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Convolutional LSTMs are widely used for spatiotemporal prediction.
We study the effect of using different activation functions for two types
of units within convolutional LSTM modules, namely gate units and
non-gate units. The research provides guidance for choosing the best
activation function to use in convolutional LSTMs for video prediction.
Moreover, this paper studies the behavior of the gate activation and
unit activation functions for spatiotemporal training. Our methodology
studies the different non-linear activation functions used deep learning
APIs (such as Keras and Tensorflow) using the moving MNIST dataset
which is a baseline for video prediction problems. Our new results
indicate that: 1) the convolutional LSTM gate activations are responsible
for learning the movement trajectory within a video frame sequence; and,
2) the non-gate units are responsible for learning the precise shape and
characteristics of each object within the video sequence.

1 Introduction

Problems in video prediction (spatiotemporal predic-
tion) are important in both research and industry. Ex-
amples include human action recognition [1], spread
of infections, medical predictions [2], weather forecast
prediction [3], and autonomous car video prediction
systems [4, 5].

Spatiotemporal (e.g. video) datasets are challeng-
ing to predict due to the spatial and temporal infor-
mation which the datasets carry through time. In
sequence prediction problems, the prediction at the
current step depends primarily on the previous his-
tory. Making a near future prediction requires an com-
putational tool that is able to discover both the long
and short-term dependencies in the data. Initially, re-
current neural networks (RNN) [6] were proposed to
model data which was sequential in nature. However,
straightforward RNNs have major drawbacks. RNNs
suffer from the vanishing/exploding gradient prob-
lem which prevents them from learning long-term
data dependencies [7–9]. There are several gate-based
RNN models that attempt to solve this classic prob-
lem. These include the long short-term memory unit
(LSTM) [7], peephole LSTM [10], gated recurrent unit

(GRU) [10], and minimal recurrent unit (MRU) [11].

This paper studies the LSTM architecture as an at-
tractive architecture architecture to perform spatiotem-
poral (video) prediction. In addition, Gref et al. [12]
empirically showed that the LSTM is the most efficient
recurrent architecture to solve for speech recognition,
handwriting recognition, and polyphonic music mod-
eling [12]. The LSTM has the highest number of gates
compared with other gated units [9–11]. Furthermore,
the choice of the activation function for gate and non-
gate units within the LSTM has an essential effect on
the the LSTM’s function [12].

This work studies gate activations and non-gate
activations within the LSTM architecture. In most
APIs the gate activations and non-gate activations are
known as recurrent activations and unit activations, re-
spectively. To solve image and video related problems,
different convolution-based models are used such as
in Kalchbrenner et al [13], Elsayed et al. [5], Lotter et
al. [4], Finn at al. [14], and Wang et al. [15]. However,
the most widely used architecture for video prediction
to-date is the convolution LSTM. Hence, we performed
our experiments on a convolution-based LSTM (con-
volutional LSTM) network model [4]. We studied the
effect of different gate activation and unit activation
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functions through the learning process of the convo-
lutional LSTM architecture [3]. Our experiments use
the convolutional LSTM found in the Keras deep learn-
ing framework [16]. Training was performed on the
moving MNIST dataset as the most commonly used
benchmark for video prediction problems [17].

Figure 1: The unrolled LSTM architecture. The memory-state and
output lines are time-evolving and labelled c and h, respectively.
The CEC is indicated by the plus sign on the c line. The level of de-
scription is coarse enough so that this could either depict a standard
LSTM or a convolutional LSTM.

In our empirical study, we worked with a model
than what was needed for optimal prediction. Specifi-
cally, it had fewer parameters. This reduction allows
us to more clearly see the effect of gate and unit activa-
tions on the convLSTM model without contamination
by influences of other high-effect parameters. For ex-
ample, it avoids saturation effects on the model accu-
racy which helps to see changes in activation function
effects [18]. Our study compares different activation
functions on a simple convolutional LSTM model for
spatiotemporal (video) prediction task. We investi-
gated the responsibilities of the convolutional LSTM
gates and unit activations over the training process.
Furthermore, we found the most appropriate function
to be applied for the gates and for the unit activation
for solving video prediction problem.

