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 We examine design principles from more than 20 years of experience in the implementation 
and protection of mission critical flight systems used by the Mission Design and Navigation 
Section at NASA’s Jet Propulsion Laboratory. Spacecraft navigation has rigorous 
requirements for completeness and accuracy, often under critical and uncompromising time 
pressure. Fault tolerant and robust design in the ground data system is crucial for the 
numerous space missions we support, from the Cassini orbital tour of Saturn to the Mars 
rover Curiosity. This begins with the examination of principles learned from fault tolerant 
design to protect against random failures, and continues to the consideration of computer 
security engineering as a derivative effort to protect against the promotion of malicious 
failures. Examples for best practice of reliable system design from aviation and computer 
industries are considered and security fault tolerance principles are derived from such 
efforts. Computer security design approaches are examined, both as abstract postulates 
(starting from cornerstone principles with the concepts of Confidentiality, Integrity, and 
Availability) and from implementation. Strategic design principles including defense in 
depth, defense in breadth, least privilege, and vulnerability removal are target points for 
the design. Additionally, we consider trust in the system over time from its sterile 
implementation, viewed against the backdrop of Time Based Security. The system design is 
assessed from external access data flows, through internal host security mechanisms, and 
finally to user access controls. Throughout this process we evaluate a complementary 
intersection – a balance between protecting the system and its ease of use by engineers.  
Finally, future improvements to secure system architecture are considered. 
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1. Introduction 

This paper examines approaches used in the process of 
securing the computer systems employed by the Navigation 
Ground Data System. This text is meant to serve as a discussion 
about best practices in computer security engineering. It is based 
on twenty years of the author’s practical, “in the trenches”, field 
experience on systems involved in this effort. These systems 
comprise a multi-mission network that encompasses the 
navigation elements of more than forty current and previous 
interplanetary flight missions here at the Jet Propulsion 
Laboratory. This paper does not seek to be a prescriptive document 
(do this one thing, buy this product, etc.), but instead seeks to 
examine a process of how secure systems are designed – i.e., what 
general security principles we have found valuable [1]. 

Few systems require as much resiliency or have as much risk 
of causing negative (and final) outcomes as the computer systems 
used in support of Flight Operations. Scant resources are often 
available for the maintenance of complex hardware and software 
architectures, and these high-availability/high-reliability systems 
are often expected to function without (and moreover cannot 
tolerate) the regular sorts of software updates expected in other 
computational environments.  

As an example, one of these missions, Cassini,  from its launch 
in October of 1997, would spend seven years crossing the solar 
system, arriving at and entering into Saturn orbit in June, 2004. It 
would then orbit Saturn nearly three hundred times over thirteen 
years, conducting hundreds of targeted flybys of Saturn's largest 
moons during its mission lifespan, finally coming to a fiery end in 
Saturn’s atmosphere in September of 2017. This operational effort 
would be conducted on a network of computer systems having a 
requirement for no more than two minutes of unplanned downtime 
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a year (99.9995% availability) [2]. For a network that could not be 
upgraded (except in minor incremental steps) during the length of 
the entire 13-year Saturn orbital tour, maintaining and keeping 
such a computer network secure, as well as supporting backwards 
compatibility (and obsolescent hardware) would be a challenging 
problem. In fact, the systems used over the launch and 
interplanetary voyage across the Solar System contained less 
processing power, storage, and total memory than the author's 
current iPhone – and these systems would have to be kept 
functional and secure in case there was a need for backwards 
comparison.  

While some organizations may have little need for a 
computational environment larger than a client-server 
configuration of a few systems, others may require a more complex 
environment. The Ground Data System for Navigation is 
constructed in the manner of a classic Development and 
Operations model with development and production networks of 
several hundred servers and workstations. This network is used by 
teams of engineers working, often under critical time pressures, 
with rigorous requirements for accuracy [2].  

For this environment, it should be clear that a particular 
cryptographic protocol, a set of software, or even an appliance will 
not solve these security challenges. This is not an application 
problem but instead a systems problem. As in other engineering 
disciplines, in such an environment the design must be based on 
good principles, because, like with the pouring of a foundation of 
a building, you only get one such opportunity.  

Part of the effort in this discussion  stems from the author's own 
struggles to find a good systemic set of definitions and guidance 
while endeavoring to build a more secure network. What you see 
here is a reflection on the insights I was trying to find for my own 
efforts. Furthermore, many current efforts in computer security 
research are based not on building a secure system but tearing a 
system down. Indeed, a great deal of present investigation in 
computer security is based around the twin ideas of “if it ain't 
broke, don't fix it”, and “try and see if can be broken”.  
Accordingly, extensive research across the spectrum of computer 
security is being conducted in the field of penetration testing, 
where the primary methodology is to break into an existing setup 
and then fix the discovered problems. While this can be helpful in 
discovering specific flaws, it does not provide much help in trying 
to understand a more general architecture model of security. 

An example of this is perhaps best exemplified by the software 
tool known as “Chaos Monkey” – part of an open source suite of 
tools called “The Simian Army” that was originally designed for 
the cloud infrastructure of the streaming media service Netflix [3]. 
This software set comprises a series of tools that help the design of 
resiliency in a set of virtual machine instances. It does so by 
randomly shutting down members of the set of virtual machines. 
By forcing developers and systems engineers to prepare for 
unexpected failure, a more fault tolerant network design will 
emerge (it is hoped). This has been further expanded and 
generalized to even more powerful tools that comprise “Chaos 
Gorilla”, which randomly simulates the shutdown of an entire 
Amazon Availability Zone, or the even more devastating “Chaos 
Kong”, which simulates the shutdown of an entire Amazon Region 
[4]. This design is an example of “survival of the fittest”, 

incorporating a genetic algorithm-like approach to the design of 
secure systems.  

Critical questions that should be raised in conjunction with this 
software are, “How does a developer or systems engineer build a 
more stable and secure system? What principles should be used? 
What methods should be avoided?” 

Continuing with the metaphors given above, consider an 
analogy to the above (genetic) algorithm: a team of stone-age 
architects trying to build a bridge across a river, first by using a 
captive monkey, then a captive gorilla, and then a giant mythical 
beast to try throwing stones and batter a pile of rocks into a 
working bridge. While such a method will produce some results 
(albeit very slowly), what about other engineering approaches to 
design? What of the arch and the use of suspension? What about 
the consideration of tension and compression and the use of 
different materials in the construction of a bridge?  

Clearly other engineering principles can be useful here in order 
to produce  an initial design and improve upon it before bringing 
someone to attempt to tear it down. In like manner, this paper is a 
study on security architecture design, and hopes to add to such 
efforts by discussing principles on “how to build a (better) bridge”. 

