

www.astesj.com 357

Computer Security as an Engineering Practice: A System Engineering Discussion

Robert M. Beswick*

Mission Design and Navigation Section, NASA, Jet Propulsion Laboratory, California Institute of Technology 91109 USA

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 29 June 2018
Accepted: 03 April 2019
Online: 24 April 2019

 We examine design principles from more than 20 years of experience in the implementation
and protection of mission critical flight systems used by the Mission Design and Navigation
Section at NASA’s Jet Propulsion Laboratory. Spacecraft navigation has rigorous
requirements for completeness and accuracy, often under critical and uncompromising time
pressure. Fault tolerant and robust design in the ground data system is crucial for the
numerous space missions we support, from the Cassini orbital tour of Saturn to the Mars
rover Curiosity. This begins with the examination of principles learned from fault tolerant
design to protect against random failures, and continues to the consideration of computer
security engineering as a derivative effort to protect against the promotion of malicious
failures. Examples for best practice of reliable system design from aviation and computer
industries are considered and security fault tolerance principles are derived from such
efforts. Computer security design approaches are examined, both as abstract postulates
(starting from cornerstone principles with the concepts of Confidentiality, Integrity, and
Availability) and from implementation. Strategic design principles including defense in
depth, defense in breadth, least privilege, and vulnerability removal are target points for
the design. Additionally, we consider trust in the system over time from its sterile
implementation, viewed against the backdrop of Time Based Security. The system design is
assessed from external access data flows, through internal host security mechanisms, and
finally to user access controls. Throughout this process we evaluate a complementary
intersection – a balance between protecting the system and its ease of use by engineers.
Finally, future improvements to secure system architecture are considered.

Keywords:
Computer Security Engineering
Security Fault Tolerance
Ground Data System
Defense in Depth
Defense in Breadth
Least Privilege
Vulnerability Removal
Absolute Security
Sterility in Implementation
Time Based Security
Communications Security
Operations Security
Complementary Intersection

1. Introduction

This paper examines approaches used in the process of
securing the computer systems employed by the Navigation
Ground Data System. This text is meant to serve as a discussion
about best practices in computer security engineering. It is based
on twenty years of the author’s practical, “in the trenches”, field
experience on systems involved in this effort. These systems
comprise a multi-mission network that encompasses the
navigation elements of more than forty current and previous
interplanetary flight missions here at the Jet Propulsion
Laboratory. This paper does not seek to be a prescriptive document
(do this one thing, buy this product, etc.), but instead seeks to
examine a process of how secure systems are designed – i.e., what
general security principles we have found valuable [1].

Few systems require as much resiliency or have as much risk
of causing negative (and final) outcomes as the computer systems
used in support of Flight Operations. Scant resources are often
available for the maintenance of complex hardware and software
architectures, and these high-availability/high-reliability systems
are often expected to function without (and moreover cannot
tolerate) the regular sorts of software updates expected in other
computational environments.

As an example, one of these missions, Cassini, from its launch
in October of 1997, would spend seven years crossing the solar
system, arriving at and entering into Saturn orbit in June, 2004. It
would then orbit Saturn nearly three hundred times over thirteen
years, conducting hundreds of targeted flybys of Saturn's largest
moons during its mission lifespan, finally coming to a fiery end in
Saturn’s atmosphere in September of 2017. This operational effort
would be conducted on a network of computer systems having a
requirement for no more than two minutes of unplanned downtime

ASTESJ

ISSN: 2415-6698

*Robert M. Beswick, 4800 Oak Grove Dr., Pasadena, CA 91109 USA,
1-818-393-0539, Robert.M.Beswick@jpl.nasa.gov

Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 357-369 (2019)

www.astesj.com

Special Issue on Advancement in Engineering and Computer Science

https://dx.doi.org/10.25046/aj040245

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj040245

R.M. Beswick / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 357-369 (2019)

www.astesj.com 358

a year (99.9995% availability) [2]. For a network that could not be
upgraded (except in minor incremental steps) during the length of
the entire 13-year Saturn orbital tour, maintaining and keeping
such a computer network secure, as well as supporting backwards
compatibility (and obsolescent hardware) would be a challenging
problem. In fact, the systems used over the launch and
interplanetary voyage across the Solar System contained less
processing power, storage, and total memory than the author's
current iPhone – and these systems would have to be kept
functional and secure in case there was a need for backwards
comparison.

While some organizations may have little need for a
computational environment larger than a client-server
configuration of a few systems, others may require a more complex
environment. The Ground Data System for Navigation is
constructed in the manner of a classic Development and
Operations model with development and production networks of
several hundred servers and workstations. This network is used by
teams of engineers working, often under critical time pressures,
with rigorous requirements for accuracy [2].

For this environment, it should be clear that a particular
cryptographic protocol, a set of software, or even an appliance will
not solve these security challenges. This is not an application
problem but instead a systems problem. As in other engineering
disciplines, in such an environment the design must be based on
good principles, because, like with the pouring of a foundation of
a building, you only get one such opportunity.

Part of the effort in this discussion stems from the author's own
struggles to find a good systemic set of definitions and guidance
while endeavoring to build a more secure network. What you see
here is a reflection on the insights I was trying to find for my own
efforts. Furthermore, many current efforts in computer security
research are based not on building a secure system but tearing a
system down. Indeed, a great deal of present investigation in
computer security is based around the twin ideas of “if it ain't
broke, don't fix it”, and “try and see if can be broken”.
Accordingly, extensive research across the spectrum of computer
security is being conducted in the field of penetration testing,
where the primary methodology is to break into an existing setup
and then fix the discovered problems. While this can be helpful in
discovering specific flaws, it does not provide much help in trying
to understand a more general architecture model of security.

An example of this is perhaps best exemplified by the software
tool known as “Chaos Monkey” – part of an open source suite of
tools called “The Simian Army” that was originally designed for
the cloud infrastructure of the streaming media service Netflix [3].
This software set comprises a series of tools that help the design of
resiliency in a set of virtual machine instances. It does so by
randomly shutting down members of the set of virtual machines.
By forcing developers and systems engineers to prepare for
unexpected failure, a more fault tolerant network design will
emerge (it is hoped). This has been further expanded and
generalized to even more powerful tools that comprise “Chaos
Gorilla”, which randomly simulates the shutdown of an entire
Amazon Availability Zone, or the even more devastating “Chaos
Kong”, which simulates the shutdown of an entire Amazon Region
[4]. This design is an example of “survival of the fittest”,

incorporating a genetic algorithm-like approach to the design of
secure systems.

Critical questions that should be raised in conjunction with this
software are, “How does a developer or systems engineer build a
more stable and secure system? What principles should be used?
What methods should be avoided?”

Continuing with the metaphors given above, consider an
analogy to the above (genetic) algorithm: a team of stone-age
architects trying to build a bridge across a river, first by using a
captive monkey, then a captive gorilla, and then a giant mythical
beast to try throwing stones and batter a pile of rocks into a
working bridge. While such a method will produce some results
(albeit very slowly), what about other engineering approaches to
design? What of the arch and the use of suspension? What about
the consideration of tension and compression and the use of
different materials in the construction of a bridge?

Clearly other engineering principles can be useful here in order
to produce an initial design and improve upon it before bringing
someone to attempt to tear it down. In like manner, this paper is a
study on security architecture design, and hopes to add to such
efforts by discussing principles on “how to build a (better) bridge”.

A word about the expected audience of this paper: the design
principles discussed in Sections 2 and 3 are aimed at top level
design of secure systems, and may be of greatest use for project
management and systems engineers (it could also be titled “how
to avoid buying crap”), while Section 4 covers an example
implementation targeted more for computer systems architects and
systems administrators. The paradigms covered in Section 2 and 3
are observed derivations from fault tolerance and have wide
applicability in systems engineering, while Section 4 applies this
methodology to securing a specific computer system.

