0 ≤ z ≤ 0.1499
Used Wrong Type 0.1499 < z ≤ 0.3624

Missing Header Info 0.3624 < z ≤ 0.436
Incorrect Math Operation 0.436 < z ≤ 0.6022
Incorrect String Operation 0.6022 < z ≤ 0.6594

Error Handling 0.6594 < z ≤ 0.7003
Passing Parameters 0.7003 < z ≤ 0.7412
Conditional Error 0.7412 < z ≤ 0.7984
Incorrect Method 0.7984 < z ≤ 0.8856

Missing Block/End of Line Characters 0.8856 < z ≤ 1

The system repeats the process of using PCG32 to
generate a value and comparing it to the scale in Ta-
ble 5 until all errors for the system have been generated.
Table 6 shows an example of the number of errors of
each type selected randomly for a single run of the
program for the Elevator Controller for the high error
rate.

Finally, the last step is to determine the locations
for the errors to be placed for the number of each error
selected. These locations are also randomly selected
using PCG32. For example, Table 6 shows that, for the
Elevator Controller, 3 spelling errors are to be made.
Using the selected number of errors by type, and the
total number of places in the code that error can occur,
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the system randomly selects the locations for injection
into the elevator code. The system is configured not to
select the same injection site more than once.

Table 6: Error selection for the first elevator test run

Error Type Total Generated

Spelling 3
Used Wrong Type 2

Missing Header Info 1
Incorrect Math Operation 1
Incorrect String Operation 1

Error Handling 1
Passing Parameters 0
Conditional Error 2
Incorrect Method 0

Missing Block/End of Line Characters 3

For multiple testing runs, the program is run mul-
tiple times to generate a unique set of error injections
for each run of a program, with no two runs being
alike. For our testing, each program is going to be
put through the testing procedure ten times, which
requires ten selections of error types and locations to
be processed. This process is then repeated for the low
error rate as well, giving us a combined twenty unique
error profiles for our program. Therefore, with this
process, no program will have the same errors from
testing iteration to testing iteration, allowing for a ran-
dom error removal process as errors are discovered.

10 Data Collection Using Elevator
Controller

Previously in [2] we illustrated a four state testing pro-
cedure. To re-cap, this process occurs as follows: (i)
Compilation, (ii) Static Analysis, (iii) Compilation Af-
ter Static Analysis (CASA), and (iv) Testing. From each
of these stages, errors are determined and removed,
and the time taken to locate all errors is recorded for
each stage. Each stage’s time and error count is com-
bined, respectively, giving us total errors found during
a testing iteration. Testing iterations are repeated until
no more errors are located in all four stages.

A database is utilized to store the errors found. We
built our database in Microsoft Access as it comes con-
figured to allow the use of style sheets for inputting
data entries, and it was easy to build a single repository
to include all runs for each error rate for each program.
By incorporating slots for time, location in the code,
and the categorization method from Putz [69], we have
created a comprehensive form that shows the discovery
and removal of each error in the system being tested.
Figure 17 shows the entry form for the database, and
Figure 18 shows an excerpt from the table of entries
after errors have been entered.

This digital recording method is faster than trying
to record errors by hand and allows the developer to
focus on finding and removing errors in a timely man-
ner. This helps to reduce bias in the data and exclude

as much as possible extra time that might be taken up
by writing the findings down or using other recording
methods. This also allows the developer to have a digi-
tal repository of their error findings, allowing them to
see possible improvement from program to program
as they utilize our testing procedure.

11 Results and Data Analysis

Using the testing procedure described in Section 10
and explained in [2], we completed ten runs for each er-
ror rate on our starting example the elevator controller.
The results [2, 3] showed that using our complete de-
velopment process, from formal specification through
testing, demonstrates that software systems can use
error metrics that fit statistical models, as originally
proposed by Musa [25, 26] and Drake [30]. Further
refined models [29] were explored in [3] but were in-
conclusive as to whether they were better than the base
exponential model. This required further testing.