A word about the expected audience of this paper: the design 
principles discussed in Sections 2 and 3 are aimed at top level 
design of secure systems, and may be of greatest use for project 
management  and systems engineers (it could also be titled “how 
to avoid buying crap”), while Section 4 covers an example 
implementation targeted more for computer systems architects and 
systems administrators. The paradigms covered in Section 2 and 3 
are observed derivations from fault tolerance and have wide 
applicability in systems engineering, while Section 4 applies  this 
methodology to securing a specific computer system. 

2. System design approaches: Fault Tolerance and Security 
Fault Tolerance 

2.1. Fault Tolerance 

There are several valuable definitions for the concept of fault 
tolerance. Fault Tolerance, according to Carl Carson, comprises 
“...a design that enables a system to continue its intended 
operation, possibly at a reduced level, rather than failing 
completely, when some part of the system fails” [5, p. 167]. 

This has been categorized by Barry Johnson in the approaches 
taken for fault tolerance in microprocessor design as [6]: 

• Minimize the number of points where a single fault will cause 
the whole system to fail.  

• Graceful degradation – known also as “Fail-Gently”, a 
system’s ability to continue operating in the event of a failure, 
having a decrease in operating capacity no worse than 
necessary for the severity of the failure.  

• Redundancy in components – both in space, having multiple 
parts that can be utilized, and in time, with the repeatability of 
an operation.  

Jim Gray and Daniel Siewiorek help characterize such steps to 
provide high availability in computer systems  by examining single 
points of failure to promote [7]: 
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• Independent failure – where  each  module functions so that if 
it fails, it does not impact other modules in the system. 

• Design diversity – using hardware and software from differing 
organizations to promote independent failure modes (e.g. 
differing types of failure). 

There are abundant examples of fault tolerant design. This is a 
well understood area of systems engineering. From the 135-year 
old Brooklyn Bridge in New York [8], to the current Eastern 
Interconnection power grid of the United States [9], approaches 
such as these are needed where one must trust the behavior of a 
system to work, and to work in predictable ways.  

As an aspirational example, consider one such computer design 
further at the highest end of the reliability spectrum. The primary 
flight control system of the Boeing 777 achieves ultra-high 
reliability metrics. It is a highly redundant, highly available system 
comprising the fly-by-wire avionics controls and is a rare example 
of a  true Triple Modular Redundant (TMR) system (with little 
exception the highest level of redundant design, having three 
redundant components for each single point of failure), in both 
computer nodes, software, and hardware. It has service metrics 
requiring a maximum rate of failure of the flight computers of 
1.0×10-11 failure/hours (i.e. a failure of the flight computers less 
than 1 in 100 billion flight hours) [10]. This is an example of what 
can be done with sufficient effort and due diligence – a computer 
system millions of passengers a year put their trust in. 

2.2. Security Fault Tolerance 

In like manner, this paper considers computational systems that 
one can trust – as is done with the physical systems described 
above. From fault tolerance, we can derive similar approaches to 
deal with the actions of intelligent actors 1  rather than random 
chance or stress failure modes. Such an approach was described 
affectionately by Ross Anderson and Roger Needham as 
“Programming Satan’s Computer” [11]. While the application of 
these principles we apply here to the flight computer and network 
security of our systems, the principles are applicable across the 
board to security design. Such design promotes:  

• Secure systems should be resilient from random chance and 
predicted stress modes of failure.  

• Secure systems should also be resistant to direct action.  
• Simplicity of design, known as the popularized KISS principle, 

is a golden virtue in secure systems [12]. 

 
Figure 1: Relation of Fault Tolerant and Security Tolerant Design 

 
1 To be clear: this term is meant here to describe human attackers, not intelligent 
software agents. They may also be described as malicious actors, or threat actors 

These principles can be considered in four approaches: 

2.2.1. For the most critical systems, use a machine that has 
only one function.  

This approach has the benefit that in the event of a failure, you 
have lost only that one function. There are numerous examples in 
security design. Indeed, “appliance” IT systems, such as web 
servers, email servers,  firewalls, and similar systems use this 
approach. As a good analogy: in (most) kitchens, refrigerators and 
ovens are not a part of the same appliance – even though they have 
the same task of changing and maintaining food temperature. 

2.2.2. For redundancy in a security context ideally differing 
configurations should be used. 

 This technique considers that the systems in a given setup 
should not all have the same potential vulnerability (and therefore 
not truly redundant against a threat). It is an example of the 
previously discussed design diversity. Examples of this include the 
use of multiple arrays of web servers – running different OS/web 
server software, or application servers that use differing 
configurations and password sets, or multiple (different) backup 
systems – e.g. tape, disk, and cloud service providers. As an 
analogy, consider the commute from a major urban center: it is 
better to have several differing options for transport, be it freeway, 
commuter train, bus, or even surface streets. In the event one 
method is impacted, other options are available to return home.  

2.2.3. Single points of failure of a system should be few, and 
truly independent. 

As observed above, in a security context, systems that are 
single points of failure should be truly independent of other points 
of failure. Such single points of failure should be examined closely 
to ensure that they are actually single, independent, points of 
failure.  

This goes hand in hand with the first point about single use.  
One example of this can be seen in network file server 
“appliances”  that  perform the function of serving files – other 
application sets such as virus checkers and configuration 
management tools may be run on the files themselves, but they are 
seldom loaded on the file servers. This design approach is often 
misunderstood in poor implementations, especially where security 
may be seen as a software package or an add on feature. As an 
analogy consider tires that serve as critical single points of failure 
for a modern car – in a similar manner, it would be absurd if a 
failure of the GPS system caused the tires to fail! 

2.2.4. Systems should Fail-Safe and/or Fail-Gently. 

In case of failure, a security system should degrade safely 
(known as Fail-Safe), and/or compromise only a limited part of the 
overall system or otherwise take an “acceptable” amount of time 
to fail (“Fail-Gently”). Examples of this abound, many of them 
utilizing cryptography, such as disk and file encryption,  password 
login for most computer systems, firewalls, network segmentation, 
and network Intrusion Prevention Systems (IPS). An analogy can 
be found in the mechanical realm in that high grade safes are rated 

depending on context. The colloquial and overlapping terms of hackers, crackers, 
or security hackers are also used in the general news media. 
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for time against tools, cutting/welding torches, and explosives. 
Some safes may have mechanisms that break or cause the safe to 
be unopenable if drilled or otherwise tampered with.  

3. Computer Security Design 

3.1. Abstract Principles 
This computer security design incorporates the above 

techniques through increasing grades of refinement. Abstract 
concepts of Confidentiality, Integrity, and Availability (the 
traditional trinity of security) help to determine the “who, what, 
when, and where” of the security needs for navigation 
computation. These principles provide definition for the key 
concerns for securing a system, not in terms of technique, or 
subsystem protected, but rather in terms of what features in the 
computational environment must be protected.  