2. System design approaches: Fault Tolerance and Security
Fault Tolerance

2.1. Fault Tolerance

There are several valuable definitions for the concept of fault
tolerance. Fault Tolerance, according to Carl Carson, comprises
“...a design that enables a system to continue its intended
operation, possibly at a reduced level, rather than failing
completely, when some part of the system fails” [5, p. 167].

This has been categorized by Barry Johnson in the approaches
taken for fault tolerance in microprocessor design as [6]:

• Minimize the number of points where a single fault will cause
the whole system to fail.

• Graceful degradation – known also as “Fail-Gently”, a
system’s ability to continue operating in the event of a failure,
having a decrease in operating capacity no worse than
necessary for the severity of the failure.

• Redundancy in components – both in space, having multiple
parts that can be utilized, and in time, with the repeatability of
an operation.

Jim Gray and Daniel Siewiorek help characterize such steps to
provide high availability in computer systems by examining single
points of failure to promote [7]:

http://www.astesj.com/

R.M. Beswick / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 357-369 (2019)

www.astesj.com 359

• Independent failure – where each module functions so that if
it fails, it does not impact other modules in the system.

• Design diversity – using hardware and software from differing
organizations to promote independent failure modes (e.g.
differing types of failure).

There are abundant examples of fault tolerant design. This is a
well understood area of systems engineering. From the 135-year
old Brooklyn Bridge in New York [8], to the current Eastern
Interconnection power grid of the United States [9], approaches
such as these are needed where one must trust the behavior of a
system to work, and to work in predictable ways.

As an aspirational example, consider one such computer design
further at the highest end of the reliability spectrum. The primary
flight control system of the Boeing 777 achieves ultra-high
reliability metrics. It is a highly redundant, highly available system
comprising the fly-by-wire avionics controls and is a rare example
of a true Triple Modular Redundant (TMR) system (with little
exception the highest level of redundant design, having three
redundant components for each single point of failure), in both
computer nodes, software, and hardware. It has service metrics
requiring a maximum rate of failure of the flight computers of
1.0×10-11 failure/hours (i.e. a failure of the flight computers less
than 1 in 100 billion flight hours) [10]. This is an example of what
can be done with sufficient effort and due diligence – a computer
system millions of passengers a year put their trust in.

2.2. Security Fault Tolerance

In like manner, this paper considers computational systems that
one can trust – as is done with the physical systems described
above. From fault tolerance, we can derive similar approaches to
deal with the actions of intelligent actors 1 rather than random
chance or stress failure modes. Such an approach was described
affectionately by Ross Anderson and Roger Needham as
“Programming Satan’s Computer” [11]. While the application of
these principles we apply here to the flight computer and network
security of our systems, the principles are applicable across the
board to security design. Such design promotes:

• Secure systems should be resilient from random chance and
predicted stress modes of failure.

• Secure systems should also be resistant to direct action.
• Simplicity of design, known as the popularized KISS principle,

is a golden virtue in secure systems [12].

Figure 1: Relation of Fault Tolerant and Security Tolerant Design

1 To be clear: this term is meant here to describe human attackers, not intelligent
software agents. They may also be described as malicious actors, or threat actors

These principles can be considered in four approaches:

2.2.1. For the most critical systems, use a machine that has
only one function.

This approach has the benefit that in the event of a failure, you
have lost only that one function. There are numerous examples in
security design. Indeed, “appliance” IT systems, such as web
servers, email servers, firewalls, and similar systems use this
approach. As a good analogy: in (most) kitchens, refrigerators and
ovens are not a part of the same appliance – even though they have
the same task of changing and maintaining food temperature.

2.2.2. For redundancy in a security context ideally differing
configurations should be used.

 This technique considers that the systems in a given setup
should not all have the same potential vulnerability (and therefore
not truly redundant against a threat). It is an example of the
previously discussed design diversity. Examples of this include the
use of multiple arrays of web servers – running different OS/web
server software, or application servers that use differing
configurations and password sets, or multiple (different) backup
systems – e.g. tape, disk, and cloud service providers. As an
analogy, consider the commute from a major urban center: it is
better to have several differing options for transport, be it freeway,
commuter train, bus, or even surface streets. In the event one
method is impacted, other options are available to return home.

2.2.3. Single points of failure of a system should be few, and
truly independent.

As observed above, in a security context, systems that are
single points of failure should be truly independent of other points
of failure. Such single points of failure should be examined closely
to ensure that they are actually single, independent, points of
failure.

This goes hand in hand with the first point about single use.
One example of this can be seen in network file server
“appliances” that perform the function of serving files – other
application sets such as virus checkers and configuration
management tools may be run on the files themselves, but they are
seldom loaded on the file servers. This design approach is often
misunderstood in poor implementations, especially where security
may be seen as a software package or an add on feature. As an
analogy consider tires that serve as critical single points of failure
for a modern car – in a similar manner, it would be absurd if a
failure of the GPS system caused the tires to fail!

2.2.4. Systems should Fail-Safe and/or Fail-Gently.

In case of failure, a security system should degrade safely
(known as Fail-Safe), and/or compromise only a limited part of the
overall system or otherwise take an “acceptable” amount of time
to fail (“Fail-Gently”). Examples of this abound, many of them
utilizing cryptography, such as disk and file encryption, password
login for most computer systems, firewalls, network segmentation,
and network Intrusion Prevention Systems (IPS). An analogy can
be found in the mechanical realm in that high grade safes are rated

depending on context. The colloquial and overlapping terms of hackers, crackers,
or security hackers are also used in the general news media.

http://www.astesj.com/

R.M. Beswick / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 357-369 (2019)

www.astesj.com 360

for time against tools, cutting/welding torches, and explosives.
Some safes may have mechanisms that break or cause the safe to
be unopenable if drilled or otherwise tampered with.

3. Computer Security Design

3.1. Abstract Principles
This computer security design incorporates the above

techniques through increasing grades of refinement. Abstract
concepts of Confidentiality, Integrity, and Availability (the
traditional trinity of security) help to determine the “who, what,
when, and where” of the security needs for navigation
computation. These principles provide definition for the key
concerns for securing a system, not in terms of technique, or
subsystem protected, but rather in terms of what features in the
computational environment must be protected.

3.1.1. Confidentiality

Confidentiality is referred to as “the concealment of
information or resources” [13, p. 4]. This can be of high priority
for some financial systems, where customer data is not only a
crucial part of business operations, but also where strong legal
regulations may come into play for control of customer
information. It may be critical in military computer systems (for
some cases it may be more desirable to destroy the system than
allow the unauthorized release of information). This is
significantly less crucial in the field of navigation computation.
Such information for navigation comprises mechanisms used to
authenticate access to the systems, network and system
configuration information (possibly of use to subvert security), and
restricted navigation software. An example of a baseline concern
for Confidentiality can be seen even in the naming of individual
systems, as such host names may reveal a great deal of information
about the underlying network design [14]. Consider a hypothetical,
badly named example from JPL: the host name “cas-web-serv3”,
which immediately gives information the system in question is
running a web server daemon, for the Cassini project, and that most
likely there are (at the minimum), two similar servers.

3.1.2. Integrity
Integrity is “the trustworthiness of data or resources ... usually

phrased in terms of preventing improper or unauthorized change”
[13, p. 5]. Integrity is particularly critical for navigation
computation, as improper or unauthorized modification of the
environment could cause very serious problems. Corrupted data
sets, results or software could cause terminal errors in spacecraft
control. With regard to the accuracy required for navigation of
spacecraft missions, the sensitivity placed on the accuracy and
integrity of the data, software, and corresponding results cannot be
overstated. One such example of the critical nature of Integrity is
seen in the previous case of the Cassini project. Integrity was
critical on such a mission, which consisted of one of the largest
teams of navigation engineers ever assembled, flying on the
navigation computer system one of the most complex orbital and
interplanetary trajectories ever designed [15].

