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Dynamic Searchable Symmetric Encryption (DSSE) methods address the problem of securely
outsourcing\updating private data into a semi-trusted cloud server. Furthermore, Forward
Privacy (FP) notion was introduced to limit data leakage and thwart the related attacks on
DSSE approaches. FP schemes ensure previous search queries cannot be linked to future
updates and newly added files. Since FP schemes use ephemeral search tokens and one-time
use index entries, many scholars conclude that privacy attacks on traditional SSE schemes do
not apply to SSE approaches that support forward privacy. However, to obtain efficiency, all FP
approaches accept a certain level of data leakage, including access pattern leakage. Here, we
introduce two new attacks on forward-private schemes. We demonstrate that it is still plausible
to accurately unveil the search pattern by reversing the access pattern. Afterward, the attackers
can exploit this information to uncover the search queries and consequently the documents. We
also show that the traditional privacy attacks on SSE schemes are still applicable to schemes
that support forward privacy. We then construct a new DSSE approach that supports parallelism
and obfuscates the search and access pattern to thwart the introduced attacks. Our scheme is
cost-efficient and provides secure search and update. Our performance analysis and security
proof demonstrate our approach’s practicality, efficiency, and security.

1 Introduction
Cloud service providers offer various services that attract users and
encourage them to outsource their personal data to reduce mainte-
nance costs and increase user satisfaction, convenience, and flexibil-
ity. Nevertheless, these services come at the cost of losing complete
control over the outsourced data, which raises security and privacy
concerns. Although encrypting data before uploading it into the
cloud addresses privacy concerns, it suffers from low efficiency.
Keyword search is an essential requirement in these systems which
is not supported by traditional encryption schemes. A naive solution
is to download and decrypt all the encrypted documents to search
for a keyword. Obviously, this solution suffers from excessive
communication overhead and is inefficient.

Hence, Searchable Symmetric Encryption (SSE) schemes [1]–
[4] were introduced to tackle this challenge. In SSE schemes, a
cloud can perform search queries on user’s outsourced data while
the queries, results, and data are encrypted. In the other words, SSE
schemes address both privacy challenges and the searchability re-
quirement. However, the early approaches only work for static data

which means that no additions, updates, and deletions are feasible
in a low-cost and efficient manner after the setup phase (securing
and storing data into the cloud). Later, researchers proposed Dy-
namic SSE (DSSE) approaches [5]–[8]. These schemes enable users
to update\modify the outsourced corpus arbitrarily in addition to
performing search queries.

Moreover, SSE schemes support Multi-keyword [4, 9] search
or Boolean [7, 10, 11] . Boolean schemes search for a single key-
word and returns all of the documents that contain the queried
keyword. Alternately, Multi-keyword search supports multiple key-
words search which prevents unacceptably coarse results and im-
proves result accuracy. Moreover, some of the SSE schemes support
ranked search [4, 9] which means the cloud returns most relevant
files by ranking them based on their relevance to the query.

However, DSSE approaches leak sensitive information such
as search and access pattern. These methods employ deterministic
queries \search tokens, which allow a server to determine if multiple
queries consist of the same keyword (search pattern). furthermore,
the matching document identifiers (access pattern) will be leaked af-
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ter each query. Many scholars have shown [12]–[14] that revealing
such important meta-data can be used to obtain critical information
and even to expose underlying plaintext data. Note that, in theory
it is possible to design SSE scheme with no information leakage
using several cryptographic primitives such as oblivious RAM, ho-
momorphic encryption, and secure two-party computation[15]–[17].
However, these methodologies suffer from excessive computation
power, low efficiency, and large storage costs.

Moreover, in Dynamic SSE approaches, it is still feasible to link
previous search and update requests to a file that is recently added.
For example, if we add a new document to the corpus, the server can
determine whether the new document contains the keyword that we
searched for in the past. Moreover, the cloud can execute the queries
on deleted documents. To tackle these challenges, researchers in-
troduced Backward and Forward privacy [5]. Backward privacy
guarantees the privacy of deleted documents while forward privacy
guarantees the privacy of newly added documents. No efficient
approach currently provides full backward privacy.

Forward-private (FP) approaches employ one-time use search
tokens to preserve the newly added documents’ privacy [7, 6]. This
means the search token for a keyword changes after being used
in a query. Moreover, server index entries are ephemeral, which
means the user generates new encrypted index entries after each
time of access. Hence, the server cannot track the queries. As
a result, Scholars believe that privacy attacks on traditional SSE
approaches do not apply to forward-private schemes. In particular,
in[14] the author believes these features “highlights the importance
of forward privacy”, and in [18] the author believes with forward
privacy these attacks can be thwarted and prevented. Furthermore,
applying these attacks will become a cumbersome task, considering
that forward-private schemes are primarily dynamic and provide
update functionalities (including add and delete). Therefore, moni-
toring and linking the queries turns significantly harder, if multiple
update requests occur between two search queries.

Nevertheless, this paper extends work initially presented in
the Eleventh ACM Conference on Data and Application Secu-
rity and Privacy [10] and shows that it is still possible to reveal
the documents and queries accurately. All DSSE approaches ac-
cept a certain level of leakage to achieve an acceptable level of
performance\efficiency [2, 7, 13, 19]. Hence, the primary objective
is to increase the performance as high as possible while decreasing
the leakage. In particular, access pattern leakage is among the ac-
ceptable leakages [5]–[7] and, thus, one of the open challenges that
has not been addressed among the forward-private and traditional
approaches.

In this paper with introducing two attacks we show that it is
possible to retrieve the search pattern with high accuracy that can
be exploited by previous attacks to unveil the search tokens and con-
sequently the documents in FP approaches. Our introduced attacks
reverse-analyze (see Section 4) the access pattern to recover the
search pattern. The first attack is applicable on the forward-private
DSSE approaches that only provide “add” functionality such as [7].
We modified the the first attacked (based attack) and introduced
the advanced attack which can invade the forward-private DSSE
approaches that provides both “add” and “del” functionalities such
as [18].

In this paper, a new forward-private DSSE approach is intro-

duced to tackle this problem. In contrary with other scheme, our
approach hides and obfuscates the access and search pattern and
employs non-deterministic search tokens. All these features thwart
and prevent the introduced attacks in this paper and also previous
privacy and security attacks. Particularly, our contributions are:

1. Defining two concrete attacks and demonstrating its potential
threats and privacy\ security risks.

2. Tackling the access pattern leakage challenge in DSSE ap-
proaches with forward privacy with a novel method.

3. Constructing an forward private DSSE scheme that support
search and update (add and delete) operation. Furthermore,
our efficient approach supports parallelism which is an impor-
tant efficiency factor [7].

4. Providing a security proof against adaptive adversaries which
verify the privacy and security of our method.

5. Demonstrating the efficiency of our approach in real-world
by implementing it using real-world datasets.

The rest of this article is organized as follows. We present re-
lated work and the state-of-the-art work in Section 2. We then state
the preliminaries in Section 3. In Section 4, we introduce two new
attacks on current forward-private DSSE schemes, and in Section 5
we construct a new scheme that prevents the introduced attacks in
Section 4. Experiments and evaluation are detailed in Section 6, and
the security proof is provided in Section 7. Finally, we conclude our
paper in Section 8.

2 Related Work
During the last decade, various privacy constructions and security
definitions have been proposed for searchable encryption. Efficiency
has always been a key requirement and a primary challenge in this
research area. For example, Oblivious RAM [15] achieves full
privacy and security without leaking any information to the server,
but it is impractical for real-life applications because of its exces-
sive computation costs. Hence, several approaches were designed
[1, 2, 4, 9, 19] that selectively leak information (e.g., search and
access pattern). This means, these schemes accept a low level of
information leakage to gain a higher level of efficiency.