3.1.1. Confidentiality 

Confidentiality is referred to as “the concealment of 
information or resources” [13, p. 4]. This can be of high priority 
for some financial systems, where customer data is not only a 
crucial part of business operations, but also where strong legal 
regulations may come into play for control of customer 
information. It may be critical in military computer systems (for 
some cases it may be more desirable to destroy the system than 
allow the unauthorized release of information). This is 
significantly less crucial in the field of navigation computation. 
Such information for navigation comprises mechanisms used to 
authenticate access to the systems, network and system 
configuration information (possibly of use to subvert security), and 
restricted  navigation software. An example of a baseline concern 
for Confidentiality can be seen even in the naming of individual 
systems, as such host names may reveal a great deal of information 
about the underlying network design [14]. Consider a hypothetical, 
badly named example from JPL: the host name “cas-web-serv3”, 
which immediately gives information the system in question is 
running a web server daemon, for the Cassini project, and that most 
likely there are (at the minimum), two similar servers.  

3.1.2. Integrity 
Integrity is “the trustworthiness of data or resources ... usually 

phrased in terms of preventing improper or unauthorized change” 
[13, p. 5]. Integrity is particularly critical for navigation 
computation, as improper or unauthorized modification of the 
environment could cause very serious problems. Corrupted data 
sets, results or software could cause terminal errors in spacecraft 
control. With regard to the accuracy required for navigation of 
spacecraft missions, the sensitivity placed on the accuracy and 
integrity of the data, software, and corresponding results cannot be 
overstated. One such example of the critical nature of Integrity is 
seen in the previous case of the Cassini project. Integrity was 
critical on such a mission, which consisted of one of the largest 
teams of navigation engineers ever assembled, flying on the 
navigation computer system one of the most complex orbital and 
interplanetary trajectories ever designed [15]. 

3.1.3. Availability 
Availability is “the ability to use information or resources”  

[13, p. 6]. Conceptually, it is the most direct derivation of 
principles coming  from fault tolerant design. Availability in the 

context of navigation computation, has an additional concern that 
someone could deliberately try to deny access to a system service 
or data sets. The 24-hour-a-day, 365-day-a-year activity calendar 
of spacecraft navigation indeed makes this a crucial concern [15]. 
An event which causes the system to be unavailable, which in other 
industries might be cause for concern, could lead to the premature 
end of a multimillion dollar space mission. 

3.2. Implementation 

From these abstract principles, there are a number of paradigms 
that are employed for the implementation of better protection. 
Accordingly, strategic archetypes are used in the work toward 
good security design. 

3.2.1. Defense in Depth 

Defense in depth is a military security term with a long 
historical pedigree. Instead of a single defensive stronghold or 
chokepoint, this strategic principle is based around a series of 
overlapping defenses, forming a type of fault tolerant redundancy 
[16, pp. 40-44] in that a failure of one part of the system does not 
lead to the failure of the whole system. Considering a networked 
computer system, this can be seen on a variety of levels in 
overlapping defenses: starting at the network perimeter firewall, 
the network segmentation rules used on the network switches, the 
host based firewall, the protections applied to the processes that 
connect to the network, and then the internal host security 
measures that must be bypassed by a potential attacker. This is 
analogous to a defensive perimeter made up of a series of 
overlapping walls and fortifications, much like that seen in that of 
a medieval castle, or World War I trench warfare, presenting so 
many obstacles to entry that an adversary, having a choice, will 
pick a less well defended target [17, p. 259]. 

3.2.2. Defense in Breadth 

Defense in breadth is a term serving as the converse for defense 
in depth. It involves the concept that a secure system design must 
consider the whole system in its implementation, or an attacker 
will simply ignore a well fortified part of the system and instead 
chose an easier route into the system. All of the previous paradigms 
of overlapping defenses, minimization, elimination, and security 
over the system life, must be considered for every part of the 
system. This is a difficult task and it does lay bare the challenge of 
the security engineering process. By definition this is an effort to 
examine the totality of all of the possible attacks against the 
system. Indeed, this defensive principle is referred to by Sami 
Saydjari as Ensure Attack-Space Coverage. He acknowledges that 
achieving this comprehensive coverage  is a large and challenging 
problem, and one that is usually not well understood, but he 
underlines its necessity as a security engineering principle when he 
remarks “Depth without breadth is useless; breadth without depth 
weak. ” [18, pp. 133-135] Consider an analogy from a failure of 
this principle: putting a well-locked door with a security system on 
a Hollywood film set facade; while it is possible to break through 
the front door, it is much easier to simply walk around the side or 
back of such a facade because most such sets do not even have a 
back wall. History is rife with excellent examples of the failure to 
consider the whole scope of ways an adversary could carry out an 
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attack. One such example can be seen in the WWII failure of the 
Maginot line on the French-German border. 2 

3.2.3. Least Privilege 

The principle of least privilege is that subjects (processes and 
users by extrapolation) should be given only the rights and 
accesses for the tasks the subjects need to perform, and no more 
[13, p. 457]. This avoids many possibilities for the manipulation of 
a process (or manipulation by a user) to get them to do things they 
were not intended to do. There are many similarities to ideas in 
finance and accounting where financial mismanagement and 
corruption in corporations are prevented by not allowing any one 
person to take charge of all the corporate finances – also known as 
the “two man” rule. As an example, consider a hypothetical 
printing utility that can write to a central spooling directory as a 
privileged user. It is discovered that by manipulating the input files 
sent to the printer, it is possible to write to other directories on the 
system. With some effort and cleverness it may become possible 
to overwrite critical system files or even get remote access to the 
system. By changing the permissions of the spooling directory and 
removing the ability to run as a privileged user, the printing utility 
can continue to function, without enhanced access, thereby 
removing its capability to be misused. A similar analogy is a 
classic safe deposit box repository in a bank, where two people 
(each with a different key) are required for access to a given safe 
deposit box.  
3.2.4. Vulnerability Removal 

When we remove potential vulnerabilities, we can elude the 
many problems that come with those vulnerabilities, and 
sometimes avoid other issues as well. Matt Bishop refers to this as 
The Principle of Economy of Mechanism [13, pp. 459-460]. An 
example of vulnerability removal: a self-replicating worm that 
attacks email server processes can do little damage if you do not 
have an email server on your system. Likewise, if you do not have 
a web server running on your system, there is no need to monitor 
for such and keep up with attendant patches. Making sure that 
(along with the software and its own attendant maintenance) 
possible vulnerabilities in buggy software are not installed, can 
save tremendous resources and time over the system lifetime. As 
an analogy, this is akin to not just locking a side door into a 
building, but instead never constructing the door into the building 
in the first place. 