3.1.3. Availability
Availability is “the ability to use information or resources”

[13, p. 6]. Conceptually, it is the most direct derivation of
principles coming from fault tolerant design. Availability in the

context of navigation computation, has an additional concern that
someone could deliberately try to deny access to a system service
or data sets. The 24-hour-a-day, 365-day-a-year activity calendar
of spacecraft navigation indeed makes this a crucial concern [15].
An event which causes the system to be unavailable, which in other
industries might be cause for concern, could lead to the premature
end of a multimillion dollar space mission.

3.2. Implementation

From these abstract principles, there are a number of paradigms
that are employed for the implementation of better protection.
Accordingly, strategic archetypes are used in the work toward
good security design.

3.2.1. Defense in Depth

Defense in depth is a military security term with a long
historical pedigree. Instead of a single defensive stronghold or
chokepoint, this strategic principle is based around a series of
overlapping defenses, forming a type of fault tolerant redundancy
[16, pp. 40-44] in that a failure of one part of the system does not
lead to the failure of the whole system. Considering a networked
computer system, this can be seen on a variety of levels in
overlapping defenses: starting at the network perimeter firewall,
the network segmentation rules used on the network switches, the
host based firewall, the protections applied to the processes that
connect to the network, and then the internal host security
measures that must be bypassed by a potential attacker. This is
analogous to a defensive perimeter made up of a series of
overlapping walls and fortifications, much like that seen in that of
a medieval castle, or World War I trench warfare, presenting so
many obstacles to entry that an adversary, having a choice, will
pick a less well defended target [17, p. 259].

3.2.2. Defense in Breadth

Defense in breadth is a term serving as the converse for defense
in depth. It involves the concept that a secure system design must
consider the whole system in its implementation, or an attacker
will simply ignore a well fortified part of the system and instead
chose an easier route into the system. All of the previous paradigms
of overlapping defenses, minimization, elimination, and security
over the system life, must be considered for every part of the
system. This is a difficult task and it does lay bare the challenge of
the security engineering process. By definition this is an effort to
examine the totality of all of the possible attacks against the
system. Indeed, this defensive principle is referred to by Sami
Saydjari as Ensure Attack-Space Coverage. He acknowledges that
achieving this comprehensive coverage is a large and challenging
problem, and one that is usually not well understood, but he
underlines its necessity as a security engineering principle when he
remarks “Depth without breadth is useless; breadth without depth
weak. ” [18, pp. 133-135] Consider an analogy from a failure of
this principle: putting a well-locked door with a security system on
a Hollywood film set facade; while it is possible to break through
the front door, it is much easier to simply walk around the side or
back of such a facade because most such sets do not even have a
back wall. History is rife with excellent examples of the failure to
consider the whole scope of ways an adversary could carry out an

http://www.astesj.com/

R.M. Beswick / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 357-369 (2019)

www.astesj.com 361

attack. One such example can be seen in the WWII failure of the
Maginot line on the French-German border. 2

3.2.3. Least Privilege

The principle of least privilege is that subjects (processes and
users by extrapolation) should be given only the rights and
accesses for the tasks the subjects need to perform, and no more
[13, p. 457]. This avoids many possibilities for the manipulation of
a process (or manipulation by a user) to get them to do things they
were not intended to do. There are many similarities to ideas in
finance and accounting where financial mismanagement and
corruption in corporations are prevented by not allowing any one
person to take charge of all the corporate finances – also known as
the “two man” rule. As an example, consider a hypothetical
printing utility that can write to a central spooling directory as a
privileged user. It is discovered that by manipulating the input files
sent to the printer, it is possible to write to other directories on the
system. With some effort and cleverness it may become possible
to overwrite critical system files or even get remote access to the
system. By changing the permissions of the spooling directory and
removing the ability to run as a privileged user, the printing utility
can continue to function, without enhanced access, thereby
removing its capability to be misused. A similar analogy is a
classic safe deposit box repository in a bank, where two people
(each with a different key) are required for access to a given safe
deposit box.
3.2.4. Vulnerability Removal

When we remove potential vulnerabilities, we can elude the
many problems that come with those vulnerabilities, and
sometimes avoid other issues as well. Matt Bishop refers to this as
The Principle of Economy of Mechanism [13, pp. 459-460]. An
example of vulnerability removal: a self-replicating worm that
attacks email server processes can do little damage if you do not
have an email server on your system. Likewise, if you do not have
a web server running on your system, there is no need to monitor
for such and keep up with attendant patches. Making sure that
(along with the software and its own attendant maintenance)
possible vulnerabilities in buggy software are not installed, can
save tremendous resources and time over the system lifetime. As
an analogy, this is akin to not just locking a side door into a
building, but instead never constructing the door into the building
in the first place.

3.2.5. Sterility and Absolute Security

We now consider the idea of sterility. This is a point along a
spectrum of levels of trust in a given system. Understanding how
much one can trust such a system may help determine how it
should be used and where it should be placed on the network. A
few (very rare) systems we consider to be sterile and have absolute
security, the top of this spectrum, or “security beyond any
reasonable doubt”. 3 To be clear: this is a theoretical initial state, a
starting point for definition, and no connected or exposed system

2 The Maginot line was designed to protect France from a German incursion in the
event of a second world war. It was an excellent example of the principles
discussed here, providing significant fault tolerant, defense in depth, with carefully
considered access and both perimeter and internal security. A marvel of military
engineering, its primary construction protected the French-German border. Most
elements of the line were operational and fully prepared to continue fighting after

can be said to be sterile and in this state. This is a valuable concept,
especially as we consider the next paradigm. It is comparable to a
definition of an initial starting point (a t0) that is useful when
considering how that system might evolve over time.

Let us further consider, that a system implemented on a closed
network, built from a secure image is secure, or sterile to the limits
of confidence one has in the hardware (and the hardware vendors),
network, and the software media (DVD or secure image and/or
patch servers, etc.) used to construct the system. On such a
spectrum of trust this system would be seen as approaching
absolute security considering these limits of confidence. This
useful idea can be seen as extrapolated (as systems in miniature)
from credentials, passwords, or certificates that also have not been
exposed. We can liken this to issues seen in medical care, or food
preparation and handling, where much effort for hand washing,
cleanliness, or cooking is undertaken to produce sterile areas, or
clean food for consumption.

3.2.6. Security over time or robustness

The previous paradigms examine the implementation of a static
system. Considering the evolution of a system state over time, one
should also consider how the system is secure during its
implementation and over its whole lifecycle. How robust is this
system? How much can it be trusted and how does that trust change
over time? This is similar to principles of Communications
Security (COMSEC) and Operations Security (OPSEC). These are
military security terms that examine the communications and
background operations processes of military organizations,
working to prevent compromise of communications, and the
processes of such organizations. As in a military organization, our
trust in a system will change over time. This is strongly dependent
on the environment and networks that connect to this system. It is
very important to examine these connections and method of
contact to characterize the security over time of a system.

 This concept is akin to what Winn Schwartau called
“Time Based Security” [18, p. 34]. In Time Based Security, a
system would be considered “secure” if the time to break through
the system protection (Pt) was greater than the time required to
detect (Dt) and to respond (Rt) to the intrusion. This can be
expressed as:

Pt > Dt + Rt (1)

Time Based Security suffers in the great difficulty of
quantifying these values in (1), for the system protection,
detection, and reaction time. Nonetheless Time Based Security
does help illustrate well that security over time is a derivation from
the fault tolerant concept of Fail-Gently, as discussed above.