Searchable Symmetric Encryption (SSE) and Public-key En-
cryption with Keyword Search (PEKS) are the two main divisions
of searchable encryption schemes. In [20], the author introduced
the notion of the public key encryption with keyword search, which
followed by several methods [21]–[23] to improve the system cost
and efficiency of PEKS approaches. In particular, these methods use
one key for encryption and another key for decryption. Hence, only
data users who possess the private-key can search the encrypted
outsourced data. In this paper we focus on the SSE schemes and our
introduced construction is build on symmetric security primitives.

The first SSE scheme was introduced by [1]. They employed
a two-layered encryption to encrypt each keyword. However, they
suggest a sequential search which impacts the search time (makes it
linear to the document size). Later, in [2] the author used a secure
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index structure called Bloom filters to address this issue. In [19],
the author proposed a scheme which preserves the security of the
outsourced data against an adaptive adversary. However, this comes
at the cost of higher communication overhead and requires more
memory space on the server side.

Nevertheless, traditional SSE approaches provide exact keyword
search and cannot tolerate any imperfections or format inconsistency.
In [24], the author addressed this issue and proposed a method in
which resultant documents are selected based on the keyword simi-
larity and closest possible matching documents. In [25], the author
tackled the same challenge and proposes a scheme that decreases
system cost and provides more efficiency.

Moreover, SSE schemes support Boolean [7, 10, 11] or Multi-
keyword [4, 9] search. Boolean schemes search for a single keyword
and returns all of the files that contain the respective keyword. On
the other hand, multi-keyword ranked search solutions [4, 8, 26, 27]
enhance the result accuracy by supporting multiple keywords search.
In [4], the author introduced the notion of “coordinate matching”
which is a similarity measure that matches as many keywords as
possible. They also constructed a multi-keyword search approach
using coordinate matching. However, previous methods only sup-
port single data owner. In [26], the author designed a new scheme
with a trusted proxy that supports multiple data owners. In [8], [27]
the author considered a system model with semi-honest cloud server
and proposed verifiable SSE approaches that can detect a malicious
server. Moreover, in [9] the author propose a multi-keyword ranked
search scheme that solve the problem of search pattern, and co-
occurrence information leakage. They introduce a novel chaining
encryption notation which prevent the aforementioned information
leakages.

Dynamic Searchable Symmetric Encryption (DSSE) methods
were introduced to support add, delete, and update operations in an
efficient manner. In particular, the author in [28] introduced a DSSE
approach that preserve users’ privacy and security against adaptive
chosen keyword attacks. In [29], the author proposed a new DSSE
method called “Blind Storage” that hinders leaking sensitive infor-
mation such as the size and number of stored documents. DSSE
approaches employ interactive protocols which results in leaking
more information about the outsourced data in compare with tradi-
tional SSE approaches. In [5], the author introduced the notion of
forward-privacy and designed a forward private DSSE construction
to address this issue. However, their proposed method suffers from
low efficiency. In [6], the author improved the system efficiency by
using trapdoor permutations and designed a more efficient forward
private DSSE scheme. However, these approaches use sequential
scan to execute a query which makes palatalization impossible. In
[7], the author addressed this issue with designing a new forward
private DSSE method that provides parallelism by design.

3 Problem Formulation

3.1 Preliminaries

For a finite set X, we employ x ← X to represent that x is sam-
pled uniformly from the set X. λ is the security parameter, and ||
shows concatenation. Function neg(k) : N → [0, 1] is negligible

if for all positive polynomial p, there exists a constant c such that:
∀ k > c, neg(k) < 1/p(k).

Definition 1 (Symmetric-key Encryption). A symmetric encryption
scheme is a set of three probabilistic polynomial time (PPT) algo-
rithms SE = (Gen,Enc,Dec) such that Gen takes an unary security
parameter λ and generates a secret key k; Enc takes a key k and
n-bit message m and returns a ciphertext c; Dec takes in a key k
and a ciphertext c, and returns m if k was the key under which c was
generated. The SE is required to be secure against chosen plaintext
attack (CPA). We refer to [19] for formal definitions.

Definition 2 (Pseudorandom function). Let F : {0, 1}λ × {0, 1}l →
{0, 1}l

′

be a deterministic function which maps l-bit strings to
l′-bit strings. We define Fs(x) = F(s, x) as a pseudorandom
function (PRF) if: ∀ PPT distinguishers D : |Pr[DFs(.)(1λ) =

1] − Pr[D f (.)(1λ) = 1]| ≤ neg(λ), where f (.) is a truly random
function, and λ is the security parameter.

In Definition 3, the notation (cout, sout)← protocol(cin, sin) denotes
an interaction between client and server where cin and sin are the
client and server input, and the cout and sout are the output of client
and server after performing a protocol.

Definition 3 (DSSE Scheme). Let D = {D1, . . . ,Dn} be a corpus of
n documents, a Dynamic Searchable Symmetric Encryption consists
of five PPT algorithms:
• (sk,⊥) ← GenKey(1λ, 1λ): In this algorithm, the data owner

(client) generates a secret key sk using the security parameter λ.

• (Ic,Is)← BuildIndex((sk,D),⊥): In this algorithm the client’s
secret key sk and document collection D are used to produce a
client-index Ic, and server outputs index Is.

• (⊥,C)← Encryption((sk,D),⊥): The client inputs secret key sk,
and document collection D, and outputs the encrypted corpus
C = {C1, . . . ,Cn}.

• ((I′c,Dw),I′s) ← Search((sk,Ic,w), (Is,C)): In this algorithm
the client inputs the secret key sk, index Ic, and query w; and
it outputs the updated index Ic, and resultant documents Dw.
The server also, inputs the index Is, and the encrypted document
collection C and outputs the updated index I′s.

• (I′c, (I
′
s,C

′)) ← Update((sk,Ic, op, , in), (Is,C)): In this algo-
rithm the client inputs the secret key sk, index Ic, and an opera-
tion op = add or op = del, and an input “ in”, which is parsed
as a set of keywords win and a document identifier idin. It outputs
the updated index I′c. The server inputs the index Is, and the
encrypted document collection C; it outputs the updated index I′s
and updated encrypted document collection C′.

We call the first three protocols (GenKey,BuildIndex,Encryption)
the Setup phase.

3.2 Our System Architecture

Our system architecture, as illustrated in Figure ??, consists of two
parties: a cloud server and a client (data owner - user). The client
is the actual owner of the data and intends to outsource its personal
corpus into a cloud server for several reasons including maintenance
costs. The client first creates an inverted index for each keyword.
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Each entry in this index maps the respective keyword, wi, to the doc-
uments IDs that contain wi. The client then encrypts the documents
and index entries and outsources them into the cloud server. Once
the cloud receives a search request, it performs the query using
the provided index and outputs the resultant files. Note that the
documents and index entries are all encrypted, so the cloud server
will not know the content of search tokens or the documents. Never-
theless, in see Section 3.5 we explain that like other related work
[5]–[8], some meta-data may leak over time and after executing a
number of queries.

3.3 Threat Model

In our approach, the server follows the prescribed protocol, however,
it is keen to gather meta-data and information about the client. This
type of cloude server is called honest-but-curious and is employed
in many related work such as [5]–[7]. In addition, we suppose
the server knows the encrypted index, documents, queries, and the
employed encryption scheme, but it does not know the secret key.

3.4 A short overview of our approach

The client initiate the protocol by extracting keywords, ∆ =

{w1,w2, . . . ,wm}, and creating the inverted plain-index. Each entry
(idi, L) in the index is a pair of an idi and a list of L. Each keyword,
wi in the corpus corresponds to an idi in the index, and L consists of
all the files that contain wi. To achieve our primary objectives which
are hiding and obfuscating the access and search pattern, we inject
random files IDs (noise) among the nodes in each list. The client
is the only party who can distinguish the noise nodes. To monitor
the lists, the user must keep a small index, Ic (see Section 5.2) on
her side. Then, the index entries and files will be encrypted and
transfered to the cloud server. Upon receiving the data, the server
stores the encrypted index entries, Is, and the encrypted corpus C
and stands by for the first search or update request. Every query
in our approach, q, consists of a limited number of sub-queries
q = {q1, . . . , qk}. The fake\noise sub-queries are added to hide and
obfuscate the search and access pattern. Once a query is received,
q = {q1, . . . , qk}, the server performs the sub-queries one-by-one,
or parallelly if we employ the parallel algorithm, and returns the
results. The user can retrieve the real results and discard the noise.
Lastly, using new keys and IDs, new encrypted index entries will
be created and sent to the cloud server. Note that the user (Ic) and
cloud (Is) indexes will be updated respectively.