3.2.5. Sterility and Absolute Security 

We now consider the idea of sterility. This is a point along a 
spectrum of levels of trust in a given system. Understanding how 
much one can trust such a system may help determine how it 
should be used and where it should be placed on the network. A 
few (very rare) systems we consider to be sterile and have absolute 
security, the top of this spectrum, or “security beyond any 
reasonable doubt”. 3 To be clear: this is a theoretical initial state, a 
starting point for definition, and no connected or exposed system 

 
2 The Maginot line was designed to protect France from a German incursion in the 
event of a second world war. It was an excellent example of the principles 
discussed here, providing significant fault tolerant, defense in depth, with carefully 
considered access and both perimeter and internal security. A marvel of military 
engineering, its primary construction protected the French-German border. Most 
elements of the line were operational and fully prepared to continue fighting after 

can be said to be sterile and in this state. This is a valuable concept, 
especially as we consider the next paradigm. It is comparable to a 
definition of an initial starting point (a t0) that is useful when 
considering how that system might evolve over time. 

Let us further consider, that a system implemented on a closed 
network, built from a secure image is secure, or sterile to the limits 
of confidence one has in the hardware (and the hardware vendors), 
network, and the software media (DVD or secure image and/or 
patch servers, etc.) used to construct the system. On such a 
spectrum of trust this system would be seen as approaching 
absolute security considering these limits of confidence. This 
useful idea can be seen as extrapolated (as systems in miniature) 
from credentials, passwords, or certificates that also have not been 
exposed. We can liken this to issues seen in medical care, or food 
preparation and handling, where much effort for hand washing, 
cleanliness, or cooking is undertaken to produce sterile areas, or 
clean food for consumption. 

3.2.6. Security over time or robustness 

The previous paradigms examine the implementation of a static 
system. Considering the evolution of  a system state over time, one 
should also consider how the system is secure during its 
implementation and over its whole lifecycle. How robust is this 
system? How much can it be trusted and how does that trust change 
over time? This is similar to principles of Communications 
Security (COMSEC) and Operations Security (OPSEC). These are 
military security terms that examine the communications and 
background operations processes of military organizations, 
working to prevent compromise of communications, and the 
processes of such organizations.  As in a military organization, our 
trust in a system will change over time. This is strongly dependent 
on the environment and networks that connect to this system. It is 
very important to examine these connections and method of 
contact to characterize the security over time of a system. 

 This concept is akin to what Winn Schwartau called 
“Time Based Security” [18, p. 34]. In Time Based Security, a 
system would be considered “secure” if the time to break through 
the system protection (Pt) was greater than the time required to 
detect (Dt) and to respond (Rt) to the intrusion. This can be 
expressed as: 

Pt > Dt + Rt                         (1) 

Time Based Security suffers in the great difficulty of 
quantifying these values in (1), for the system protection, 
detection, and reaction time. Nonetheless Time Based Security 
does help illustrate well that security over time is a derivation from 
the fault tolerant concept of Fail-Gently, as discussed above. 

Coming from the previous point about sterility, trust in a sterile 
system must change when it is attached to outside networks. Our 
confidence in such a system is then based on the security 
configuration of the external network,  internal host, and user 

the fall of France, and had to be ordered to surrender with the French capitulation.  
The designers famously did not consider (mostly due to the staggering costs to 
expand the fortification) an assault across the French-Belgian border.   
3 This is a functional term that in our model is akin to, but not the same as, the 
mathematical term perfect security – such as the unbreakable one-time pad [36]. 
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controls of the system. Log mechanisms can help give indications 
of change to the system. If this trust is misplaced, the system could 
be compromised, and the system could become untrustworthy  and 
itself a source of security concerns. As in the previous section we 
consider  that this is akin to handling a compromised password or 
certificate, and in most cases the system must be rebuilt. 

There is considerable kinship between these ideas and the study 
of infection and food-borne illness. The frequent admonition about 
hand washing before meals comes to mind. What things did one 
touch or pick up? Do you have a thermometer to see if the food is 
cooked? A brisket set out too long at a picnic may “go bad” and 
become a host to viruses, worms and other sources of contagion. It 
may be possible to sterilize it, or at least to clean the dish 
containing the item. Much care is required to safely clean dishes 
under food handling regulations, but having gone bad, food, no 
matter how savory, almost all of the time must be thrown out.4  

4. System Evaluation 

Keeping these principles of secure system design in mind, we 
consider an example case: a single computational node and the 
techniques and mechanisms put to use to create a secure system. 
Our model system is a server running Red Hat Enterprise Linux 7.  
Particular care is taken in its construction as it serves as a 
fundamental “building block” in our system plan. This security 
design takes on several design principles found in architecture in 
that the strength of a system can often be improved, not by what 
one adds, but by what one takes away. Also, this serves as an 
effective approach in considering the overall security of our 
environment. Moreover, many systems are actually allocated in a 
“one engineer, one workstation” ratio. Similar efforts can just as 
easily be a network segment, implemented in a network group.  

It is useful to reiterate here: this is example. These security 
architecture guidelines can be applied in many other approaches 
and types of system setups. This is an outline that other system 
architects and system engineers can follow to create their own 
secure systems. It is hoped that this demonstration will help to 
make these key concepts and their application in design more clear. 
This system-design model is a simple one. It is to serve as a means 
to explain principles and their use in an architecture. As we 
extrapolate to a network, or a network-of-networks we get a clearer 
understanding of these principles and their use in a model. 
Complexity may be introduced in efforts to move towards a 
particular architecture model.  

For example, one such effort called Zero Trust computing, 
moves towards a very atomic model of trust, that of so called “de-
perimeterisation” where the outer defenses of a network system are 
assumed to be ineffective. Zero Trust uses the same design goals, 
but with an aggressive application of the principle of least privilege 
applied to every element of a network [20, pp. 2-3, 12-18]. It 
involves the hardening of every computational node, and every 
network connection and data access, and moves away from the 
traditional specialization of gateways, firewalls, and trusted 
subnets or zones. The model we discuss is agnostic to such efforts, 

 
4 There are limitations to this analogy. One of my associates who is a 
professional chef cited several counter examples – however he was quick to note 
that this holds true for 99% of food handling concerns.   

as approaches we take here are equally valid for such designs. A 
more “classic” network security model is, simpler to explain. 