Now we have completed the same testing proce-
dure on our remaining benchmark programs, using
feedback garnered from our work [3]. Critique of the
work suggested improving the fit of the models. As the
models are non-linear, traditional R-squared metrics
do not apply, as these are just for linear regression mod-
els [78]. We did use the pseudo adjusted R-squared
value along with the average error of regression, S, to
determine the best fit for our models in [3]. To en-
hance these values while not degrading the accuracy
of the results, we looked into mathematical methods
for improvement. The best method seems to be the re-
moval of outliers from the data set. Previously we had
attempted the removal of outliers with the elevator con-
troller; however this relied on what is considered the
“eyeball test,” looking for data that did not fit with the
rest, and that is not robust. For our current approach at
eliminating outliers, we focused on the recorded time
to find all errors in the first testing iteration. To do this
we take the total time for iteration one of all tests com-
pleted, ten values in total, and calculate the mean and
standard deviation of these values. From these values
we generate a range of one standard deviation centered
around the mean. Any test run whose starting time
falls plus or minus one standard deviation outside of
the mean has the entire run purged from the results.
In most of the benchmarks this results in one to two
strings of data being removed, with no more than three
being removed in the most extreme case. The test runs
removed also vary in number of iterations completed
to reach “zero” errors. For the Automated Door results,
we can see from Table 7 that two data sets are removed
from the results.

This process modifies the results without compro-
mising the randomness of the data or the model. With
this new subset of results, we calculate the exponential,
modified exponential, and multinomial exponential
models as done in [3]. Table 8 shows the S and pseudo
adjusted R-squared for the base results and then the
three model types after the data improvement.
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Figure 17: Form used to input errors into the database

Figure 18: Excerpt from the table holding the errors discovered in run one of testing the elevator controller

Table 7: The automated door outlier removal process

First Iteration Starting Times Mean of Starting Times Standard Deviation of Starting Times One Standard Deviation Starting Times Without Outliers

47.005 27.525 8.35235 35.877 22.292
22.292 19.1727 24.296
24.296 28.060
28.606 28.223
28.223 28.846
28.846 34.313
34.313 19.502
19.502 24.636
24.636
18.077

www.astesj.com 243

http://www.astesj.com


J. Lockhart et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 231-247 (2019)

Table 8: The final results for our benchmark programs

Error Rate Program Tested Data Model S Pseudo Adjusted R-Squared
High Automated Door Base Exponential 5.6586 0.4267

Exponential 4.8513 0.5957
Modified Exponential 4.7571 0.5789

Multinomial Exponential 3.8516 0.7452
Security System Base Exponential 5.6457 0.6351

Exponential 4.7965 0.7297
Modified Exponential 4.7162 0.7201

Multinomial Exponential N/A N/A
Streetlight Base Exponential 4.4259 0.5411

Exponential 3.7957 0.6425
Modified Exponential 3.9823 0.6356

Multinomial Exponential 3.8650 0.6293
Tollbooth Base Exponential 5.2394 0.4518

Exponential 4.9228 0.5655
Modified Exponential 4.8191 0.5316

Multinomial Exponential 4.5043 0.6149
Vending Machine Base Exponential 2.4275 0.8491

Exponential 1.7077 0.9306
Modified Exponential 1.8919 0.9248

Multinomial Exponential 1.7077 0.9306
Low Automated Door Base Exponential 4.5366 0.4411

Exponential 3.8664 0.6091
Modified Exponential 4.1704 0.5866

Multinomial Exponential 3.9120 0.6091
Security System Base Exponential 2.6590 0.8513