3.5 Security Definitions

To gain efficiency, most of the SSE schemes leak some meta-data
such as number of keywords, file size, and file IDs [4, 5, 19]. In
addition, more meta-data may leak after performing each query.
Thus, we start this sections by defining the leakage functions that
show the leaked meta-data to the cloud server after executing each
step of the protocol.

Definition 4 (Search pattern). Let Q = (q1, q2, . . . , qt) be the query
list over t queries. The search pattern over a query list Q is a tuple,

SP = (ŵ1, ŵ2, . . . , ŵt), where ŵi, 1 < i < t is the encrypted keyword
(or its hash) in the i-th query.

Definition 5 (Access pattern). The access pattern over a query
list Q is a set, AP = (R(q1),R(q2), . . . ,R(qt)) over t queries, where
R(qi), 1 < i < t is the i-th query’s resultant document identifiers
(result set).

To demonstrate the leakage to the server, we employ leakage
function Lop which indicates the information revealed to the adver-
sary after executing operation op. We first define the LSetup and
LSearch, and then demonstrate the information leakage of Update
through Definition 6.

• LSetup(D) = {N, n, (id(Di), |Di|,Ci)1≤i≤n}, where N is the number
of server index entries, Is; n is the number of documents, id(Di)
is the document Di’s identifier, |Di| is the size of document Di,
and Ci is the encrypted corpus.

• LSearch(qi) = {R(qi), |R(qi)|,Cqi
} where qi is a client’s query,

and R(qi) is the resultant document identifiers, and Cqi
is the

encrypted resultant documents.

Definition 6 (Forward privacy). A SSE scheme is forward
private if the update leakage function LUpdate is limited to:
LUpdate(in,Di, op) = {idin(Di), |win|, |Di|, op}.

To define the security of the DSSE scheme we employ the stan-
dard simulation model which requires a real-ideal simulation [5, 7]:

Definition 7 (DSSE Security). Let DSSE = (GenKey,BuildIndex,
Encryption,Search,Update) be a DSSE scheme. LetA be an ad-
versary (server), and the LSetup, LSearch, and Lupdate be the leakage
functions. The following describes the real and ideal world:

- IdealDSSE
F ,S,Z(λ): An environment Z sends the client a set of

documents D to be outsourced. The client forwards them
to the ideal functionality F . A simulator S is given LSetup.
Later, the environment Z asks the client to run an Update
or a Search protocol by providing the required information.
The search request is accompanied with a keyword w. For
an update request, Z picks an operation from {add, del}.
Add requests are accompanied with a new document and del
requests contain a document identifier. The client prepares
and sends the respective request to the ideal functionality
F . Using LUpdate and LSearch, F notifies S of leakages. S
sends F either abort or continue. The ideal functionality
F sends the client either abort or “success” for Update, or
set of matching document identifiers for Search. Finally, the
environmentZ outputs a bit as the output of the experiment.

- RealDSSE
ΠF ,A,Z(λ): An environment Z sends the client a set of

documents D to be outsourced. Then, the client executes the
GenKey(1λ) to generate the key sk and starts the BuildIndex
and Encryption protocols with the real world adversary A.
Later, the environmentZ provides the required information
and asks the client to run a Search or an Update request.
The search request contains a keyword w to search for. Z
picks an operation from {add, del} for an update request. Add
requests are accompanied with a new document and del re-
quests contain a document identifier. The client then executes
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the real-world protocols with the server on the inputs that are
selected by Z. The client outputs either abort or “success”
for Update, or a set of matching document ids for Search.
Z observes the output. Finally, outputs a bit b as the output
of the experiment.

We say that a DSSE scheme (ΠF) emulates the ideal functional-
ity F in a semi-honest model, if for all PPT real world adversaries
A, there exists a PPT simulator S such that for all polynomial-time
environments Z, there exists a negligible function negl(λ) on the
security parameter λ such that [5]:

|Pr[RealDSSE
ΠF ,A,Z(λ) = 1] − Pr[IdealDSSE

F ,A,Z(λ) = 1]| ≤ negl(λ).

4 Attack methods
The first step of the attacker to launch an attack is to put the file IDs
in a random order. For instance, (id(D5), id(D7), id(D4)) is a valid
order for a corpus with three documents {D4,D5,D7}. Based on the
chosen arbitrary order, the server creates a bit-string after executing
each query. Each bit will be set to one if the corresponding file
exists in the result set and to zero otherwise. For instance, suppose
after executing a query, qi, the results set is the R(qi) = {D4}. Thus,
001 is the corresponding bit-string that is generated based on result
set of the current query. Moreover, to keep track of the frequency of
each bit-string, the cloud server creates a Search Pattern Map (SPM)
which is a hash map data structure. The attacker’s main challenge
is to track the queries and since the search tokens are one-time use,
storing them is pointless. However, the bit-strings that are created
in our attacks can be employed as search token identifiers. Hence,
the attacker stores them in the SPM along with the number of times
that each token is searched.

In other words, the search tokens are ephemeral and change
after each use, but the result set for each keyword remain the same
and it becomes a major vulnerability for forward private schemes
because of the access pattern leakage. For instance, (11, {001, 7})
can be possible element in SPM that demonstrates the keyword with
001 bit-string has queried seven times. The “11” number is the hash
map key that starts from zero and increments by one after adding a
new element. The complexity (number of elements) of the SPM is
O(m) where m is the number of keywords.

Like other related work [30], in our attacks it is assumed that the
bit-strings are unique. To challenge this assumption, we extracted
and studies 1927 keywords from the 50, 000 files in Enron email
dataset [31]. The results shows a scarce 0.2% conflict probability.
In other words, there were only 2 conflicts among the investigated
files. As a result, the search pattern can be recovered with 99.8%
accuracy using our attack. In addition, remark that the keywords
that had conflicts were among the very low frequency keywords,
thereby, perhaps the cloud server is not interested in. Furthermore,
the conflict probability significantly decreases as the number of files
in the corpus increase. This is because the state space of bit-string’s
, all possible bit strings set, expands and becomes larger. Never-
theless, we later address this attacker’s challenge and describe how
keywords with unique bit-string can be distinguished. We empha-
size that all assumption in related work [13, 14, 30, 32] and our
work are consistent and we add no new assumption in this attack.

The basic attack is explained in Algorithm 1. Briefly, once each
query is executed, the cloud server looks in the SPM to find a match
for the resultant bit-string (r bitString). If there is a match, the
server increments the respective frequency by one, otherwise, the
new bit-string will be added to SPM with frequency of one (line
24).