Our fundamental design goal is to create a system that can be 
trusted and relied upon to perform the difficult task of spacecraft 
navigation. This design effort sought to find an optimal tradeoff 
between usability and security, the point of both maximal utility 
(for the users) and security: a point where users could work without 
being fettered by obtrusive security measures, while confident that 
their work is safe. Indeed, it is a mistaken, albeit popular, notion 
that security must interfere with usability, and that secure systems 
must necessarily be hard to use. Much of the time this 
misconception is due to a poor implementation of a secure feature, 
or a security control that was added on as an afterthought to a 
software system. Failing to consider these requirements and needs 
of the users also can lead to the perceived adversarial role of 
security in an organization. The idea of examining the security 
controls  in consideration with the user environment is referred to 
by Matt Bishop as the Principle of Psychological Acceptability 
[13, pp. 464-466]. The strategy we consider here strives to find a 
complementary intersection between usability and security, an 
optimal point where these two groups of competing requirements 
reach their maximum effectiveness [21]. This is similar to the 
concept known as the Center of Percussion (known also as the so-
called “sweet spot”) as found in weapons, aircraft, sound 
engineering, and sports equipment design – where multiple factors 
combine into an optimum response from a given amount of effort 
[22]. Analogously, these competing needs are similar to the 
economic concept of the law of supply and demand.  

Finding this complementary intersection requires the 
evaluation of both security and user requirements. For an example 
of this optimal intersection, consider the often maligned password 
change requirements of most institutions.5 Usually eight or more 
alpha-numeric, and special characters are required, often with 
other  “randomness” requirements. These passwords often have to 
be changed every 180 to 90 days (or less). As a matter of 
cryptographic security, the longer the encrypted password hash, 
the more difficult it becomes to conduct a brute force attack to 
obtain the unencrypted password. Hand in hand with this, changing 
the password more frequently helps ensure that even if the 
password is broken or obtained by some other means, the window 
of exposure is short before a new password is created. Evaluating 
these security requirements, without user input, leads to more 
“random” and longer passwords, approaching something looking 
akin to line noise, with changes occurring in shorter and shorter 
time intervals. Taken alone, this might be considered to be a 
positive trend.  

However, it has been widely known for some time that the user 
response to such policies tends to decrease the security of the 
system [23]. Users, unable to remember their ever-changing 
passwords, proceed to create easily guessable password 
combinations, or worse still, write passwords down in easy-to-find 
locations such as next to computer monitors or under keyboards. 
Evaluating both security  and user utility requirements can instead 
lead to an optimal solution for these concerns. This could include 

5 A memorable and humorous example of this can be found at 
http://xkcd.com/936/   
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a longer password rotation with a longer password, or possibly a 
smart card and a password (for two- or three-factor authentication).  

 
Figure 2: Complementary intersection of password controls. 

But how can this optimal intersection point of security and 
usability for this system be determined? For this system design an 
initial setup is undertaken stemming from security design 
requirements and user needs. Numerous manuals for securing 
systems can be used a priori to determine a baseline configuration. 
We have used recommendations from the National Institutes for 
Standards and Technology (NIST) [24], the Information 
Assurance Directorate (previously named the System and Network 
Attack Center) of the National Security Agency (NSA) [25], or the 
Center for Internet Security (CIS) [26]. Using the security 
principles we discuss, these (and other) security approaches are 
evaluated, determining what user needs are crucial while seeking 
as secure a configuration as practicable. Areas of conflict (and 
overlap) are considered and from this iterative changes can be 
made.  

Changes are then evaluated on the privilege, area and criticality 
of the alteration. Iteration towards an optimal state is a manual 
process of testing, examination, and  consultation with users. For 
our model, there are three areas of concern: external network 
access, internal host security, and user level access controls. These 
areas have differing complementary intersections: the optimum 
trade-space differs between these areas of concern. Once this 
optimal state is determined, we then consider the evolution of this 
security state over time. 

4.1. External Network Access 

Under the greatest amount of scrutiny, the area of greatest care 
for the system design is the configuration of external network 
access. This is an exercise in optimization and extreme 
minimization. While users will be surveyed for input on desired 
services, security needs predominate in this area over almost all 
user concerns. Every access point (open network port or service) 
is of the highest concern as network access control is the first and 
best line of defense against intrusion. As we note above this 
approach can be generalized: this principle applies to both 
individual computer nodes, as well as networks of computer 
systems. For an analogy, if the network is compared to a street, an 
IP address would be the street address of the building and the ports 
would be the doors of that building. A firewall could be a wall 
surrounding that building (having its own doors/gates), or around 
several buildings in a compound. This analogy can be further 
extended much like that of a design of a military base (or a 

medieval fortress) with layered defenses. Again, this system 
design model is a simple one, and other design choices may factor 
into such an extension. In the area of external network access, the 
interplay between security controls  and user needs will be very 
heavily tilted toward security because this represents the first, best 
chance to block an attacker (at the gate). 

As mentioned previously this security design could be used in 
other system  approaches. When we examine network access 
points to the model system, we should also consider other access 
points, such as physical connections to the system like the 
ubiquitous USB or Thunderbolt connectors. One can also consider 
similar methods by extrapolation to evaluate a database system, or 
a file storage system, by examining the controls on the data, and 
the access points to that data. 

The approach utilized involves cutting down to the absolute 
minimum the number of open network ports, and then over those 
ports minimizing the content and amount of data transferred. 
Among the network testing tools we use, two include the Nmap 
port scanner (providing a comprehensive scan of all open ports on 
a machine) [27], and Nessus, a widely available network security 
scanner that helps probe for security vulnerabilities on the 
remaining open ports [28]. Indeed, although the user community 
may with regularity request the installation of numerous software 
applications that will have their own unique web server on an 
additional open port, such services will usually be disallowed. This 
is necessarily an iterative process. Sometimes if taken too far and 
too many ports are closed off and services shut down, the machine 
will not be able to communicate over the network. There may be 
times as well when certain user applications really do need to have 
a port opened for them. These should be examined most carefully. 
Those few services that are still available will be expected to be 
extremely secure against external subversion, such as the SSH 
remote login/file transfer/port forwarding service. In this 
approach:  

• First test the system absent the host based firewall. This is to 
ensure the underlying system is secure without it. The firewall 
should not be the only point where outside connections are 
minimized and controlled. Almost all network services can be 
shut down on a secure system with no real difficulties to the 
underlying function of the operating system!  

• Next test the system with the host based firewall engaged. In 
many cases stateful packet filtering can be used to trace (and 
allow) replies to network calls, which will eliminate the 
necessity for most holes in the firewall.  
Table 1 depicts the results of this process for our example. 

From more than twenty open network ports on our initial image 
(which is a great improvement over previous Red Hat Linux 
versions) we reduced the number of open network services to a 
bare minimum of essential network services:  

Table 1: Number of open network services with and without Firewall –         
Final Minimum Services 

Firewall State TCP UDP ICMP 

No Firewall     3    6      2 

Firewall      2    3      2 
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 This is an excellent example of the point made earlier that the 
strength of a system can many times be improved by what is taken 
away from it. Contrasting these results with the hundreds or 
thousands of network services on a general home Mac or Windows 
computer can be enlightening as to the current default state of 
computer security.   

4.2. Internal Host Security 

A highly secure system that is impossible to use for its primary  
duties is not very useful. In evaluating our system’s internal host 
security, the interplay between security controls and user 
requirements must be nearly equal due to the competing concerns 
to both keep it working as efficiently, and as secure, as possible for 
the users of the system.  