Exponential 1.5579 0.9488
Modified Exponential 1.5175 0.9457

Multinomial Exponential N/A N/A
Streetlight Base Exponential 2.6988 0.7028

Exponential 2.4116 0.7594
Modified Exponential 2.3674 0.7488

Multinomial Exponential 2.4524 0.7512
Tollbooth Base Exponential 3.0550 0.6349

Exponential 1.9577 0.8601
Modified Exponential 2.1923 0.8496

Multinomial Exponential 1.1234 0.9539
Vending Machine Base Exponential 2.4878 0.6034

Exponential 1.2017 0.8980
Modified Exponential 1.3557 0.8902

Multinomial Exponential 0.8980 1.2017

As we can see from the results, there is a definitive
increase in the model fitment compared to the base,
unmodified exponential model when the outliers are
removed. The results show that in some cases the stan-
dard exponential model fits the data the best, in others
the modified exponential, and in others the multino-
mial exponential. For the Vending Machine results, in
both the high and low error rate results, the multino-
mial is the base exponential, as the best exponent has
only the “x” term in it. From the results we can see
that there is not any way to predict at this time which
model works best for which rate, as each group has ex-
amples where each is the best for that program. In the
case of the Security System, the multinomial could not
be processed for both error rates, as the multinomial
equation that fit best diverged to infinity when used as
the exponent to an exponential.

12 Conclusion

The work presented here shows our complete design
and testing process used in creating an initial bench-
mark suite for software reliability. Error analysis dis-
covery with formal methods was shown to be more
widely applicable than originally reported in [1], as
we showed that errors could also be found by ATPs in
the proof, not just the specification. We illustrated our
RNG testing and random error generation that previ-
ously was mentioned in [2] but was not demonstrated
in that work. This was utilized to help enhance our
results in [3] and expand our tested programs. This ex-
panded program suite illustrates that software errors,
using a proper development process, can be shown
to be modeled statistically similar to hardware. We
have shown through the removal of outliers that the
results can be improved further still. This develop-
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ment process and the full results set a benchmark, so
other development processes can be researched and
even better software analysis can be achieved.

13 Future Work

Based on the work presented here, the first major area
of expansion is the benchmarks themselves. We have
shown the development and testing process allows
small scale software programs to meet the statistical
models that were originally theorized. This is great
for embedded systems, but the process may be appli-
cable to large system on chip solutions, or even large
scale, big data applications. To begin this expansion,
we will develop larger, more complex versions of the
six benchmark programs already developed to see if
the results hold when scaled up.

Similar to this area is the need to improve the de-
velopment process with good, well developed software
modules. In hardware, most systems are incorporated
with ICs that come from manufacturers with known
reliability. The same should be true of software. If
modules have already been vetted through the devel-
opment process, then they should be correct and accu-
rate, allowing their reuse as a black box, and improving
the error results of a new system prior to testing. This
would be similar to pulling an IC of AND or NOT gates
from the parts bin, knowing what it does and expect-
ing it to work, without seeing the intricacies inside the
black box.

The other side of safety critical systems is determin-
ing trust. Work in this space has looked into ways of
showing trust for both hardware and software. Our
development process could aid in this area, being two-
fold with reliability, if measures of security and trust
can be incorporated into the formal method specifi-
cation. In the future we will use the original eleva-
tor specification and redesign it, incorporating new
security measures, while maintaining our current reli-
ability measures. We will attempt to show the proofs
can be developed to show security and reliability in
one step, allowing for their incorporation from the
beginning of design.

One final area of expansion is the integration of
the software designed with this process into a targeted
application. This requires further improvement of the
software reliability in the system. Unlike hardware,
which can use redundancy of circuitry to improve re-
liability, copying software with an undiscovered bug
just propagates that bug to all versions. One solution
may be to develop a hardware based monitor, possibly
with machine learning, to determine when a software
anomaly has been seen, and correct it. AI could be
trained on the state and inputs of the system to know
what outputs should be provided, and if the wrong
output is generated from a known state, then a safety
protocol could be enacted for a trusted system, or just
replaced with the correct value for a non-critical sys-
tem.
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