2 Convolutional LSTM

The LSTM [7] is the first gate-based recurrent neural
network. As noted earlier, it was motivated by the
need to mitigate the vanishing gradient problem and
did so by using the principle underlying a constant
error carousel (CEC) [7] to improve the learning of
long-term dependencies. This was implemented by
adding a memory-state line to the architecture (Fig-
ure 1). This memory-state line can retain (remember)
the recurrent values over arbitrary time intervals. Gres
et al. [8] added a forget gate to the LSTM cell to al-
low information to be removed from (forgotten) the
memory-state line. This gate was trainable so that the
module could learn when stored information was no
longer needed. Gers et al. [10] improved the design by
adding so-called peephole connections from the mem-
ory cell to the LSTM gates. The peephole connections

enable the memory line to exert control over the activa-
tion of all three of the gates. This helps the LSTM block
to avoid vanishing gradients and also helps learning
of precise timing in conjunction with Constant Error
Carousel (CEC) [8]. The CEC is the key ingredient
mitigate the vanishing gradient problem.

LSTMs are used in several application areas includ-
ing speech recognition [19,20], language modeling [21],
sentiment analysis [22], music composition [23], signal
analysis [24], human action recognition [1], image cap-
tion generation [25], and video prediction [3, 4, 17, 26].

The convolutional LSTM (convLSTM) was intro-
duced in 2015 by Shi et al [3] for weather precipitation
forecast prediction task. This is an enhancement to the
LSTM discussed previously. The crucial change is that
the data within the module takes the form of a multi-
channel 2D feature map (image stack). The convLSTM
improves predicted video on data sets of evolving pre-
cipitation maps compared to the non-convolutional
LSTM. Apparently, it captures spatiotemporal correla-
tions better than non-the standard variant [3, 17].

An unrolled convLSTM module in Figure 1 can
be either standard or convolutional because it does
not make the relevant internal operations and weights
explicit. Like the standard LSTM, the architecture
has three gates indicated by the activation functions
labeled σ . These are the forget, input, and output
gates [9]. There are two non-gate units which are la-
beled with tanh activation functions. The convLSTM
gates (input, forget, and output) have the ability to mul-
tiplicatively attenuate the outputs of tanh units and
the value on the c(t−1) line. The forget gate attenuates
information deemed unnecessary from the previous
cell memory state c(t−1). h(t−1) is the convLSTM cell
output at time t − 1, and h(t) is the output of the convL-
STM cell at time t. x(t) is the current video frame target
at time t. c(t−1) and c(t) are the memory cell states at
consecutive times.

The following equations calculate all of the gate
and the unit values based on the Gers et al. [8] LSTM
combined the convolutional model of Shi et al. [3].
These operations should be compared with Figure 2.

i(t) = σ (Wxi ∗ x(t) +Uhi ∗ h(t−1) + bi) (1a)

g(t) = tanh(Wxg ∗ x(t) +Uhg ∗ h(t−1) + bg ) (1b)

f (t) = σ (Wxf ∗ x(t) +Uhf ∗ h(t−1) + bf ) (1c)

o(t) = σ (Wxo ∗ x(t) +Uho ∗ h(t−1) + bo) (1d)

c(t) = f (t) � c(t−1) + i(t) � g(t) (1e)

h(t) = tanh(c(t))� o(t) (1f)

The the input, forget, and output gate activations s
are denoted i(t), f (t), and o(t). σ denotes logsig. The
gates have activation values falling in the interval [0,1]
where 1 means completely open and 0 means com-
pletely closed. g(t), is the current input. c(t) represents
the current memory module state. h(t) represents the
current output. bi , bg , bf , and bo are biases for the
respective gate. W ’s and U ’s are the feedforward and
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Figure 2: The unrolled convLSTM architecture at the arithmetic operation level. This rendering makes convolution operations and weights
explicit and should be compared with Equation Set 1.

recurrent weights, respectively. “�” denotes element-
wise multiplication, and “∗” denotes the convolution
operator.