By analogy, inside the building, the use of the building by its 
inhabitants is an important design consideration. Is it a home? A 
bank? A police station? Safe construction approaches are dictated 
for all buildings by fire codes, but how a building is used will 
determine much of a building's interior design.  

For our own computation environment, this process of system 
hardening considered functions and services the user community 
required:  

• The completion of operational duties such as supplying critical 
data sets to mission partners and utilization of mission critical 
flight software.  

• The supply of required capability for a task or job role (e.g. 
visualization and formatting tools, viewers, editors, functional 
compilers, and third party software).  

• The provision of  useful utility functions and software (e.g. 
BR/DVD/CD archiving, external export of interesting 
graphical output, the capacity to safely load removable file 
systems, and network printing).  
From these characterizations, a  definition evolved of what 

behaviors were expected of a user and conduct they should never 
be expected to engage in. With such a set of  definitions we 
removed from the system those privileges and programs a user was 
never expected to use, and added further constraints so users would 
have difficulty in performing anomalous activities.  

Similar to the approaches used to secure the external network 
access of the machine, a software tool was used to evaluate the 
internal security settings of the machine and produce benchmarks 
for enhancement. Created by the Center for Internet Security 
(CIS), the CISscan package was used to evaluate the internal host 
security for the system [26]. It provides a set of metrics for 
assessing security configurations for a number of package 
distributions, as well as operating system platforms, allowing 
comparisons between variant software sets, alternate 
configurations, and operating systems. Representing an effort to 
create a “best practices” industry standard guideline to system 
security, the CISscan package is based around a set of consistent 
standards, that can be used to evaluate a given system against such 
metrics. With this tool, it was possible to create a security baseline, 
make sure that configuration changes and patching continued to 
meet that baseline, and iterate to a desired system configuration.  

Categorical changes to the internal security settings included: 

• Removal of extraneous executable permissions. The ability to 
change users in a program is an especially serious concern. 
SetGID and SetUID executables have the ability to change the 
group and user of the process that  runs them. With this ability 
such programs present an extreme security risk. Some 
programs however, such as the ones that are required for users 
to log into the system need such a capability. Like our 
evaluation of open network services, almost all operating 
systems have a needlessly high amount of these types of 
programs by default. Even the latest versions of  Red Hat 
Enterprise 7 contain numerous examples of programs with too 
many privileges. In our system, with effort we reduced the 
number of these very sensitive programs from 45 SetUID 
executables in the initial install to a total of 15 in the final 
secured configuration (see Table 2 for full discussion).  

• Limit the installation of new software. Every new software 
installer has the potential to  open up new vulnerabilities. It is 
far better to avoid such problems by not installing the software 
at all. As noted, this may minimize many maintenance issues 
as well, including keeping the software secure and patched. A 
related question for discussion is, “does your software really 
need its own web server?”  

• Limit or otherwise shut down all unnecessary system services. 
For some minimal operating system configurations, the number 
of system services running on startup can be counted on one 
hand. This is a far cry from the average computer, which can 
have more than a hundred processes running at any given 
moment before anyone has logged in. Such extraneous 
processes can represent significant vulnerabilities on a system, 
especially if they have a network port open.  

• Modify key network and kernel data structures. By changing 
the settings of key network and kernel configuration values, it 
is possible to significantly increase the protection of the system 
against denial of service attacks and other security failures with 
the occasional cost of small increases in memory use. Indeed, 
lowering user limits (number of users) and per-process 
(number of processes) on the system, significantly lower the 
odds an application can harm system function, blocking a 
denial of service attack by preventing such software from 
consuming system resources. Fortunately this area is one of the 
least likely to result in negative feedback and consequent user 
pushback.  

• Restrict file system permissions on untrusted and/or critical file 
systems, secure application sets, and use caution for removable 
file systems. Crucial file systems are mounted read-only on 
most machines in our environment (especially the ones 
containing critical software). Also,  file systems that are 
removable cannot execute programs with SetGID or SetUID 
privilege as it is trivial to create such programs that  can give 
the user elevated privileges (thus bypass system security) on a 
different system and load them from a removable device.  
These categorical changes are summarized both from the 

metrics of the CISscan tool and with direct metrics (where 
possible). Results of these efforts are shown in Table 2 and Table 
3, taken from our model system image at four different revision 
times.  
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Table 2 examines direct metrics that can be compared across 
several differing system images. This includes the total number of 
SetGID and SetUID programs in the image, the number of 
“classic” System V and “new” Systemd services, as well as kernel 
settings (variables) changed for hardening the internal system and 
network from attack. For the first four rows of metrics, lower is 
better, for the last two rows, higher is better:  

Table 2: Navigation OS Direct Metrics 

Metric Initial 
Install 6 

June 
2016 

April 
2017 

May  
2018 7 

(Lower numbers are better) 

Total SetUIDs 45 15 15 15 

Total SetGIDs 23 18 19 19 

Systemd Services 136 55 58 58 

Sys V Services 5 2 2 2 

(Higher numbers are better) 

Kernel variable changes 3 11 14 14 

Network changes 2 4 4 4 

Table 3: Navigation Red Hat Enterprise 7 Security Metrics                          
(Center for Internet Security Benchmarks) 

CIS category May 
2015 

June 
2016 

April 
2017 

May   
2018 6 

Updates, Add. Security 38% 45% 45% 47% 

OS 12% 11% 11% 11% (est.) 

Special Services 67% 67% 67% 79% 

Net Configuration 91% 92% 92% 91% 

Log & Audit 50% 55% 55% 57% 

System Access 45% 41% 41% 39% 

User Account 14% 14% 29% 43% 

Tests passed/failed 71/66 87/79 88/78 110/79 8 

Table 3 tracks more general changes in types of configurations, 
and in order to track such changes over time, the CISscan tool is 
used. Breaking the OS into areas of concern, these metrics measure 
how secure such categories are compared to a reference model.  
For some cases, with the addition of software sets or new features 
requested by users, these scores went down. While the results are 
broad and vary by software sets and installed feature, they give the 
ability to check the aggregate state of security and compare 
changes over time. This may be invaluable when a software 
installer decides to reset a host of security settings. Such changes 
are very apparent in these results, and this tool also proves itself 
useful in providing aspirational (and safe) examples for academic 
papers. Relevant CIS categories along with numeric percentages 

 
6 The initial install was not suitable for general use and underwent significant 
change. It is close but not equivalent to the May 2015 release of Table 3. 
7 It should be noted in both Table 2 and Table 3 (below) that the system 
contained almost five times as many software packages in the May 2018 release 
as the initial install due to new feature requests and open source changes.   

for several system images are given. For these values a higher 
percentage is better, but it can be nearly impossible, and 
(mentioned previously) less than useful to reach a 100% score.  