Algorithm 1 Basic Attack

input: SPM, r bitString
output: updated SPM

1: f ound = f alse
2: for each e ∈ SPM & until ! f ound do
3: etmp = e.bitString
4: rtmp = r bitString
5: f lag = true
6: while f lag & etmp > 0 do
7: erem = etmp mod 2
8: rrem = rtmp mod 2
9: if erem , rrem then

10: f lag = f alse
11: end if
12: etmp / = 2
13: rtmp / = 2
14: end while
15: if f lag then
16: f ound = true
17: match = e
18: end if
19: end for
20: if f ound then
21: match.bitString = r bitString
22: match.frequency++

23: else . new keyword found
24: Add (r bitString, 1) to SPM
25: end if

Nevertheless, the length of the bit-string can be affected by
“add” operation. In other words, adding a new file increases the
length of the bit-string. To tackle this issue, the new file ID will be
added to the left of the arbitrary order by the cloud server. Recall
the previous example and suppose the server has received a new
request to add D6 to the dataset. The updated arbitrary order will
be (id(D6), id(D5), id(D7), id(D4)). Hereafter, SPM bit-strings are
a bit shorter than queries’ bit-strings. However, this does not stop
the server\attacker from recovering the search pattern, because, the
attack algorithm compare the SPM and query bit-strings bit-wisely
starting from left bit to the right. The algorithm halts (line 6) when
it achieves the last bit of the respective SPM bit-string. For instance,
suppose {D4} and 001 are the result set and respective bit-string of
query, qi. If the user issues the same query qi again, after adding
D6 and of course with a new search token, the resultant bit-string
would be either 0001 or 1001. Remark that only one can happen at a
time, because either the new file, in this case D6, contains respective
keyword in qi or not. Hence, if the server detects a bit-string in SPM
that matches the first three bits (from right-side) of the resultant
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bit-string, it can be confident that these two token IDs refer to same
keyword. Remark that, the respective bit-string will be updated to
n + 1 from n-bit string in line 21 of the algorithm where n is the
number of files. This means, in our example the bit-string will be
updated to a four-bit from a 3-bit string.

The traditional attacks are not effective on schemes that support
forward privacy. The main reason is that forward-private approaches
hide and obfuscate the search pattern to a certain extent. However,
by applying our attack on schemes with forward privacy, we reveal
the search pattern. Once the attacker possess the search pattern,
forward-private approaches will become susceptible against previ-
ous attacks. The output of our attack can be exploited by frequency-
based attacks such as [12]–[14], [32]. Moreover, after applying
a small modification, our attack can be used by occurrence-based
attacks such as [30]. To support the occurrence-based attacks the at-
tacker creates a n×m matrixM instead of SPM. In this matrix each
column represents a bit-string\keyword, and each row corresponds
to a document. We set the value of an entry to zero if the respective
keyword does not exist in the corresponding document, and to one
otherwise. Once a query is executed, the cloud server updates the
value of the respective entry, If it finds the same bit string, or it adds
the bit-string as a new keyword otherwise. If a new file is added,
the cloud server append a new row to the matrixM.

To address the problem of distinguishing the keywords with
the same result set, the cloud server can inject a limited numbers
of documents into the corpus (keywords with the same result set).
For instance, suppose {k1, k2} and {k3, k4, k5} are two groups of key-
words that have the same result set. The attacker can distinguish
k1 from k2 by injecting a file that contains either of the keywords.
The same method can be used to make the other group keywords
distinguishable. To maximize the efficiency, we should minimize
the number of injected files. Hence, the attacker creates new files
that contains only one keyword from each group. For instance,
the attacker creates a file that contains k1 and k3 from the first and
second group. It also generates a another file which only contains
k4. With injecting only two files these keywords will become distin-
guishable. Generally, suppose we have l groups of keywords that
possess the same result set, {P1,P2, . . . ,Pl}, the minimum number
of required injected documents is maxl

j=1{|P j|} − 1, in which |P j|

shows the cardinality of j-th group.
This techniques is also employed in many related work such

as [13, 32, 14] in which the cloud server sends the documents of
its choice to the user. The client then encrypts and transfers them
back to the cloud [14]. For example, consider a company that uses
an automatic email process. Remark that in both occurrence-based
and occurrence-based attacks the attacker commonly benefits from
public information and auxiliary knowledge that rectifies the indis-
tinguishable keywords challenge in advance. For instance, the attack
in [12] benefits from public web facility services such as Google
Trends R©.

Nevertheless, the basic attack is not applicable on DSSE ap-
proaches that provide “del” functionality. We modified the basic
attack, see Algorithm 2, that can successfully attack DSSE schemes
that provide both add and del functionality. In our advanced attack,
a new bit-string, d bitS tring, will be generated by the cloud server
to monitor the deleted documents. Each bit in the d bitS tring rep-
resents a document in the corpus (considering the same arbitrary

order). Each bit will be set to zero if the respective file still exists
in the corpus, and to one if it is deleted. After executing a delete
request, the cloud updates this bit-string accordingly. Once a query
is executed, the resultant bit-string will be bit-wisely compared to
the data in SPM, but this time, we ignore the bits that their corre-
sponding files are deleted. We demonstrate the changes with red
lines in Algorithm 2.

Algorithm 2 Advanced Attack

input: SPM, r bitString, d bitString
output: updated SPM

1: f ound = f alse
2: for each e ∈ SPM & until ! f ound do
3: etmp = e.bitString
4: rtmp = r bitString
5: dtmp = d bitString
6: f lag = true
7: while f lag & etmp > 0 do
8: drem = dtmp mod 2
9: if !drem then

10: erem = etmp mod 2
11: rrem = rtmp mod 2
12: if erem , rrem then
13: f lag = f alse
14: end if
15: etmp / = 2
16: rtmp / = 2
17: end if
18: dtmp / = 2
19: end while
20: if f lag then
21: f ound = true
22: match = e
23: end if
24: end for
25: if f ound then
26: match.bitString = r bitString
27: match.frequency++

28: else . new keyword found
29: Add (r bitString, 1) to SPM
30: end if

4.1 An example of our attack with “del” operation

Assume there are four documents, {D1,D2,D3,D4}, and four key-
words, ∆ = {w1,w2,w3,w4}, in the user’s corpus. Moreover,
(id(D4), id(D3), id(D2), id(D1)) is the arbitrary order that the at-
tacker\cloud uses to create the bit-strings. Suppose D1 contains
{w1,w2,w3}, D2 includes {w2,w3,w4}, D3 has {w1,w3}, and D4 con-
tains {w2,w4}. Furthermore, we assume the setup phase is suc-
cessfully executed, and the encrypted index and documents are
outsourced.

Case 1: Searching for a keyword for the first time. The
user searches for all documents that contain w1, so he generates
an ephemeral search token (q1) and send it to the server. Upon
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receiving the search token, the server finds the related index entries
and the respective encrypted documents (R(q1) = {D1,D3}). Since
there is no bit-string in the SPM that matches the current bit-string,
the server adds the respective bit-string (0101, 1) to the SPM (1 is
the frequency). The user then generates and sends an encrypted
query (q2) to the server to search for w3. After returning the results
(R(q2) = {D1,D2,D3}), the server adds (0111, 1) to the SPM.

Case 2: Searching again for a keyword that exists in the
SPM. Now imagine the user searches again for w1 with a new
ephemeral search token (q3). Once the query executed, the server
searches for the resultant bit-string (0101) in the SPM. Since the
bit-string already exists in the SPM, the server only updates its
frequency (0101, 2).

Case 3: Adding a new document. The user then adds a new
document (D5) that contains (w1,w2,w4). The server updates the ar-
bitrary order to {id(D5), id(D4), id(D3), id(D2), id(D1)} respectively.
Now the user issues a new query (q4) to search for w4 for the first
time. The resultant bit-string will be 11010. Hence, (11010, 1)
will be added to the SPM. Note that at this point the bit-strings in
the SPM may have different length (4 and 5). The user may also
searches again for a keyword after adding a new document. For
example, suppose the user searches again for w3. The new resultant
bit-string is 00111. The server looks for a bit-string in the SPM
that is either equal to our current bit-string or is equal to the first
four bits (from right-side) of the resultant bit-string. In this case the
sever will find the (0111, 1) entry and will update it to (00111, 2)
respectively.

Case 4: Deleting a document. To monitor the deleted docu-
ments, the attacker creates a bit-string, d bitS tring, in which each
bit represent a document and its value demonstrates whether the
respective file is deleted (=1) or not. This vector will be updated
after each delete request. Once a query is executed, the resultant
bit-string will be bit-wisely compared to the data in SPM, but this
time, we ignore the bits that their corresponding files are deleted.