Figure 2 shows the arithmetic operational level of
the convLSTM architecture where the convLSTM com-
ponents and their corresponding weights are shown
explicitly.

3 Activation Functions

As explained earlier, gate units usually have sigmoid
(range [0,1]) activation functions and non-gated units
usually have tanh activation functions. This paper
studies the effects of using different activation func-
tions for these units. This section reviews the most
common activation functions used. All of the func-
tions discussed are nonlinear.

Figure 3: The curve of the logsig (σ ) function.

3.1 Logsig Function

The logistic sigmoid (logsig) function [27] is shown in
Figure 3. It is given by the following equation:

f (x) = σ (x) =
ex

ex + 1
=

1
1 + e−x

, (2)

The logsig is commonly denoted by σ (x), where x ∈
(−∞,∞) and σ (x) ∈ (0,1). The logsig is historically

common in network models because it intuitively rep-
resents the firing rate of a biological neuron. The logsig
is still used in recurrent models for gating purposes.
The input value is usually known because it appears in
the feedforward sweep of the network. Because of this,
its derivative can be computed efficiently as shown
in (3).

f ′(x) = σ ′(x) = f (x)(1− f (x)) (3)

3.2 Hard-Sigmoid Function

The hard-sigmoid (hardSig) function is considered a
noisy activation function. HardSig approximates logsig
function by taking the first-order Taylor expansion
around zero and clipping the result according to func-
tion’s range [0,1]. Hardsig appears in Figure 4 and is
calculated as follows:

hardSig(x) = max(min(0.25x+ 0.5,1),0) (4)

This function allows a crisp decision for the gradient
during function saturation phase to be either fully on
or fully off. In the non-saturation range near zero, hard-
Sig is linear. This helps avoid vanishing gradients [28].

Figure 4: The curve of the hardSig function.

3.3 Hyperbolic Tangent Function

tanh is a saturating activation function. It is typically
used as the recurrent activation function in RNNs [6].
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In some cases, tanh is considered as cheaper for gra-
dient evaluation in comparison to the logsig function.
The function graph appears in Figure 5 and is specified
by (5):

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x
=
e2x − 1
e2x + 1

(5)

tanh′(x) = 1− tanh2(x) (6)

A convenient property of the tanh activation function
is that calculating its first derivative from a known
input value is easy as seen in Eqn. (6).

Figure 5: The curve of the Hyperbolic Tangent function.

3.4 SoftSign Function

The SoftSign function was introduced in [29]. Its grahp
is given in Figure 6 and is specified by:

SoftSign(x) =
x

1+ | x |
(7)

The SoftSign function range is (−1,1) and the function
domain is x ∈ (−∞,∞). The first derivative of SoftSign
also can be evaluated simply as the following:

SoftSign′(x) =
x

(1+ | x |)2 (8)

SoftSign is an alternative function to hyperbolic tanh.
In comparison to tanh, it does not saturate as quickly,
improving its robustness to vanishing gradients.

Figure 6: Curve of the SoftSign function.

3.5 ReLU Function

The rectified linear unit (ReLU) is very efficient com-
pared to other activation functions. It was proposed
in [30]. For x ≥ 0 it is the identity function and appears
in Figure 7. ReLU is defined by:

ReLU (x) =max(x,0) (9)

Its has domain x ∈ (−∞,∞) and range [0,∞).

Figure 7: The curve of the ReLU function.

3.6 SoftPlus Function

The SoftPlus function (Figure 8) was proposed in [31].
It modifies the ReLU by applying a smoothing ef-
fect [29] and is defined:

SoftPlus(x) = ln(1 + ex) (10)

with x ∈ (−∞,∞) and range (0,∞). Its derivative is:

SoftPlus′(x) =
1

1 + ex
(11)

Like the SoftSign function, the SoftPlus function is
used only in specific applications.

Figure 8: The curve of the SoftPlus function.

3.7 ELU Function

The exponential linear unit (ELU) was introduced in
[32] to avoid a zero derivative for negative input values.
The ELU achieved better classification accuracy than
ReLUs [32] and is defined by:

ELU (x) =

α(ex − 1), if x < 0
x , otherwise

(12)
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Its domain and range is (−∞,∞). Assuming that α = 1,
its graph is shown in Figure 9 .