Coming from the previous point about sterility, trust in a sterile
system must change when it is attached to outside networks. Our
confidence in such a system is then based on the security
configuration of the external network, internal host, and user

the fall of France, and had to be ordered to surrender with the French capitulation.
The designers famously did not consider (mostly due to the staggering costs to
expand the fortification) an assault across the French-Belgian border.
3 This is a functional term that in our model is akin to, but not the same as, the
mathematical term perfect security – such as the unbreakable one-time pad [36].

http://www.astesj.com/

R.M. Beswick / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 357-369 (2019)

www.astesj.com 362

controls of the system. Log mechanisms can help give indications
of change to the system. If this trust is misplaced, the system could
be compromised, and the system could become untrustworthy and
itself a source of security concerns. As in the previous section we
consider that this is akin to handling a compromised password or
certificate, and in most cases the system must be rebuilt.

There is considerable kinship between these ideas and the study
of infection and food-borne illness. The frequent admonition about
hand washing before meals comes to mind. What things did one
touch or pick up? Do you have a thermometer to see if the food is
cooked? A brisket set out too long at a picnic may “go bad” and
become a host to viruses, worms and other sources of contagion. It
may be possible to sterilize it, or at least to clean the dish
containing the item. Much care is required to safely clean dishes
under food handling regulations, but having gone bad, food, no
matter how savory, almost all of the time must be thrown out.4

4. System Evaluation

Keeping these principles of secure system design in mind, we
consider an example case: a single computational node and the
techniques and mechanisms put to use to create a secure system.
Our model system is a server running Red Hat Enterprise Linux 7.
Particular care is taken in its construction as it serves as a
fundamental “building block” in our system plan. This security
design takes on several design principles found in architecture in
that the strength of a system can often be improved, not by what
one adds, but by what one takes away. Also, this serves as an
effective approach in considering the overall security of our
environment. Moreover, many systems are actually allocated in a
“one engineer, one workstation” ratio. Similar efforts can just as
easily be a network segment, implemented in a network group.

It is useful to reiterate here: this is example. These security
architecture guidelines can be applied in many other approaches
and types of system setups. This is an outline that other system
architects and system engineers can follow to create their own
secure systems. It is hoped that this demonstration will help to
make these key concepts and their application in design more clear.
This system-design model is a simple one. It is to serve as a means
to explain principles and their use in an architecture. As we
extrapolate to a network, or a network-of-networks we get a clearer
understanding of these principles and their use in a model.
Complexity may be introduced in efforts to move towards a
particular architecture model.

For example, one such effort called Zero Trust computing,
moves towards a very atomic model of trust, that of so called “de-
perimeterisation” where the outer defenses of a network system are
assumed to be ineffective. Zero Trust uses the same design goals,
but with an aggressive application of the principle of least privilege
applied to every element of a network [20, pp. 2-3, 12-18]. It
involves the hardening of every computational node, and every
network connection and data access, and moves away from the
traditional specialization of gateways, firewalls, and trusted
subnets or zones. The model we discuss is agnostic to such efforts,

4 There are limitations to this analogy. One of my associates who is a
professional chef cited several counter examples – however he was quick to note
that this holds true for 99% of food handling concerns.

as approaches we take here are equally valid for such designs. A
more “classic” network security model is, simpler to explain.

Our fundamental design goal is to create a system that can be
trusted and relied upon to perform the difficult task of spacecraft
navigation. This design effort sought to find an optimal tradeoff
between usability and security, the point of both maximal utility
(for the users) and security: a point where users could work without
being fettered by obtrusive security measures, while confident that
their work is safe. Indeed, it is a mistaken, albeit popular, notion
that security must interfere with usability, and that secure systems
must necessarily be hard to use. Much of the time this
misconception is due to a poor implementation of a secure feature,
or a security control that was added on as an afterthought to a
software system. Failing to consider these requirements and needs
of the users also can lead to the perceived adversarial role of
security in an organization. The idea of examining the security
controls in consideration with the user environment is referred to
by Matt Bishop as the Principle of Psychological Acceptability
[13, pp. 464-466]. The strategy we consider here strives to find a
complementary intersection between usability and security, an
optimal point where these two groups of competing requirements
reach their maximum effectiveness [21]. This is similar to the
concept known as the Center of Percussion (known also as the so-
called “sweet spot”) as found in weapons, aircraft, sound
engineering, and sports equipment design – where multiple factors
combine into an optimum response from a given amount of effort
[22]. Analogously, these competing needs are similar to the
economic concept of the law of supply and demand.

Finding this complementary intersection requires the
evaluation of both security and user requirements. For an example
of this optimal intersection, consider the often maligned password
change requirements of most institutions.5 Usually eight or more
alpha-numeric, and special characters are required, often with
other “randomness” requirements. These passwords often have to
be changed every 180 to 90 days (or less). As a matter of
cryptographic security, the longer the encrypted password hash,
the more difficult it becomes to conduct a brute force attack to
obtain the unencrypted password. Hand in hand with this, changing
the password more frequently helps ensure that even if the
password is broken or obtained by some other means, the window
of exposure is short before a new password is created. Evaluating
these security requirements, without user input, leads to more
“random” and longer passwords, approaching something looking
akin to line noise, with changes occurring in shorter and shorter
time intervals. Taken alone, this might be considered to be a
positive trend.

However, it has been widely known for some time that the user
response to such policies tends to decrease the security of the
system [23]. Users, unable to remember their ever-changing
passwords, proceed to create easily guessable password
combinations, or worse still, write passwords down in easy-to-find
locations such as next to computer monitors or under keyboards.
Evaluating both security and user utility requirements can instead
lead to an optimal solution for these concerns. This could include

5 A memorable and humorous example of this can be found at
http://xkcd.com/936/

http://www.astesj.com/
http://xkcd.com/936/

R.M. Beswick / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 357-369 (2019)

www.astesj.com 363

a longer password rotation with a longer password, or possibly a
smart card and a password (for two- or three-factor authentication).

Figure 2: Complementary intersection of password controls.

But how can this optimal intersection point of security and
usability for this system be determined? For this system design an
initial setup is undertaken stemming from security design
requirements and user needs. Numerous manuals for securing
systems can be used a priori to determine a baseline configuration.
We have used recommendations from the National Institutes for
Standards and Technology (NIST) [24], the Information
Assurance Directorate (previously named the System and Network
Attack Center) of the National Security Agency (NSA) [25], or the
Center for Internet Security (CIS) [26]. Using the security
principles we discuss, these (and other) security approaches are
evaluated, determining what user needs are crucial while seeking
as secure a configuration as practicable. Areas of conflict (and
overlap) are considered and from this iterative changes can be
made.

Changes are then evaluated on the privilege, area and criticality
of the alteration. Iteration towards an optimal state is a manual
process of testing, examination, and consultation with users. For
our model, there are three areas of concern: external network
access, internal host security, and user level access controls. These
areas have differing complementary intersections: the optimum
trade-space differs between these areas of concern. Once this
optimal state is determined, we then consider the evolution of this
security state over time.

4.1. External Network Access

Under the greatest amount of scrutiny, the area of greatest care
for the system design is the configuration of external network
access. This is an exercise in optimization and extreme
minimization. While users will be surveyed for input on desired
services, security needs predominate in this area over almost all
user concerns. Every access point (open network port or service)
is of the highest concern as network access control is the first and
best line of defense against intrusion. As we note above this
approach can be generalized: this principle applies to both
individual computer nodes, as well as networks of computer
systems. For an analogy, if the network is compared to a street, an
IP address would be the street address of the building and the ports
would be the doors of that building. A firewall could be a wall
surrounding that building (having its own doors/gates), or around
several buildings in a compound. This analogy can be further
extended much like that of a design of a military base (or a

medieval fortress) with layered defenses. Again, this system
design model is a simple one, and other design choices may factor
into such an extension. In the area of external network access, the
interplay between security controls and user needs will be very
heavily tilted toward security because this represents the first, best
chance to block an attacker (at the gate).