Assume the user asks server to delete D3. The server deletes the
document and updates the d bitS tring to 00100. If the user searches
for w1 again, the resultant bit-string will be 10∗01 (“∗” means its
value is not important and can be 0 or 1). Since D3 is deleted (based
on the d bitS tring), the server ignores the value of that position
when it is searching for the current bit-string in the SPM.

5 Construction
To prevent the attacks that we introduced in the previous section,
we build and construct a new dynamic SSE scheme that supports
forward privacy. Our construction hides and obfuscates the access
pattern to thwart the above privacy attacks. In our approach, the
client first creates an inverted index for each keyword in the corpus.
In an inverted index, every entry maps a keyword to the correspond-
ing document IDs that contains the respective keyword. We add
fake\noise document IDs among each keyword result-set to hide
and obfuscate the access pattern. The fake IDs can only be distin-
guished by the client. In addition, in our approach each query qi
consists of a limited number of sub-queries qi = {qi1, qi2, . . . , qik}.
All sub-queries except one are noise which can only be recognized
by the user and sub-query searches for a keyword. We propose two
methodologies to inject the noise file IDs:

1. Random injection. We first determine a threshold , τd, that
represents the lower and upper bound of noise injections in a
specific result-set. Once τd is set, we arbitrarily inject file IDs
into the result set of the every keyword.

2. Aforethought injection. Our main objective is to flatten the the
number of times that each document accessed. With this strategy
the number of times that each document is accessed will be in
the same range as others. This makes it much harder for the
attacker to gain information about the data, search tokens, and
the files by using the access pattern meta-data. To achieve this
objective, the client generates an Access Pattern Vector (APV)
that stores the number of times that each file is accessed. For
instance, < 1, 0, 4, 2 > demonstrates D1, D3, and D4 are accessed
one, four, and two times since launching the system. This infor-
mation is valuable in our approach and will help to choose the
fake sub-queries wisely. For each query, the user monitor and an-
alyze the APV vector and selects the keywords that are accessed
less in compare with others. Considering our earlier example
(< 1, 0, 4, 2 >), the client can inject keywords that return D1 and
D2 to straighten the access pattern vector.

Creating the noise sub-queries are a significant challenge in
the aforethought injection. To query the less requested files in the
corpus, the user must be able to identify the keywords that return
a specific file ID in their resultant-set. The number of files in the
corpus is myriad and increasing over time, thereby keeping this
information on the users’ devices is not a realistic approach. In
addition, to hide the clients’ foot tracks (activities), we intend to put
each file ID into more than one keyword’s result-set. This makes
the above solution more infeasible.

To tackle this problem, we first label all of the files with a
number in a random order. Note that even storing these labels on
the users’ machines are not practical. Hence, we then generate an
arbitrary number called δ. Afterward, we begin with δ and label
each document successively. remark the files are shuffled before
being labeled with successive numbers, so, the labels will not leak
additional meta-data about the files. To identify the keyword w that
a specific file ID, Di, is injected in, we employ the Gw(.) PRF. Gw(.)
accepts a key k and a document label and returns a keyword number,
m, where m ∈ [1..m]. For instance, in Gn(k, 7654321) = 123 the
user is searching for a keyword number (123) that holds a docu-
ment that is labeled as 7654321. In other words, after calculating
Gn(k, 7654321) = 123, the user learns that the file with 7654321
label is injected in the w123’ result set.

To inject each file ID a number of times, we define a new pa-
rameter called step, sδ. Step (sδ) shows the number of result-sets
that each file ID is injected into. As a result, we increase the
label number by sδ instead of labeling them consecutively. By ex-
ploiting this technique we expedite the flattening process of the
APV vector. Therefore, instead of possessing one label, each file
will have sδ labels that is reserved for the respective file. For in-
stance, suppose sδ = 3 and we want to search for keyword wi

that returns the document that is labeled as 7654321. Hence, the
client executes Gn(k, 7654321) = 123, Gn(k, 7654322) = 77, and
Gn(k, 7654323) = 2105. This means, keywords w123, w77, and w2105
are having file 7654321 in their result-sets. Consider that, due to the
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definition of the pseudo random function the keyword numbers are
not necessarily successive even if the the input labels are.

5.1 Our linked-list structure

In this section we explain a customized linked-list data structure
that we employ in our scheme. Our linked-list consists of 4 tuples:
(id, type, data, next). In particular, id refers to the ID of a node,
type shows whether a node is real R fake\noise (F), data is a file
identifier, and next refers to the ID of the next node in the respective
linked-list. The red elements will be secured and encrypted using
the user’s key, while an ephemeral key will be used to encrypt the
orange elements. Hence, type will be encrypted using the user’s key
and, we will be using an ephemeral key to encrypt data and next.
Note that elements in black (i.e., id) is plaintext data. To prevent
leaking any additional meta-data, we use a random even number
for real and a random odd number for noise nodes. In addition
we set the next to null if a node does not have a successive node.
Consider that, the ephemeral key will be provided for the server
if the respective keyword is being queried, but we never share the
user’s secret key with server. Hence the server will never know
which nodes are fake and which ones are real.

• AddNode(L, k1, k2, id, type, data): This function employs the in-
put data to append a node to the beginning of the current linked-
list, L.

• RestoreList(k, idh): This function looks for the node with the
provided ID; it then retrieves type and decrypts next and data
and looks for the next node in the linked-list. The process stops
when the algorithm reaches the last node in the linked-list (i.e.,
next = null).

In our approach, all of the secure inverted index is constructed using
the aforementioned linked-list data structure. To add more security,
the client injects fake\noise nodes in each and every linked-list
to hide and obfuscate the relevance between a keyword, wi, and
its corresponding linked-list, L. Note that the noise will not be
injected if it already exists in the linked-list. for instance, assume
that one of the inverted index entries is (w7, {D3,D6,D5}). The ob-
jective is to inject D6 and D9 in random positions in the respective
linked-list. however, we only inject D9 because D6 is already in the
linked-list. Now suppose after injecting the noise node(s) the index
entries will be (w7, {D3,D6,D9,D5}). Hence, the user generates four
nodes (id1,R, id(D3), id2), (id2,R, id(D6), id3),(id3, F, id(D9), id4)
(id4,R, id(D5), null). Consider that, since the nodes are encrypted
and will be sent in a random order to the server, the attacker is not
able to link them.

5.2 Our scheme

In this section we demonstrate and describe how each algorithm in
Definition 3 operates:

• GenKey: let SE = (Gen,Enc,Dec) be a CPA-secure symmetric
encryption scheme. Let Gn(.), Gid(.) and Gw(.) be three PRFs and
GenPK(1λ) be a key generator function. The following describes
(sk,⊥)← GenKey(1λ, 1λ):

1: kS E = SE.GEN(1λ)

2: kG ← GenPK(1λ)
3: return sk = (kS E , kG)

We employ a secret key, sk, to fulfill the encryption objectives. sk
is a tuple of two, kS E and kG. The former will be used to encrypt
the documents and latter for Gw(.), Gn(.) and Gid(.) functions.

Algorithm 3 (Ic,Is)← BuildIndex((sk,D, sδ),⊥)

Client
1: ∆ = ExtractKeywords(D)
2: δ = Rand()
3: lblnext = δ
4: D′ = {}

5: while D , empty do
6: Dcur = randomly choose one doc and assign lblnext to it
7: D′ ∪ Dcur

8: idnext + = sδ
9: end while

10: PI = BuildPlainIndex(∆,D′, sδ)
11: Create Ic and APV and initialize all elements to zero
12: L = GenLinkedList(sk, PI)
13: Send L to server

Server
14: Generate Is using L

• BuildIndex. In this algorithm (see Algorithm 3), after extract-
ing the keywords, ∆ = {w1, . . . ,wm}, we assign an label\id to
each file according to the value of the δ (the starting point), and
sδ (step). Afterward, the client index Ic, and its corresponding
linked-lists will be created. To enable the client to generate the
search queries, the client must store a m × 2 look-up table (in-
dex), Ic. In particular, this table stores length of the list, leni and
the number of nodes, cnti, that is generated for each keyword.
Moreover, the APV (access pattern vector) will be created and
initialized to zero. Once the index entries are generated, they will
be sent to the cloud server. Note that a random number will be
assigned to δ which is generated by Rand().