Figure 9: The curve of the ELU function.

3.8 SELU Function

The scaled exponential linear unit (SELU) an ELU func-
tion modified with two hyperparameters. Its definition
follows:

SELU (x) = λ

α(ex − 1) , if x < 0
x , otherwise

(13)

Its domain is the same as the ELU function, but its
range is limited to −(λα,∞). λ and α are hyperparam-
eters that depend on the mean and variance of the
training data. If the data is normalized to µ = 0 and
σ = 1, then λ = 1.0507 and α = 1.6732 whose graph
appears in Figure 10.

Figure 10: The curve of the SELU function.

The first derivative of SELU is calculated as shown
below:

SELU ′(x) = λ

αex , if x < 0
1 , otherwise

(14)

Figure 11: The model architecture used in our experiments.

4 Experiments and Results

This section the results of comparing different acti-
vation functions for both the gate units and non-gate
units. We chose the functions described in the previous
section. They are commonly available in deep learning
frameworks. We explore the question of which activa-
tion function is best as a gate activation and which is
best as a unit activation for convolutional LSTMs in
an unsupervised context. Moreover, we want to under-
stand the differential behavior of the gate and non-gate
units as a result of training.

We calculated several measures: training loss, val-
idation loss, elapsed training time, and appearance
of the predicted video frames compared with ground
truth. We did our experiment and analysis on the
moving MNIST [17] as explained in the introduction.
The moving MNIST dataset consists of 10,000 differ-
ent video sequences. Each sequence has a length of
20 frames. Each frame is 64× 64 pixels and contains
two randomly selected handwritten digits from the
standard 28× 28 MNIST dataset. The two digits move
randomly within the frame [17].

4.1 Framework

Our framework uses Shi’s et al. [3] convLSTM. Because
we had limits on our computing power, our test were
serendipitously performed using a small model with
insufficient learning capacity for fully accurate predic-
tions. However, this did let us more clearly see the
effects of the activation function manipulations. The
reduced capacity models helped us avoid ceiling ef-
fects so that we could see differential performances in
the activation functions.

The model is implemented using the Keras API [16]
and appears in Figure 11. It consists of three layers.
The first layer is a convLSTM with 40 size 3x3 kernels.
The next layer is batch normalization. Finally, we used
3× 3× 3 kernel to get the video output shape. Table 1
provides details of the model parameters.

The Adam optimizer [33] was used with initial
learning rate r = 0.001, β1 = 0.9, β2 = 0.999. The cost
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Table 1: Description of the proposed model architecture used in this study.

Layer (type) Output Shape Param Number
ConvLSTM2D (None, None, 64, 64, 10) 4000
Batch Normalization (None, None, 64, 64, 10) 40
Conv3D (None, None, 64, 64, 1) 271

Total params 4,311
Trainable params 4,291
Non-trainable params 20

function was MSE [34].
Each input was a 20-frame video randomly sam-

pled from moving MNIST [17]. As previously men-
tioned, the amount of input data is 10,000 videos each
of length 20 frames. We used 9,500 for training and
500 for validating.

The task is proposed for sequence to sequence video
prediction. A sequence of five future frames were pre-
dicted using the previous five frame sequence. Because
of the reduced learning capacity mentioned at the be-
ginning of this section, the trained network could pre-
dict only the two temporally closed frames clearly and
the rest were unclear because of the reduced learning
capacity in the model.

We used an Intel(R) Core i7− 7820HK, 32GB RAM,
and a GeForce GTX 1080 GPU. Training was for ten
epochs in each experiment. In each epoch, we fit 475
batches where each batch size was set to 20 for our
model experiments. All parameters were held constant
over all experiments except for the recurrent activation
function that was being tested.

4.2 Results

Our results pertain to the relative performance of var-
ied activation functions for gate and non-gate units.