As mentioned previously this security design could be used in
other system approaches. When we examine network access
points to the model system, we should also consider other access
points, such as physical connections to the system like the
ubiquitous USB or Thunderbolt connectors. One can also consider
similar methods by extrapolation to evaluate a database system, or
a file storage system, by examining the controls on the data, and
the access points to that data.

The approach utilized involves cutting down to the absolute
minimum the number of open network ports, and then over those
ports minimizing the content and amount of data transferred.
Among the network testing tools we use, two include the Nmap
port scanner (providing a comprehensive scan of all open ports on
a machine) [27], and Nessus, a widely available network security
scanner that helps probe for security vulnerabilities on the
remaining open ports [28]. Indeed, although the user community
may with regularity request the installation of numerous software
applications that will have their own unique web server on an
additional open port, such services will usually be disallowed. This
is necessarily an iterative process. Sometimes if taken too far and
too many ports are closed off and services shut down, the machine
will not be able to communicate over the network. There may be
times as well when certain user applications really do need to have
a port opened for them. These should be examined most carefully.
Those few services that are still available will be expected to be
extremely secure against external subversion, such as the SSH
remote login/file transfer/port forwarding service. In this
approach:

• First test the system absent the host based firewall. This is to
ensure the underlying system is secure without it. The firewall
should not be the only point where outside connections are
minimized and controlled. Almost all network services can be
shut down on a secure system with no real difficulties to the
underlying function of the operating system!

• Next test the system with the host based firewall engaged. In
many cases stateful packet filtering can be used to trace (and
allow) replies to network calls, which will eliminate the
necessity for most holes in the firewall.
Table 1 depicts the results of this process for our example.

From more than twenty open network ports on our initial image
(which is a great improvement over previous Red Hat Linux
versions) we reduced the number of open network services to a
bare minimum of essential network services:

Table 1: Number of open network services with and without Firewall –
Final Minimum Services

Firewall State TCP UDP ICMP

No Firewall 3 6 2

Firewall 2 3 2

http://www.astesj.com/

R.M. Beswick / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 357-369 (2019)

www.astesj.com 364

 This is an excellent example of the point made earlier that the
strength of a system can many times be improved by what is taken
away from it. Contrasting these results with the hundreds or
thousands of network services on a general home Mac or Windows
computer can be enlightening as to the current default state of
computer security.

4.2. Internal Host Security

A highly secure system that is impossible to use for its primary
duties is not very useful. In evaluating our system’s internal host
security, the interplay between security controls and user
requirements must be nearly equal due to the competing concerns
to both keep it working as efficiently, and as secure, as possible for
the users of the system.

By analogy, inside the building, the use of the building by its
inhabitants is an important design consideration. Is it a home? A
bank? A police station? Safe construction approaches are dictated
for all buildings by fire codes, but how a building is used will
determine much of a building's interior design.

For our own computation environment, this process of system
hardening considered functions and services the user community
required:

• The completion of operational duties such as supplying critical
data sets to mission partners and utilization of mission critical
flight software.

• The supply of required capability for a task or job role (e.g.
visualization and formatting tools, viewers, editors, functional
compilers, and third party software).

• The provision of useful utility functions and software (e.g.
BR/DVD/CD archiving, external export of interesting
graphical output, the capacity to safely load removable file
systems, and network printing).
From these characterizations, a definition evolved of what

behaviors were expected of a user and conduct they should never
be expected to engage in. With such a set of definitions we
removed from the system those privileges and programs a user was
never expected to use, and added further constraints so users would
have difficulty in performing anomalous activities.

Similar to the approaches used to secure the external network
access of the machine, a software tool was used to evaluate the
internal security settings of the machine and produce benchmarks
for enhancement. Created by the Center for Internet Security
(CIS), the CISscan package was used to evaluate the internal host
security for the system [26]. It provides a set of metrics for
assessing security configurations for a number of package
distributions, as well as operating system platforms, allowing
comparisons between variant software sets, alternate
configurations, and operating systems. Representing an effort to
create a “best practices” industry standard guideline to system
security, the CISscan package is based around a set of consistent
standards, that can be used to evaluate a given system against such
metrics. With this tool, it was possible to create a security baseline,
make sure that configuration changes and patching continued to
meet that baseline, and iterate to a desired system configuration.

Categorical changes to the internal security settings included:

• Removal of extraneous executable permissions. The ability to
change users in a program is an especially serious concern.
SetGID and SetUID executables have the ability to change the
group and user of the process that runs them. With this ability
such programs present an extreme security risk. Some
programs however, such as the ones that are required for users
to log into the system need such a capability. Like our
evaluation of open network services, almost all operating
systems have a needlessly high amount of these types of
programs by default. Even the latest versions of Red Hat
Enterprise 7 contain numerous examples of programs with too
many privileges. In our system, with effort we reduced the
number of these very sensitive programs from 45 SetUID
executables in the initial install to a total of 15 in the final
secured configuration (see Table 2 for full discussion).

• Limit the installation of new software. Every new software
installer has the potential to open up new vulnerabilities. It is
far better to avoid such problems by not installing the software
at all. As noted, this may minimize many maintenance issues
as well, including keeping the software secure and patched. A
related question for discussion is, “does your software really
need its own web server?”

• Limit or otherwise shut down all unnecessary system services.
For some minimal operating system configurations, the number
of system services running on startup can be counted on one
hand. This is a far cry from the average computer, which can
have more than a hundred processes running at any given
moment before anyone has logged in. Such extraneous
processes can represent significant vulnerabilities on a system,
especially if they have a network port open.

• Modify key network and kernel data structures. By changing
the settings of key network and kernel configuration values, it
is possible to significantly increase the protection of the system
against denial of service attacks and other security failures with
the occasional cost of small increases in memory use. Indeed,
lowering user limits (number of users) and per-process
(number of processes) on the system, significantly lower the
odds an application can harm system function, blocking a
denial of service attack by preventing such software from
consuming system resources. Fortunately this area is one of the
least likely to result in negative feedback and consequent user
pushback.

• Restrict file system permissions on untrusted and/or critical file
systems, secure application sets, and use caution for removable
file systems. Crucial file systems are mounted read-only on
most machines in our environment (especially the ones
containing critical software). Also, file systems that are
removable cannot execute programs with SetGID or SetUID
privilege as it is trivial to create such programs that can give
the user elevated privileges (thus bypass system security) on a
different system and load them from a removable device.
These categorical changes are summarized both from the

metrics of the CISscan tool and with direct metrics (where
possible). Results of these efforts are shown in Table 2 and Table
3, taken from our model system image at four different revision
times.

http://www.astesj.com/

R.M. Beswick / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 357-369 (2019)

www.astesj.com 365

Table 2 examines direct metrics that can be compared across
several differing system images. This includes the total number of
SetGID and SetUID programs in the image, the number of
“classic” System V and “new” Systemd services, as well as kernel
settings (variables) changed for hardening the internal system and
network from attack. For the first four rows of metrics, lower is
better, for the last two rows, higher is better:

Table 2: Navigation OS Direct Metrics

Metric Initial
Install 6

June
2016

April
2017

May
2018 7

(Lower numbers are better)

Total SetUIDs 45 15 15 15

Total SetGIDs 23 18 19 19

Systemd Services 136 55 58 58

Sys V Services 5 2 2 2

(Higher numbers are better)

Kernel variable changes 3 11 14 14

Network changes 2 4 4 4

Table 3: Navigation Red Hat Enterprise 7 Security Metrics
(Center for Internet Security Benchmarks)

CIS category May
2015

June
2016

April
2017

May
2018 6

Updates, Add. Security 38% 45% 45% 47%

OS 12% 11% 11% 11% (est.)