4.3. User Access Controls 

 The controls directly placed on user action in this security 
model is an area where considerable compromise is necessary in 
the interplay between system security and user needs. The  domain 
is one where (for the Navigation systems) the need for usability is  
a greater priority than security. By analogy, consider the use of 
badge controlled rooms in a building. While such security may be 
appropriate for certain high security buildings where this type of 
security is required, it may not be as suitable for a supermarket or 
a home. Two such systems are in general available for most OS 
platforms.  

4.3.1. Discretionary Access Control 

In Linux this user control is based on standard process and file 
permissions, allowing for access control of critical system files and 
granting users the ability to manage access to data sets and user 
files. This mechanism allows for a separation of users and data, 
with these management controls based on Discretionary Access 
Control (DAC) mechanisms, such as traditional Unix process and 
file management. Such controls have been standard on almost all 
operating systems for some time. Care should be taken to avoid 
overly restrictive user settings. Unlike the previous areas, it is hard 
to come up with a general standard for these controls. There might 
be significant difference in file system and data permissions even 
for different teams on the same system. Indeed, all that we can 
recommend here is due diligence in the application of these 
protections.  

4.3.2. Mandatory Access Control 

Mandatory Access Control (MAC) is an alternate security  
mechanism that is available under Linux, referred to as SELinux 
[29]. Part of a series of research projects out of the United States’ 
National Security Agency, this series of software modules seeks to 
bring aspects of highly secure operating system designs to the 
Open Source community [30]. These features, which allow for a 
second, very granular control over user actions, previously were 
available only on highly secure and expensive computer designs. 
These modules are included with the Red Hat Enterprise Linux 
distribution and are a part of our model image. User access can be 
granted or revoked to a specific file or process, categorized by role. 
For example, on a system without SELinux, the critical system 
password file (/etc/shadow), cannot normally be read, however the 
time it was last modified and the size can be read by an 
unprivileged user of the system. Such information, such as when 
the file was last changed (i.e. the last time a password was 
modified) could be useful to an attacker. For a machine running 
SELinux with restrictive settings however that file cannot even be 
listed by an unprivileged user of such a system: no information 
about that file will be returned at all.  

8 CISscan was updated and several tests were added and expanded. This category 
had changed significantly in the new version and the value was derived from the 
previous test method.  
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However, as we note, how well the users can use the system is 
a crucial concern for this area. Unlike the specialized intelligence 
and  military computer systems that utilized Mandatory Access 
Control initially, users of general purpose engineering machines, 
like those of the navigation computing environment, typically do 
not have the same expectations or same security concerns about 
how such machines should function. The use of such constraints 
could potentially make the user experience miserable, or simply 
untenable. Furthermore, familiar applications could fail in 
unexpected ways. Such controls are also quite difficult to 
configure in a correct manner to support the Navigation user 
community. There are few use cases where this level of security 
restriction for these User Access Controls area, has been found 
useful, in comparison with the application of greater restrictions on 
the External Network Access and Internal Host Security 
subsystems. 

A trial run of the SELinux system was undertaken on a limited 
set of operations workstations to evaluate the utility of these 
controls. The proposed idea was to apply an iterative process to 
determine the areas of the system utilized normally by the user 
base. SELinux was run in permissive mode over the course of 
several weeks, and the SELinux system was examined to 
determine those areas where the users would be blocked by the 
SELinux policy. From these conflicts a model of user activity was 
built up over several months, which allowed for changes to be 
made to the SELinux policy rules, or changes to be made to user 
software and/or user behavior. Over time the sum of these changes 
helped define expected user actions. Areas of the system that users 
did not use and did not need, would be blocked off from user 
activity.  

In principle this is a good approach. However a formal effort 
examining this method noted two major difficulties [31] and these 
difficulties have not changed significantly: 
• System analysis and configuration: Getting the computer 

system and its processes working, and working with the correct 
permission sets was significantly more technically challenging 
than expected. Many errors were only solved by trial and error. 
A considerable amount of time was spent to get the system to a 
working and stable state. 

• User analysis: This process (even on earlier versions of 
SELinux) was not unusually difficult. However downtime 
could be  required during the analysis iterations, and these 
iterations could make it difficult to accommodate system and 
user activity changes (users do not like having to log out of their 
systems repeatedly).  This may be an area that functions better 
for environments that are more static. 
At this time methods of Mandatory Access Control such as 

SELinux are still being evaluated for use in Navigation. Although 
it offers much improved control mechanisms, and even allowing 
the automatic design of user access from user actions, our current 
examination of the intersection between system security and user 
utility  in this area does not recommend its use at this time. 

4.4. Evolution of system security over time 

Unlike the previous parts of this section which deal with the 
issues of creating an initial, secure system state, here we consider 
the evolution of that state over time. As we observed in our 

discussion on security over time how this state changes is strongly 
subject to the environments and networks that connect to our 
system. 

 
Figure 3: Security over time. 

How this confidence in a system changes, and hence the slope 
of the security state in the figure above is very dependent on events 
in the local environment and the vulnerabilities that emerge over 
time.  It may be nearly linear over time, or an exponential die-off 
due to newly discovered vulnerabilities. For example, a  powered 
down system on a shelf (or offline storage for a VM) will not 
change at all. However once connected, many factors will strongly 
affect the slope of the curve, such as the age of the patching and 
software set, the security controls, and the environment to which it 
is connected. This is highly particular to the environmental factors 
acting on the system: even systems at the same site may have wide 
variance in this evolution. Understanding this, and remediating 
such changes is a large part of the maintenance lifecycle of a 
system. The only clear guidance that can be offered is that, as  with 
a broken password, a system compromise will cause the curve to 
have a  cliff  (or stair-step) function in the  trust of the system. This 
will require a system reset or reinstall to resolve.  

5. Future Considerations and Conclusions 

Considering the evolution of the cyber threat environment and 
trying to discern what new challenges will arise and how to meet 
these concerns is a subject of ongoing interest and research for this 
author. The navigation computational environment conducts 
critical activity on a 24/7/365 schedule, and cannot afford to be the 
victim of a security compromise. It is an important system that 
needs protection. While tips and techniques for security have 
dramatically changed since this author started as a system 
administrator, the underlying principles discussed here have 
changed little in two decades, or not at all. Such archetypes are 
examined in this paper, and while the particular technical points 
can change, the foundational ideas will likely remain the same.  