4.2.1 Results for Gate Activation Functions

For a fair comparison of different gate activation func-
tions, we only changed the gate activation functions
and preserved the remaining parameters with the same
initializations and values during each experiment. The
gate effects were studied collectively because we used
the default convolutional LSTM module in found in
the Keras API. The API allowed us to change all the
gate functions at once (not each gate separately) for
setting up an experiment.

For this experiment, the gate activation functions
apply to all three gates gates described in Eqns 1a, 1c,
and 1d. Accordingly, only functions with range (0,1)
are eligible. Thus, this experiment only compared the
logsig and hardSig functions.

Table 2 shows the performance results, including
average elapsed training time (in minutes), MSE loss
(Loss-MSE) for training, validation loss (Val-loss-MSE),
percent accuracy (Accuracy) for n = 3, and the stan-
dard error (SE) for training loss (n = 3). The elapsed
training time using the hardSig activation is higher

than the logsig function by about ten percent. We are
not sure why this happens. In Table 2, both logsig and
hardSig have nearly exactly the same MSE and MAE.

Figure 12 shows the training and validation loss for
the logsig and hardSig activation functions. From the
figure, one can also see that the loss average difference
between the training and validation runs using the
hardSig function is smaller than the logsig function.

We also examined the differences between the ac-
curacy of both training and validation runs using the
logsig versus hardSig functions. The average (n = 3
for all data points) accuracy values for each function
appear in Figure 13. Blue represents training and yel-
low represents validation accuracy. Both logsig and
hardSig functions have similar validation and training
accuracy It is also temporally time. The hardSig shows
a more comparable accuracy among the training and
validation curves. Moreover, hardSig curve does not
contain frequent validation accuracy drops down as in
logsig curve.

Figure 14 visually shows the prediction results for
both the sigmoid and hardSig gate activations of the
model. The first row shows ground truth. The two
rows below show predictions using the logsig versus
hardSig gate activation functions. Both logsig and
hardSig are comparable. From the figure, both func-
tions show that the model attempts to learn the digit
movement trajectories as shown in each of the predic-
tion frames. The ‘double exposure’ appearance indi-
cates that the prediction retains the object’s previous
location within the predicted frame. Despite the dou-
ble exposure look, digit shape is preserved. Moreover,
the hardSig function shows better prediction accuracy
than the sigmoid. This agrees with the Gulcehre et
al. [28] theory stating that noisy activation functions
are better than their non-noisy counterparts.

This experiment suggests the gate activation func-
tions of the convolutional LSTM play a role learning
the movement trajectories.

4.2.2 Results for Non-gate Activations

Our second experiment analyzes which activation func-
tion is best to use for non-gate units (input-update and
output activation) as seen in Eqns. 1b and 1f. We ap-
plied the same setup and initialization as in the first
experiment except that we retained all the convLSTM
parameters. Only the set of possible unit activation
functions were manipulated. Gate activations were
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Figure 12: Training and validation loss for each gate activation function over each training epoch. In the left figure, all three gate units used
the logsig activation. In the right figure, all three gate units used the hardSig activation function.

Figure 13: Training and validation accuracy for each gate activation function over each training epoch.

Table 2: Gate Activation Effect on the ConvLSTM Training Process.

Activation Training Results
function Time Loss Val-loss Mean Absolute Accuracy SE

(Minutes) (MSE) (MSE) Error (MAE) (Percentage) (Loss)
sigmoid 20.2 0.00433 0.00510 0.01726 0.92979 0.0000498
hardSig 22.5 0.00420 0.00525 0.01699 0.92999 0.0000147

Figure 14: The history and predicted frames using logsig and hardSig as gate activations. Except for the ‘double exposure effect,’ the
predicted shape is preserved.
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Table 3: The Non-Gate Unit Effect on Training.