Special Services 67% 67% 67% 79%

Net Configuration 91% 92% 92% 91%

Log & Audit 50% 55% 55% 57%

System Access 45% 41% 41% 39%

User Account 14% 14% 29% 43%

Tests passed/failed 71/66 87/79 88/78 110/79 8

Table 3 tracks more general changes in types of configurations,
and in order to track such changes over time, the CISscan tool is
used. Breaking the OS into areas of concern, these metrics measure
how secure such categories are compared to a reference model.
For some cases, with the addition of software sets or new features
requested by users, these scores went down. While the results are
broad and vary by software sets and installed feature, they give the
ability to check the aggregate state of security and compare
changes over time. This may be invaluable when a software
installer decides to reset a host of security settings. Such changes
are very apparent in these results, and this tool also proves itself
useful in providing aspirational (and safe) examples for academic
papers. Relevant CIS categories along with numeric percentages

6 The initial install was not suitable for general use and underwent significant
change. It is close but not equivalent to the May 2015 release of Table 3.
7 It should be noted in both Table 2 and Table 3 (below) that the system
contained almost five times as many software packages in the May 2018 release
as the initial install due to new feature requests and open source changes.

for several system images are given. For these values a higher
percentage is better, but it can be nearly impossible, and
(mentioned previously) less than useful to reach a 100% score.

4.3. User Access Controls

 The controls directly placed on user action in this security
model is an area where considerable compromise is necessary in
the interplay between system security and user needs. The domain
is one where (for the Navigation systems) the need for usability is
a greater priority than security. By analogy, consider the use of
badge controlled rooms in a building. While such security may be
appropriate for certain high security buildings where this type of
security is required, it may not be as suitable for a supermarket or
a home. Two such systems are in general available for most OS
platforms.

4.3.1. Discretionary Access Control

In Linux this user control is based on standard process and file
permissions, allowing for access control of critical system files and
granting users the ability to manage access to data sets and user
files. This mechanism allows for a separation of users and data,
with these management controls based on Discretionary Access
Control (DAC) mechanisms, such as traditional Unix process and
file management. Such controls have been standard on almost all
operating systems for some time. Care should be taken to avoid
overly restrictive user settings. Unlike the previous areas, it is hard
to come up with a general standard for these controls. There might
be significant difference in file system and data permissions even
for different teams on the same system. Indeed, all that we can
recommend here is due diligence in the application of these
protections.

4.3.2. Mandatory Access Control

Mandatory Access Control (MAC) is an alternate security
mechanism that is available under Linux, referred to as SELinux
[29]. Part of a series of research projects out of the United States’
National Security Agency, this series of software modules seeks to
bring aspects of highly secure operating system designs to the
Open Source community [30]. These features, which allow for a
second, very granular control over user actions, previously were
available only on highly secure and expensive computer designs.
These modules are included with the Red Hat Enterprise Linux
distribution and are a part of our model image. User access can be
granted or revoked to a specific file or process, categorized by role.
For example, on a system without SELinux, the critical system
password file (/etc/shadow), cannot normally be read, however the
time it was last modified and the size can be read by an
unprivileged user of the system. Such information, such as when
the file was last changed (i.e. the last time a password was
modified) could be useful to an attacker. For a machine running
SELinux with restrictive settings however that file cannot even be
listed by an unprivileged user of such a system: no information
about that file will be returned at all.

8 CISscan was updated and several tests were added and expanded. This category
had changed significantly in the new version and the value was derived from the
previous test method.

http://www.astesj.com/

R.M. Beswick / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 357-369 (2019)

www.astesj.com 366

However, as we note, how well the users can use the system is
a crucial concern for this area. Unlike the specialized intelligence
and military computer systems that utilized Mandatory Access
Control initially, users of general purpose engineering machines,
like those of the navigation computing environment, typically do
not have the same expectations or same security concerns about
how such machines should function. The use of such constraints
could potentially make the user experience miserable, or simply
untenable. Furthermore, familiar applications could fail in
unexpected ways. Such controls are also quite difficult to
configure in a correct manner to support the Navigation user
community. There are few use cases where this level of security
restriction for these User Access Controls area, has been found
useful, in comparison with the application of greater restrictions on
the External Network Access and Internal Host Security
subsystems.

A trial run of the SELinux system was undertaken on a limited
set of operations workstations to evaluate the utility of these
controls. The proposed idea was to apply an iterative process to
determine the areas of the system utilized normally by the user
base. SELinux was run in permissive mode over the course of
several weeks, and the SELinux system was examined to
determine those areas where the users would be blocked by the
SELinux policy. From these conflicts a model of user activity was
built up over several months, which allowed for changes to be
made to the SELinux policy rules, or changes to be made to user
software and/or user behavior. Over time the sum of these changes
helped define expected user actions. Areas of the system that users
did not use and did not need, would be blocked off from user
activity.

In principle this is a good approach. However a formal effort
examining this method noted two major difficulties [31] and these
difficulties have not changed significantly:
• System analysis and configuration: Getting the computer

system and its processes working, and working with the correct
permission sets was significantly more technically challenging
than expected. Many errors were only solved by trial and error.
A considerable amount of time was spent to get the system to a
working and stable state.

• User analysis: This process (even on earlier versions of
SELinux) was not unusually difficult. However downtime
could be required during the analysis iterations, and these
iterations could make it difficult to accommodate system and
user activity changes (users do not like having to log out of their
systems repeatedly). This may be an area that functions better
for environments that are more static.
At this time methods of Mandatory Access Control such as

SELinux are still being evaluated for use in Navigation. Although
it offers much improved control mechanisms, and even allowing
the automatic design of user access from user actions, our current
examination of the intersection between system security and user
utility in this area does not recommend its use at this time.

4.4. Evolution of system security over time

Unlike the previous parts of this section which deal with the
issues of creating an initial, secure system state, here we consider
the evolution of that state over time. As we observed in our

discussion on security over time how this state changes is strongly
subject to the environments and networks that connect to our
system.

Figure 3: Security over time.

How this confidence in a system changes, and hence the slope
of the security state in the figure above is very dependent on events
in the local environment and the vulnerabilities that emerge over
time. It may be nearly linear over time, or an exponential die-off
due to newly discovered vulnerabilities. For example, a powered
down system on a shelf (or offline storage for a VM) will not
change at all. However once connected, many factors will strongly
affect the slope of the curve, such as the age of the patching and
software set, the security controls, and the environment to which it
is connected. This is highly particular to the environmental factors
acting on the system: even systems at the same site may have wide
variance in this evolution. Understanding this, and remediating
such changes is a large part of the maintenance lifecycle of a
system. The only clear guidance that can be offered is that, as with
a broken password, a system compromise will cause the curve to
have a cliff (or stair-step) function in the trust of the system. This
will require a system reset or reinstall to resolve.

5. Future Considerations and Conclusions

Considering the evolution of the cyber threat environment and
trying to discern what new challenges will arise and how to meet
these concerns is a subject of ongoing interest and research for this
author. The navigation computational environment conducts
critical activity on a 24/7/365 schedule, and cannot afford to be the
victim of a security compromise. It is an important system that
needs protection. While tips and techniques for security have
dramatically changed since this author started as a system
administrator, the underlying principles discussed here have
changed little in two decades, or not at all. Such archetypes are
examined in this paper, and while the particular technical points
can change, the foundational ideas will likely remain the same.

One case in point, as noted “de-perimeterisation” approaches
like Zero Trust computing may help our approach to computational
and network security by encouraging rigorous security at every
computational node and network connection. This is a refreshing
model which brings to mind some of the most secure intelligence
facilities and military fortifications of the last century. It is a vast
improvement on the simple, single-defensive layer (sometimes
called the hard exterior / soft interior) model which ends up being
the most common approach taken in network security. Indeed, we
advocate an approach in this paper of being hard on the exterior
and hard on the interior!

http://www.astesj.com/

R.M. Beswick / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 357-369 (2019)

www.astesj.com 367

While it is heartening to see such enthusiasm, and much good
can come from this, it is important to remember that these efforts
(still) need to consider both the complementary intersection of
security and user design requirements, as well as the importance
of the fault tolerant protection of all of the critical computational
elements. As we mention above, solving the totality of this defense
in breadth problem is a hard one. Indeed, not considering these two
avenues of concern can lead to situations where the computational
environment is perceived by the users as as more akin to something
like a prison, or worse still, end up promoting a failure of
protection akin to that seen in the previously mentioned Maginot
line. Especially in the second case, aggressive efforts as Zero Trust
are expensive and challenging to implement and can (from
exhaustion of resources in time and effort) lead to the promotion
of the failure they sought to prevent! If even a simple approach
cannot be executed correctly, attempting to implement a more
complex model (like Zero Trust) can be a dubious undertaking.