We explain generating the plain-text inverted index PI in Al-
gorithm 4. Using the aforethought injection method, we first
generates the noise nodes (line 5-9), and then we append the
real nodes to their corresponding list (line 11-15). Note that
as we mentioned in Section 5.1, every entry in PI consists of
two tuples which are a keyword and the receptive list (wi, L).
recall that beside the file label, each node in the list keeps a type
(F\R). For instance, D2 is fake, and D4 and D8 are real nodes in
(w23, {{D8,R}, {D2, F}, {D4,R}}). In addition, to decide the lists
that each file ID must be injected in, we employ Gw(kG, docid)
function. Consider that this is process happen in the setup phase
and only for once. Next, a linked-list will be generated for each
generated list in the previous step. The node IDs are one-time use
and will be generated by the Gid function. In particular, the Gid

function uses a counter, ctn, which shows the number of nodes
that are created for the respective keyword, wi. The client store
this number in the client index (Ic[i][0]).
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Algorithm 4 BuildPlainIndex

1: procedure BuildPlainIndex(∆,D′, sδ)
2: PI = {}

3: for all wi in ∆ creates an empty Li

4: for all D j in D′ do
5: for k = 0 to sδ-1 do
6: i = Gw(kG, (lbl(D j) + k))
7: if D j < Li then
8: Li ∪ {D j, F}
9: end if

10: end for
11: for all wi in ∆ do
12: if wi ∈ D j then
13: Li ∪ {lbl(D j),R}
14: end if
15: end for
16: end for
17: Shuffle and Add all (wi, Li) to PI
18: return PI
19: end procedure

Algorithm 5 GenLinkedList

1: procedure GenLinkedList(sk,Ic, PI)
2: L = {}

3: for all e ∈ PI do
4: wi = e.wi

5: L = e.Li

6: len = 0
7: cnt = Ic[i][0]
8: for all lbldoc & type ∈ L do
9: idn = Gid(kG,wi||cnt)

10: if len == 0 then
11: kh = Gn(kG, idn)
12: Ls = {}

13: end if
14: AddNode(Ls, kS E , kG, idn, type)
15: len + +

16: cnt + +

17: end for
18: L ∪ Ls

19: Ic[i][0] = cnt
20: Ic[i][1] = len
21: end for
22: return L
23: end procedure

We employ an ephemeral key to encrypt the private data in each
node. This key will be generated using the receptive function,
kh = Gn(kG, idn), which is shown in line 10-13 of Algorithm 5.
All of the data in a linked-list will be encrypted using the same
ephemeral key except the type data. We employ the secret key,
kS E , to encrypt the type field, because the client should be the only
party who can decrypt this data. For instance, assume the client
intends to create a secure linked-list for w21’s list, {D4,D7}. As-
suming cnt = 0, we generate the node IDs, id10 = Gid(kG,w21||0),

id11 = Gid(kG,w21||1). Afterward, we create an ephemeral key
kh = Gn(kG, id10) to encrypt the nodes.

Remark that for the whole linked-list, we only generate one
ephemeral key (see line 10). Lastly, using AddNode, we create
and encrypt the required nodes and add them to the corresponding
linked-list. We demonstrate how we create a linked-list from an
inverted plain-index in Algorithm 5. Once all of the nodes and
required linked-list are created, the user sends them to the cloud
server to be stored on the server index, Is. Remark that the index
entries are encrypted and sent in an arbitrary order and the server
cannot link them.

• Encryption. Using the secret key kS E , the client encrypts the
entire corpus (all of the files), transfers them to the cloud server
including the file IDs.

Algorithm 6 ((I′c), (I′s,C
′))← Update((sk,Ic, add, in), (Is,C))

Client
1: ∆D = ExtractKeywords(Dn+1)
2: L = {}

3: for all wi ∈ ∆D do
4: cnt = Ic[i][0]
5: len = Ic[i][1]
6: idh = Gid(kG,wi||cnt)
7: idn = Gid(kG,wi||cnt − len)
8: kh = Gn(kG, idn)
9: L ∪ (idh, kh)

10: Ic[i][0] + +

11: Ic[i][1] + +

12: end for
13: Cn+1 = Enc(kS E ,Dn+1)
14: Send L,Cn+1 to server

Server
15: C ∪Cn+1
16: Update Is using L

• Search. Obfuscating and hiding the access and search pattern
is our primary goal. To achieve this objective, we append a
bounded number of sub-queries, qi = {qi1, qi2, . . . , qik}, to each
query qi. Every sub-query consists of two tuples, (kh, idh). kh

is an ephemeral key that decrypts a linked-list starting with idh

(linked-list’s header). Employing Ic and kG enable the user to
re-generate kh and idh which are required for generating the query.
In addition, the noise sub-queries will be added to boost the secu-
rity and privacy of the outsourced data and obfuscate the access
and search pattern.

To flatten the APV and amplify the privacy of the outsourced files,
we use a biased random generator function called GenRandom().
This function chooses high accessed documents with lower prob-
ability, so the less accessed files has more opportunity to be
selected which impact directly the pace of flattening the APV.
Note that we assign sδ number of labels to each file. Hence, along
with APV, GenRandom() inputs sδ to randomly choose one of
the available labels for the file of interest. ν holds the number
of fake\noise queries that can be determined randomly. Before
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sending the query to the cloud server, we insert the sub-queries
in arbitrary positions in query qi.

The query generation process for a keyword w is demonstrated in
Algorithm 7. Remark that the node ID (of the linked-list header)
and its respective ephemeral key are regenerated in line 15. Since
the users may possess various devices with different level of com-
putation power and resources, a number of parameters including
ν and sδ can be set by the client.

Once a query, qi, is received, the cloud server runs each sub-query
qi j = (idh, kh) by finding idh (header of the requested linked-list)
in Is. Employing the kh, the server then decrypts all of the
nodes (except the type field) and discards all of the used index
entries. All of the extracted document IDs and their respective
type fields will be added to the result set. Note that the server
can store the used index entries, however, it is pointless because
they are already leaked and enclose no new meta-data. Lastly,
the server returns a result set consists of (R(qi1), . . . ,R(qik), bag)
where R(qi j), 1 < j ≤ k, is the qi j’s resultant file IDs; and the bag
is qi’s resultant encrypted files.

Once the result set of qi is received, the client who is aware of the
location of the noise and real sub-queries, decrypts and separates
the real results form the bag. Next, the GenLinkedList algorithm
will be called to generate new entries for queried keywords in qi.

The forward privacy of our approach is guaranteed by using non-
deterministic search tokens and adding random noise sub-queries.
The client then updates its index, Ic, and creates new node IDs
and ephemeral keys for each linked-list. Note that, since the
value of the cnt is updated, brand new keys and node IDs will be
generated. To track the access frequency of each file, the client
then updates the APV. lastly, the new index entries will be sent to
the cloud server to be stored on the server index, Is.

Albeit the cloud server is aware of the relation between the last
query and new entries, it cannot determine the noise keywords
from the real search keyword. In addition, the node IDs and their
respective keys are one-time use and vary after each search. Fur-
thermore, there exist fake\noise nodes among the actual nodes
in every linked-list. As a result, it is impossible for the server to
realize the actual search and access pattern. All of these specifica-
tions in our approach guarantee the forward privacy requirement
and preserving the access and search pattern. The search process
is described in detail in Algorithm 7.

• Update. The update algorithm consists of two functions, del and
add, as follows:

– add. In add algorithm, we first extract the keywords from
the new file. The algorithm then generates a node for each
keyword and adds them to the respective linked-list. Next, we
encrypt the the new file using the user’s secret key and transfer
it to the cloud server. On the other side, the server updates the
Is, once the the Update request is received. The add function
is described in detail in Algorithm 6.