One case in point, as noted “de-perimeterisation” approaches 
like Zero Trust computing may help our approach to computational 
and network security by encouraging rigorous security at every 
computational node and network connection. This is a refreshing 
model which brings to mind some of the most secure intelligence 
facilities and military fortifications of the last century. It is a vast 
improvement on the simple, single-defensive layer  (sometimes 
called the hard exterior / soft interior) model which ends up being 
the most common approach taken in network security. Indeed, we 
advocate an approach in this paper of being hard on the exterior 
and hard on the interior! 
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While it is  heartening to see such enthusiasm, and much good 
can come from this, it is important to remember that these efforts 
(still) need to consider both the complementary intersection of 
security and user design requirements, as well as  the importance  
of the fault tolerant protection of all of the critical computational 
elements. As we mention above, solving the totality of this defense 
in breadth problem is a hard one. Indeed, not considering these two 
avenues of concern can lead to situations where the computational 
environment is perceived by the users as as more akin to something 
like a prison, or worse still, end up promoting a failure of 
protection akin to that seen in the previously mentioned Maginot 
line. Especially in the second case, aggressive efforts as Zero Trust 
are expensive and challenging to implement and can (from 
exhaustion of resources in time and effort) lead to the  promotion 
of  the failure they sought to prevent! If even a simple approach 
cannot be executed correctly, attempting to implement a more 
complex model (like Zero Trust) can be a dubious undertaking. 

Another example showcasing this fundamental difference is 
the spate of attacks based in speculative execution on modern x86 
processors (as well as methods to remediate them). These have 
been of tremendous concern and rapid development for the entire 
computer industry over the past 12 months [32]. However, the 
architecture problems at the source of these issues are fundamental 
design concerns that were identified in their implementation nearly 
twenty years ago [33].  

 In addition, a few observations may be derived from the 
principles espoused above. To the author’s mind these should be 
regarded as obvious and self-evident. Unfortunately, that is often 
not be the case.  

Of these, the most significant is don't engineer in single points 
of failure. For example, after considerable effort to construct a 
secure, fault tolerant network design, with a hardened firewall and 
a focused IDS, it is a contradictory effort to then layer a poorly 
secured Active Directory server for single sign-on for the network 
(or a poorly configured VPN to access such systems).  Such a setup 
is self-defeating – at best. Fault tolerant and secure design should 
not be ignored for "just one service". In a similar manner the 
implementation of a poorly designed security tool designed to 
examine (or worse, modify) the entire enterprise environment can 
serve to help implement a large security hole for the entire 
enterprise. Indeed, as Sami Saydjari relates, there is particular 
concern with such enterprise security tools as such systems are the 
highest priority targets of attackers [19, p. 346]. Ease of 
management of an enterprise network is a nice goal. However, one 
of the questions that should come up is, "by whom?" Single points 
of failure must be closely, closely watched, as they can be doors 
that potentially open up the whole network to attack. 

This goes with the concept that uniformity of design is not 
necessarily good. “Balkanization” or the promotion of multiple 
differing configurations (as long as each of those configurations 

 
9  A major point of defense in depth is that a single failure should not provide 

the opportunity for compromise on a wide scale. This should be one of the benefits 
of such an architecture focused approach. Many times a significant vulnerability in 
our systems crossed our desks with an organizational rallying cry of “patch now!”, 
“patch now!” and we would discover that we had limited to no exposure from the 
vulnerability because of  other defense in depth controls that were in place. Our goal 
is to be proactive rather than reactive. While we do have emergency patching 
mechanisms in place, we prefer not to use them unless truly necessary.   

are secure) promotes design diversity, as discussed in Section 2. 
While this may not be desirable from a management perspective, 
such diversity can lead to independent modes of failure, and hence 
increased security fault tolerance. 

Similar to this is the desire to patch often, in the effort to be 
secure. These two concepts are not, as popularly believed, the 
same. While this may go against the grain of the currently popular 
DevOps and Agile software engineering paradigms, it is clear that, 
absent other testing schemes, it is wise to take the approach of  
“wait and see” when patching systems. 9  Such updates may 
introduce bugs, new vulnerabilities, or other unforeseen issues. 
This is especially true in times of stress after the announcement of 
major computer security bugs. Large companies can and do make 
mistakes, and a patch failure that in individual systems may cause 
pain and irritation could lead to a catastrophic failure or outage if 
on a critical system.10 

Finally, one of the bigger trends in current computation lies in 
the increase in the use of virtual and cloud computing systems. 
Distributed systems such as these can offer significantly lower 
costs if (and this is still a big “if”) their security and reliability 
metrics can meet the requirements of their customers. Architecture 
principles discussed here are (as much as they can be made to be) 
platform  agnostic. One computer security researcher relates the 
major difference in cloud computing as, “Fundamentally, cloud 
security is a primary concern due to loss of control ... We’ve seen 
this before – [with] outsourcing...” [34, p. 24]. Does the cloud 
service provider follow fault tolerant and security fault tolerant 
design principles? Can such questions even be answered by such 
services? 

This loss of control over the configuration for the security 
environment and for critical events, continues to be problematic 
for the Navigation use case for cloud computing, especially with 
concerns over Availability [34, p. 96]. With cloud computing, 
ownership of the systems and operational processes is by an 
outside organization. As a part of the operations of our 
computational environment, it has sometimes taken extraordinary 
effort to ensure the continuing functioning of our systems in times 
of stress. This has sometimes meant the difference between 
mission success and failure. In an emergency, wide latitude is 
given to operational staff to keep systems running and restore 
failed systems as fast as possible to meet the needs of flight 
operations. With an emergency in a remote cloud computing 
environment, can one even expect  to get a responsible engineer on 
the phone?  Without control over that environment, it is obvious 
we cannot, as Flight Director for NASA Chris Kraft  said, ‘‘...take 
any action necessary for mission success’’ [35, p. 392].  

It is hoped that the ideas in this paper will provide assistance to 
administrators and system engineers, and especially the 
astronautical community. Aspirational goals are presented here, in 
the hope of providing a guideline to follow for your own design 

10 It may be instructive to examine the release schedule (and following systems 
failure reports) for the firmware and software updates for the 
MELTDOWN/SPECTER vulnerability of 2018. Having a running server is in most 
cases preferable to one that is “currently patched”, but “awaiting motherboard 
replacement.” 
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efforts. These principles can be applied in Ground Data Systems 
design problems, as well as in other areas of systems engineering. 
This is particularly valuable in a community of austere budgetary 
realities where our bespoke systems engineering is based around 
missions with only a few, or (more often) only a single deliverable.  

In an ideal world we would be able to trust our computer 
systems in the same way that when we drive a car, we trust its 
brakes. I believe that this optimistic idea is a badly needed one in 
the design of the increasingly complex and intertwined computer 
systems that comprise our world today. With the current state of 
computer security this can appear hopeless, however it is clear, as 
with the encouraging Boeing flight control system [10], there are 
computer systems that have been designed to be truly fault tolerant. 
A hard problem is not necessarily an impossible problem. There is 
no reason we can not also do this in computer security. 
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