Another example showcasing this fundamental difference is
the spate of attacks based in speculative execution on modern x86
processors (as well as methods to remediate them). These have
been of tremendous concern and rapid development for the entire
computer industry over the past 12 months [32]. However, the
architecture problems at the source of these issues are fundamental
design concerns that were identified in their implementation nearly
twenty years ago [33].

 In addition, a few observations may be derived from the
principles espoused above. To the author’s mind these should be
regarded as obvious and self-evident. Unfortunately, that is often
not be the case.

Of these, the most significant is don't engineer in single points
of failure. For example, after considerable effort to construct a
secure, fault tolerant network design, with a hardened firewall and
a focused IDS, it is a contradictory effort to then layer a poorly
secured Active Directory server for single sign-on for the network
(or a poorly configured VPN to access such systems). Such a setup
is self-defeating – at best. Fault tolerant and secure design should
not be ignored for "just one service". In a similar manner the
implementation of a poorly designed security tool designed to
examine (or worse, modify) the entire enterprise environment can
serve to help implement a large security hole for the entire
enterprise. Indeed, as Sami Saydjari relates, there is particular
concern with such enterprise security tools as such systems are the
highest priority targets of attackers [19, p. 346]. Ease of
management of an enterprise network is a nice goal. However, one
of the questions that should come up is, "by whom?" Single points
of failure must be closely, closely watched, as they can be doors
that potentially open up the whole network to attack.

This goes with the concept that uniformity of design is not
necessarily good. “Balkanization” or the promotion of multiple
differing configurations (as long as each of those configurations

9 A major point of defense in depth is that a single failure should not provide

the opportunity for compromise on a wide scale. This should be one of the benefits
of such an architecture focused approach. Many times a significant vulnerability in
our systems crossed our desks with an organizational rallying cry of “patch now!”,
“patch now!” and we would discover that we had limited to no exposure from the
vulnerability because of other defense in depth controls that were in place. Our goal
is to be proactive rather than reactive. While we do have emergency patching
mechanisms in place, we prefer not to use them unless truly necessary.

are secure) promotes design diversity, as discussed in Section 2.
While this may not be desirable from a management perspective,
such diversity can lead to independent modes of failure, and hence
increased security fault tolerance.

Similar to this is the desire to patch often, in the effort to be
secure. These two concepts are not, as popularly believed, the
same. While this may go against the grain of the currently popular
DevOps and Agile software engineering paradigms, it is clear that,
absent other testing schemes, it is wise to take the approach of
“wait and see” when patching systems. 9 Such updates may
introduce bugs, new vulnerabilities, or other unforeseen issues.
This is especially true in times of stress after the announcement of
major computer security bugs. Large companies can and do make
mistakes, and a patch failure that in individual systems may cause
pain and irritation could lead to a catastrophic failure or outage if
on a critical system.10

Finally, one of the bigger trends in current computation lies in
the increase in the use of virtual and cloud computing systems.
Distributed systems such as these can offer significantly lower
costs if (and this is still a big “if”) their security and reliability
metrics can meet the requirements of their customers. Architecture
principles discussed here are (as much as they can be made to be)
platform agnostic. One computer security researcher relates the
major difference in cloud computing as, “Fundamentally, cloud
security is a primary concern due to loss of control ... We’ve seen
this before – [with] outsourcing...” [34, p. 24]. Does the cloud
service provider follow fault tolerant and security fault tolerant
design principles? Can such questions even be answered by such
services?

This loss of control over the configuration for the security
environment and for critical events, continues to be problematic
for the Navigation use case for cloud computing, especially with
concerns over Availability [34, p. 96]. With cloud computing,
ownership of the systems and operational processes is by an
outside organization. As a part of the operations of our
computational environment, it has sometimes taken extraordinary
effort to ensure the continuing functioning of our systems in times
of stress. This has sometimes meant the difference between
mission success and failure. In an emergency, wide latitude is
given to operational staff to keep systems running and restore
failed systems as fast as possible to meet the needs of flight
operations. With an emergency in a remote cloud computing
environment, can one even expect to get a responsible engineer on
the phone? Without control over that environment, it is obvious
we cannot, as Flight Director for NASA Chris Kraft said, ‘‘...take
any action necessary for mission success’’ [35, p. 392].

It is hoped that the ideas in this paper will provide assistance to
administrators and system engineers, and especially the
astronautical community. Aspirational goals are presented here, in
the hope of providing a guideline to follow for your own design

10 It may be instructive to examine the release schedule (and following systems
failure reports) for the firmware and software updates for the
MELTDOWN/SPECTER vulnerability of 2018. Having a running server is in most
cases preferable to one that is “currently patched”, but “awaiting motherboard
replacement.”

http://www.astesj.com/

R.M. Beswick / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 357-369 (2019)

www.astesj.com 368

efforts. These principles can be applied in Ground Data Systems
design problems, as well as in other areas of systems engineering.
This is particularly valuable in a community of austere budgetary
realities where our bespoke systems engineering is based around
missions with only a few, or (more often) only a single deliverable.

In an ideal world we would be able to trust our computer
systems in the same way that when we drive a car, we trust its
brakes. I believe that this optimistic idea is a badly needed one in
the design of the increasingly complex and intertwined computer
systems that comprise our world today. With the current state of
computer security this can appear hopeless, however it is clear, as
with the encouraging Boeing flight control system [10], there are
computer systems that have been designed to be truly fault tolerant.
A hard problem is not necessarily an impossible problem. There is
no reason we can not also do this in computer security.

Conflict of Interest

The author declares no conflict of interest.

Acknowledgements

To the Systems Engineers and System Administrators who
have helped in support of the security architecture discussed here
I would like to give my sincere thanks. Additionally, of the editors
who assisted with this paper, Zachary Porcu did tremendous
service and to him a considerable debt of gratitude is owed. In
addition it is important to note that a great deal of appreciation is
also due Hal Pomeranz, contributing author of the Center for
Internet Security, and senior Fellow of the SANS Institute, who
spent valuable time reviewing the ideas in this paper, and raised
some insightful questions that helped refine this effort.

This research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. Reference to any
specific commercial product, process, or service by trade name,
trademark, manufacturer or otherwise, does not constitute or imply
its endorsement by the United States Government or the Jet
Propulsion Laboratory, California Institute of Technology. © 2019
California Institute of Technology. Government sponsorship
acknowledged.
References

[1] This paper is an extension of work originally presented in, R. M. Beswick,
"Computer Security as an Engineering Practice: A System Engineering
Discussion," IEEE: 6th International Conference on Space Mission
Challenges for Information Technology (SMC-IT), 27-29 September, 2017.
doi: 10.1109/SMC-IT.2017.18

[2] R. Beswick, P. Antreasian, S. Gillam, Y. H. Hahn, D. Roth and J. and Jones,
"Navigation Ground Data System Engineering for the Cassini/Huygens
Mission," AIAA 2008-3247, SpaceOps 2008 Conference, Heidelberg,
Germany, May 12-16, 2008. doi:10.2514/6.2008-3247

[3] The Netflix Tech Blog, "The Netflix Simian Army," Medium, 19 July 2011.
[Online]. URL: https://medium.com/netflix-techblog/the-netflix-simian-
army-16e57fbab116. [Accessed 3 September 2018].