– del. The user creates a Update request and sets the operation
to del and includes the file ID in the request to delete a file, Dk.
Upon receiving the del inquiry, the cloud server deletes the re-
spective file form its storage. Nevertheless, the corresponding

index entries cannot be removed because the server does not
possess the keys.

Algorithm 7 ((I′c,Dw), (I′s))← Search((sk,Ic,w, ν, APV), (Is,C))

Client
1: counter = 0;
2: ∆q = {w}
3: while counter < ν do
4: lbl = GenRandom(APV, sδ)
5: i = Gw(kG, lbl)
6: if wi < ∆q then
7: ∆q ∪ wi

8: counter + +

9: end if
10: end while
11: q = {}

12: for all wi in ∆q do
13: cnt = Ic[i][0]
14: len = Ic[i][1]
15: idn = Gid(kG,wi||cnt − len)
16: idh = Gid(kG,wi||cnt)
17: kh = Gn(kG, idn)
18: q ∪ (idh, kh)
19: end for
20: Shuffle(q)
21: Send q to server

Server
22: bag = {}

23: for all qi in q do
24: Find respective node with idh

25: while node , null do
26: Decrypt the node using kh in qi

27: Add lbl and type to R(qi)
28: Find next node
29: end while
30: Add files corresponds to R(qi) to bag
31: end for
32: Send (R(q1), . . . ,R(qk), bag) to client

Client
33: Decrypt results R
34: PI = {}

35: update APV based on the results
36: for all wi in ∆q do
37: L = All doc-ids contain wi in R
38: PI ∪ (wi, L)
39: end for
40: L = GenLinkedList(sk,Ic, PI)
41: Send L to server
42: Delete noise results
43: Consume real results

Server
44: Update Is using L

However, the index entries will be removed over time and after
receiving a number of queries. The server simply removes the
nodes that are pointing to a deleted file. To incorporate this
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feature in Algorithm 7, the server first investigate the availabil-
ity of the a file extracted from a node (line 28). The server
removes them from the result set, if they do not exist.

6 Experimental results and complexity
analysis

To assess the efficiency of our approach, we study and compare
the complexity of the state-of-the-art methods [7], [6], [5] with
our approach. Lastly, we finish this section by demonstrating the
experimental results that are obtained using real world datasets.

6.1 Analyzing the complexity of our proposed algo-
rithm

Required storage space for client and server. We first show that
the amount of data that the server and especially the client should
store is reasonable and manageable. Recall that user must store a dic-
tionary, Ic, on her side which holds the number of nodes (a counter)
and the length of each linked-list for each keyword. Hence, the
client index look likes a table with two column and m rows where m
is the number of keywords. Hence, Ic is an O(m× 2) ≈ O(m) dictio-
nary. Assume the user’s dataset consists of 1M keywords. Moreover,
suppose each integer requires 4 bytes on the memory and each key-
word has an average 10 bytes. In this scenario, the user needs to
store a 18 MB dictionary on her side (1M ×(10 + 4 + 4) ≈ 18MB).
Considering resource-constrained devices such as cellphones which
have limited memory space and constrained computations, 18 MB
is rational, cost-efficient, and manageable. As an alternative, by
using the method in [7] also proposed, it is feasible to outsource the
user index. In comparison to other work, in [7] the author needs
O(m + n), in [5] the author requires O(

√
N), and in [6] the author

occupies O(m), where n is the number of documents and N is the
number of (keyword, doc id) tuples. Regarding the size of the server
index, our method needs O(N + k) , in which k is the number of
fake\noise nodes. All state-of-the-art methods that we mentioned
above require a space with size of O(N) to store the server index.

Supporting parallelism by design. Beside our approach, this
requirement is also fulfilled in [7] among the Dynamic SSE schemes
that support forward privacy. Since in our approach the node IDs
are generated by a pseudo-random function and the server index
entries are independent, it is possible to distribute the sub-queries
among the processors to expedite the update and search process,
and achieve parallelism. The complexity of our search method is
O(d + kd)/p and our update (add) system-cost is O(r/p), where p is
the number of cores\CPUs, d holds the number of a files contain-
ing a keyword, kd shows the number of fake nodes in a keyword
list, and r holds the number of keywords in a file. The best-case
scenario happens when the number of sub-queries are equal to the
number of available cores\CPUs. As a result, all sub-queries will
be executed concurrently. The search cost in [7] is O(d + nd)/p and
the add\update cost is O(r/p), where nd shows the number of times
that a keyword has been affected by file deletions since last search.
Table 1 shows our complexity analysis.

Table 1: Complexity Analysis of Related Work and Our Approach

Approach Ic Is Parallelism S earch U pdate
Stefanov[5] O(

√
N) O(N) – O(d) O(r)

Bost[6] O(m) O(N) – O(d) O(r)
Etemad[7] O(m + n) O(N) X O(d + nd)/p O(r/p)
Ours O(m) O(N + k) X O(d + kd)/p O(r/p)

6.2 Experimental results

We implemented a prototype and conducted a through and compre-
hensive evaluation to study our approach using real-life datasets. We
employed Java (JDK 1.8) as the programming language and Crypto
packages for the encryption process. The server and client connect
and communicate through a TCP connection. Moreover, Windows
machines were used for both server and client. Each machine came
with 8GBs RAM and a Corei7 CPU at 3.6 GHz. To assess our
scheme, we used the real-world Enron email dataset [31]. We ran
each experiment ten times and the output is the average of all trials.
The variance of the 10 trials were very low to be notable. We im-
plemented the search\query algorithm twice, once using a parallel
algorithm (four cores) and another time in a sequential manner. We
call the former multi-threaded and the latter single-threaded. The
results shows an admissible and reasonable overhead on the system
that even a user with a resource-constrained device can benefit from
our approach.

Table 2: # of server index entries

#Docs #server entries
10000 829799
20000 1571676
30000 2568438
40000 3548027
50000 4404160
60000 5341524
70000 6194452

Setup time. We first started by studding the setup time per vari-
ous number of files. As we discussed in Section 5.2, the setup phase
includes several steps including the encryption process, creating the
plain index, and the encrypted linked-lists. Our results indicate that
a dataset with 20K files requires less than minute (≈ 59 sec), while
the same experiment, setup process, for a corpus with 50K needs
less than seven minutes to be finished (see Figure 2). Remark that,
this process only happens at the beginning of our approach, so it
is a one-time process. In addition, we investigated the number of
server index entries. Our study shows that around 4.4 × 106 entries
were generated for 50K files, and 1.57 × 106 for 20K documents
(see Table 2).

Query generation process time. To search for a keyword, the
user needs to create a query. Each query consists of numerable
search tokens\sub-queries. Every search token includes the header
ID of a linked-list and its receptive key. To study the impact of num-
ber of fake\noise sub-queries on the query generation process, we
queried the same keyword several times but with various number of
fake keywords. The results demonstrate that the system requires less
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than 1.5 milliseconds to generate a query which contains 50 fake
keywords. Remark that we used 50000 files for this experiment.
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6

7

Setup time

Figure 2: Client setup time

Search time. Once the server receives a search request, it will
look for all files that match the search token. In this experiment
we aimed to measure the amount of the time that each query re-
quires. However, the size of the result-set (number of resultant files
for a specific query) is a crucial factor in this experiment. Hence,
we created ten keywords and injected them into our corpus with
frequencies from 100 to 1000. These new injected keywords will
enable us to investigate the effects of the number of resultant doc-
uments on the search time. Our results from the single threaded
algorithm show that it takes around two seconds from the server to
execute a query with 1000 resultant files. Moreover, multi-threaded
algorithm requires considerably less time(around 45 percent) to
answer the same query. Note that, the noise was set to three in both
experiment settings.