Activation Training Results
function Time Loss Val-loss Mean Absolute Accuracy SE

(Minutes) (MSE) (MSE) Error (MAE) (Percentage) (Loss)
sigmoid 24.5 0.00367 0.00387 0.02597 0.93058 0.0000438
tanh 23.9 0.00423 0.00537 0.01751 0.93003 0.0000607
hardSig 25.3 0.00347 0.00386 0.02401 0.93076 0.0000300
softSign 23.9 0.00431 0.00442 0.01777 0.92972 0.0001690
softPlus 24.2 0.00342 0.00308 0.02044 0.93073 0.0000400
ReLU 23.7 0.00424 0.00451 0.01911 0.93015 0.0000723
ELU 23.6 0.00453 0.00555 0.01760 0.93001 0.0001431
SELU 26.5 0.00392 0.00407 0.01784 0.93031 0.0001984

Figure 15: The initial trajectory and predicted frames for each non-gate unit activation function. Although there is shape distortion, the
movement directions seem to be preserved.
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Figure 16: Training and validation accuracy non-gate unit activations. All tested functions are shown for each training epoch.

always set to hardSig. This happens to be the default
recurrent activation in the Keras convLSTM API.

There is no restriction on the range of the unit ac-
tivation function selection compared to the gate acti-
vation. Therefore, we tested all eight of the functions
from Section 3. Table 3 shows average training time,
training loss, validation loss, validation mean absolute
error, training accuracy, and standard error of training
loss (n = 3). The units of training and validation loss
are MSE.

Table 3 shows that the elapsed training time of the
functions is overall about the same and the highest
training time (SELU) is about two minutes longer than
the rest. Loss was calculated using MSE and is about
the same for all tested functions.

Accuracy of the training and validation tests ap-
pears in Figure 16 where the hardSig has the lowest
validation accuracy because the accuracy degraded
over time. In addition, it has a significant average
difference between both the training and validation
accuracy curves. For the SoftPlus, SELU, ReLU, and
ELU diagrams, there is a notable unstable validation
accuracy compared to the training accuracy. However,
the most stable validation accuracy for the other tested
functions is found when the activation was sigmoid,
tanh, or the softSign function. However, the average
difference between training and validation accuracies
for logsig is higher than the tanh and softSign.

The predicted videos as compared with ground
truth for the non-gate unit functions is shown in Fig-
ure 15. The lowest visual accuracy occurs when the
SELU function is used. The hardSig, logsig, ReLU, and
softPlus functions show roughly the same visual pre-
diction results. These functions were unable to main-
tain, the object’s outline, the background, or object’s
color. The ELU function could not retain the digit out-
line through time. The softSign function was able to
maintain the shape of the objects but it maintained

the object’s location with reducing their actual sizes. It
also suppressed object movement. The tanh preserved
the object shape and movement.

In important insight can be seen by looking at the
differential visual prediction results in Figure 15. Al-
though changing the non-gate activation functions
changes the shape distortion, the predicted movement
accuracy seems to be the same across the different ac-
tivation functions. This indicates that non-gate units
play more of a role in predicted shape than in pre-
dicting movement direction. In contrast, we saw the
opposite pattern with the gate activation functions.

As seen in Figures 14 and 15, prediction accuracy
should be improved for practical applications. The
intent of our work was to study differential activation
function effects. Prediction accuracy can be improved
by enhancing the model architecture by increasing the
number of the convolutional LSTM layers and adding
regularization techniques such as dropout [35]. Fur-
ther improvements can be obtained by adding more
channels to each layer, increasing the number of train-
ing epochs, adjusting the input batch size, and ad-
justing the hyper-parameters. Moreover, using an in-
formation flow propagation transfer algorithm (such
as predictive coding [4, 36, 37]) to data between the
multilayered hierarchy could significantly increase the
prediction performance.

5 Conclusion

We found that the choice of gate unit activation func-
tion, when used in the convLSTM video prediction
problem, affects acquisition of the digit’s movement
trajectory throughout the video frame sequence. The
role of the non-gate unit activation is to enhance the
object’s shape and determine its details. Only activa-
tion functions with range [0,1] are eligible as a gate
activation functions. The convLSTM exhibited the best
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prediction performance when the gate activation used
the hardSig function and it had the best prediction
visual results. In addition, the relation between train-
ing and validation accuracies was stable. The model
also obtained better predictions when the tanh func-
tion was used as the non-gate activation. The tanh
has similar training loss and training time to the other
functions examined in our experiments.
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