[4] The Netflix Tech Blog, "Chaos Engineering Upgraded," Medium, 25
September 2015. [Online]. URL: https://medium.com/netflix-
techblog/chaos-engineering-upgraded-878d341f15fa. [Accessed 3
September 2018].

[5] C. Carson, Effective FMEA's – Achieving safe, reliable and economical
products and processes using Failure Mode and Effects Analysis, Hoboken,
NJ: Wiley & Sons, 2012.

[6] B. Johnson, "Fault-Tolerant Microprocessor-Based Systems," IEEE Micro,
vol. 4, no. 6, IEEE Computer Society Press, Los Alamitos, CA, pp. 6-21,
1984.

[7] J. Gray and D. P. and Siewiorek, "High-Availability Computer Systems,"
IEEE Computer Society, Los Alamitos, CA, p. 39-48, September 1991. doi:
10.1109/2.84898

[8] D. McCullough, The Great Bridge: The Epic Story of the Building of the
Brooklyn Bridge, New York: Simon & Schuster, 2012.

[9] U.S. - Canada Power System Outage Task Force, "Final Report on the
August 14th, 2003 Blackout in the United States and Canada – Causes and
Recommendations," April 2004. [Online]. URL: https://energy.gov
/sites/prod/files/oeprod/DocumentsandMedia/Blackout Final-Web.pdf.
[Accessed 25 May 2018].

[10] Y. C. Yeh, "Safety critical avionics for the 777 primary flight controls
system," IEEE - Digital Avionics Systems, Daytona Beach, FL, DASC.
20th Conference, October 14-18, 2001. doi: 10.1109/DASC.2001.963311

[11] R. Anderson and R. Needham, "Programming Satan’s Computer,"
Computer Science Today, Berlin, Springer, Lecture Notes in Computer
Science, vol. 1000, pp. 426-441, 1995.

[12] B. R. Rich, "Clarence Leonard (Kelly) Johnson, 1910-1990, A Biographical
Memoir," in National Academy of Sciences, Washington, D.C., National
Academies Press, p. 231, 1995.

[13] M. Bishop, Computer Security, Art and Science, 2nd. Ed., New York:
Addison-Wesley, 2019.

[14] D. Libes, "RFC 1178 – Choosing a name for your computer," August 1990.
[Online]. URL: http://www.faqs.org/rfcs/rfc1178.html. [Accessed 25 May
2017].

[15] I. Roundhill, "699-101: Cassini Navigation Plan, JPL D-11621," Jet
Propulsion Laboratory, Pasadena, CA, 1 August 2003.

[16] S. Garfinkel, G. Spafford and A. Schwartz, Practical UNIX and Internet
Security, 3rd Ed., Sebastopol, CA: O'Reilly and Associates, 2003.

[17] W. R. Cheswick, S. M. Bellovin and A. D. Rubin, Firewalls and Internet
Security, Repelling the Wily Hacker, 2nd Ed., New York: Addison-Wesley,
2003.

[18] W. Schwartau, Time Based Security, Seminole, FL: Interpact Press, 1999.
[19] O. S. Saydjari, Engineering Trustworthy Systems, New York: McGraw-

Hill Education, 2018.
[20] E. Gilman and D. Barth, Zero Trust Networks, Sebastopol, CA: O'Reilly

Media Inc., 2017.
[21] B. Youn and P. Wang, "Complementary Intersection Method for System

Reliability Analysis," ASME Journal Mechanical Design, vol. 134, no. 4,
April 2009. doi: 10.1115/1.3086794

[22] R. Cross, "Center of percussion of hand-held implements," American
Journal of Physics, vol. 72, no. 5, pp. 622-630, May 2004.
doi:10.1119/1.1634965

[23] S. Chiasson and P. C. v. Oorschot, "Quantifying the security advantage of
password expiration policies," Designs, Codes and Cryptography, vol. 77,
Issue 2-3, pp. 401-408, December 2015.doi: 10.1007/s10623-015-0071-9

[24] National Vulnerability Database, "National Checklist Program Repository,"
National Institiute of Standards and Technology, [Online]. URL:
https://nvd.nist.gov/ncp/repository. [Accessed 30 March 2018].

[25] Information Assurance Directorate, " Operating Systems guidance,"
National Security Agency, [Online]. URL:
https://www.iad.gov/iad/library/ia-guidance/security-
configuration/operating-systems/index.cfm. [Accessed 20 April 2017].

[26] Center for Internet Security, "CIS - Center for Internet Security," CIS,
[Online]. URL: http://www.cisecurity.org. [Accessed 30 March 2018].

[27] NMAP, "Nmap," [Online]. URL: http://www.nmap.org. [Accessed 30
March 2018].

http://www.astesj.com/

R.M. Beswick / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 357-369 (2019)

www.astesj.com 369

[28] Nessus, "Tenable Security," Tenable Inc, [Online]. URL:
http://www.tenable.com/products. [Accessed 30 March 2018].

[29] SELinux, [Online]. URL: http://selinuxproject.org/page/Main_Page.
[Accessed 25 May 2018].

[30] NSA, "SELinux," National Security Agency, [Online]. URL:
https://www.nsa.gov/what-we-do/research/selinux/.[Accessed 25 May
2018].

[31] R. M. Beswick and D. C. Roth, "A Gilded Cage: Cassini/Huygens
Navigation Ground Data System Engineering for Security," AIAA 2012-
1267202, SpaceOps 2012 Conference, Stockholm, Sweden, June 11-15,
2012. doi:10.2514/6.2012-1267202

[32] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S.
Mangard, T. Prescher, M. Schwarz and Y. Yarom, "Spectre Attacks:
Exploting Speculative Execution," arXiv.org:1801.01203,3 January 2018.

[33] Z. Wang and R. B. Lee, "Covert and Side Channels due to Processor
Architecture," Proceedings of the 22nd Annual Computer Security
Applications Conference (ACSAC'06), 11-15 Dec. 2006.
doi:10.1109/ACSAC.2006.20

[34] D. Shackleford, "Security 524: Cloud Security Fundamentals - Day 1," in
[seminar], SANS National Conference, Orlando, FL, April 7th, 2017.

[35] G. Kranz, in Failure Is Not an Option: Mission Control From Mercury to
Apollo 13 and Beyond, New York, Simon & Schuster, 2009.

[36] C. E. Shannon, "Communication Theory of Secrecy Systems," Bell System
Technical Journal, vol. 28, no. 4, pp. 656-715, 1949. doi:10.1002/j.1538-
7305.1949.tb00928.x

http://www.astesj.com/

	1. Introduction
	2. System design approaches: Fault Tolerance and Security Fault Tolerance
	2.1. Fault Tolerance
	2.2. Security Fault Tolerance
	2.2.1. For the most critical systems, use a machine that has only one function.
	2.2.2. For redundancy in a security context ideally differing configurations should be used.
	2.2.3. Single points of failure of a system should be few, and truly independent.
	2.2.4. Systems should Fail-Safe and/or Fail-Gently.

	3. Computer Security Design
	3.1. Abstract Principles
	3.1.1. Confidentiality
	3.1.2. Integrity
	3.1.3. Availability

	3.2. Implementation
	3.2.1. Defense in Depth
	3.2.2. Defense in Breadth
	3.2.3. Least Privilege
	3.2.4. Vulnerability Removal
	3.2.5. Sterility and Absolute Security

	3.2.6. Security over time or robustness

	4. System Evaluation
	4.1. External Network Access
	4.2. Internal Host Security
	4.3. User Access Controls
	4.3.1. Discretionary Access Control
	4.3.2. Mandatory Access Control

	4.4. Evolution of system security over time

	5. Future Considerations and Conclusions
	Conflict of Interest
	Acknowledgements
	References