Update (Add\Delete) requests. The user may request for an
update on the corpus that can be a delete or an add request. Creating
a delete query is a very low-cost operation, and takes less than 1ms
in our approach. To remove a file, the user should sets the operation
mode to del and embeds the file ID in the query. To add a new file,
we first remove the stop words and extracts the main keywords. We
then creates the index entries, plain index, encrypted linked-lists,
and encrypt the file. Lastly, we transfer it to the cloud server. Once
the cloud server receives the add query, it adds the encrypted file
to the corpus and store the index entries. Note that because all of
the index entries are encrypted with a new ephemeral key, the cloud
server cannot determine the relation between current files in the
corpus and the new file. To run our experiment, a file with 155
words and 68 keywords (excluding the stop words) from Enron
dataset was selected. The operation lasts around 1.8 ms.

Obfuscating the Access Pattern. The most important goal
in our approach is preserving the search and access pattern. To
achieve this goal, we injected noise nodes among each linked-list’s
nodes, and also added noise sub queries to the main query. With
this strategy, the access pattern vector (APV) become flattened and
obfuscated. To measure how flattened\uniform the APV become
before and after applying our approach, we used the Shannon en-
tropy. Due to not having access to the real-life search requests, we
randomly selected the queries from the keyword-set. We set the
noise to three and issued 1000 queries. To calculate the entropy

improvement we employed ((eour − eorg)/eorg) × 100, where eorg

and eour are the Shannon entropy of the calculated APV before and
after applying our approach. Figure ?? demonstrates our results
in detail. To illustrate, applying our approach on a corpus with
30K files flattens the APV more than two times. This means our
approach has made the access pattern more secure and private more
than twice.

For example, exploiting our approach on a corpus of 30K docu-
ments flattens the access pattern vector more than two times. That
is, the access pattern is two times more private than before applying
our scheme.

7 Security proof
We defined the DSSE Security in Definition 7 and designed our dy-
namic SSE scheme in Section 5.2. Here, we prove that our scheme
is secure using the standard simulator model.

Theorem 1 Let SE = (Gen,Enc,Dec) be a CPA- secure symmet-
ric encryption scheme, and Gn, Gid, and Gw be three pseudo-random
functions, our DSSE scheme in Section 5.2 is secure under Definition
7.

Proof 1 We demonstrate how the ideal world is indistinguishable
from the real world by any probabilistic polynomial time (PPT)
distinguisher to prove that our dynamic and forward private SSE
scheme is secure. We illustrate and explain a PPT simulator S that
imitate the user actions using the provided leakage functions that are
defined and provided in Section 3.5. In other words, we explain how
a simulator, S, can adaptively mimic the user behavior including
generating the encrypted indexes, queries, and documents:

Setup. In the first step, the simulator S generates the encrypted
document set , C, simulates N index entries, and creates a secret key,
kS E . To generate the simulated data, S employs leakage function
LSetup(D) = {N, n, (id(Di), |Di|)1≤i≤n}. Note that all data including
the index entries, Is, and generated files, C, are encrypted with the
secret key that was generated earlier. This means, the simulator
S does not require to have access to the contents of the files, and
as a result, it encrypts strings of size |Di| containing all zeros to
create the encrypted files. Note that no probabilistic polynomial
time distinguisher (attacker) can detect and discern this behavior
due to the CPA security of the applied symmetric encryption scheme.
Moreover, the simulator requires to generate and keep two dictio-
naries, keyDict and ∆s, to answer the Update and Search queries.
∆s simply keeps track of the simulated keywords. For each linked-
list, KeyDict dictionary stores a key, keyword, and the first node
identifier of the respective linked-list. The simulator then generates
the keywords and arbitrary values for linked-lists which are selected
from a keyword distribution based on the range of the encryption
scheme. To facilitate generating the search and update tokens, the
simulator, S, updates the ∆s and keyDict dictionaries adaptively.
We explained the setup phase in Algorithm 8.

Add. To add a new file, the simulator S uses the update leakage
function, LUpdate(in,Di, op) = {idin(Di), |win|, |Di|, op}, and employs
the same keyword distribution and ∆s. First, the simulator randomly
selects |win| keywords to be assigned to the new document. It then
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generates an encrypted file Ci and the respective linked-lists. Lastly,
S updates the dictionaries respectively for future references. This
process, add simulation, is shown in Algorithm 9. Remark that to
follow our scheme’s architecture, beside using a new key, every
keyword is appended as a new linked-list to the cloud index. As a
result, it is impossible for the server to link the newly added file to
the previous search tokens even if the simulator generate a query
that has the new file among the results.

Algorithm 8 Simulator’s setup phase

Simulator
1: kS E ← SE.Gen(1λ)
2: Simulate C as {Ci ← SE.Enc(kS E , {0}|Di |)1≤i≤n}

3: Create keyDict dictionary.
4: Create keyword dictionary ∆s

5: L = {}

6: node cnt = 0
7: word cnt = 0
8: while node cnt , N do
9: word f lag = 1

10: ∆s ∪ wword cnt

11: while word f lag & node cnt , N do . Randomly
generates a linked-list

12: list f lag = 1
13: L = {}

14: kG ← {0, 1}λ . kG is used to encrypt the current
linked-list

15: idnode ← {0, 1}l
′

16: Add (wword cnt, idnode, kG) into keyDict
17: while list f lag & node cnt , N do . Adds new nodes

to L until flag becomes false
18: iddoc ← {id(Di)|id(Di) < L, 1 ≤ i ≤ n)}
19: AddNode(kG, L, idnode, iddoc)
20: node cnt + +

21: list f lag← {0, 1}
22: if list f lag then
23: idnode ← {0, 1}l

′

24: end if
25: end while
26: L ∪ L
27: word f lag← {0, 1}
28: end while
29: word cnt + +

30: end while
31: Send L to server

Server
32: Generate Is using L

Search. LSearch is the leakage function that the simulator S uses
to imitate the search function. This information provides enough
data for the simulator to randomly selects a required number of
keywords from ∆s. In the next step, the sub-queries will be created
using keyDict dictionary. This means, the simulator should look in
the keyDict to find the key and node IDs for each keyword that is
being searched. Once the simulator receives the results, it gener-
ates new index entries for the queried keywords and updated the

respective dictionary. We explained every step in detail in Algo-
rithm 10. Since the queries\search tokens are non-deterministic and
ephemeral, it is not feasible to unfold the search pattern using the
search tokens. Moreover, recall that each sub-query can be real or
fake\noise (known only to the user\simulator) which makes more
difficult for the attacker to ascertain the search pattern.

Algorithm 9 Add simulation

Simulator
1: Simulate new file as {Ci ← SE.Enc(kS E , {0}|Di |)}
2: L = {}

3: ∆tmp = {}

4: for i = 1 to i < |win| do
5: w← {w|w ∈ ∆s,w < ∆tmp}

6: ∆tmp ∪ w
7: L = {}

8: kG ← {0, 1}λ

9: idnode ← {0, 1}l
′

10: Add (w, idnode, kG) into keyDict
11: AddNode(kG, L, idnode, iddoc)
12: L ∪ L
13: end for
14: Send L to server

Server
15: Update Is using L

Algorithm 10 Search simulation

Simulator
1: Generate a random value k which shows the number of key-

words in the current search
2: ∆tmp = {}

3: q = {}

4: for i = 1 to i ≤ k do
5: w← {w|w ∈ ∆s,w < ∆tmp}

6: ∆tmp ∪ w
7: Find w entries in keyDict and add them to q
8: end for
9: Shuffle(q)

10: Send q to server
Server

11: Perform q and return the result R = (R(q1), . . . ,R(qk), bag)
Simulator

12: Generate new Is entries based resultant bag from the server
13: Update keyDict respectively
14: Send new entries to the server

Server
15: Update Is according to the new entries

Hence, we programmed a simulator that mimics our approach’s
operations with the defined leakage functions in consideration. Re-
mark that all simulated operations in Algorithm 8, 9, 10 are execut-
ing in polynomial time where a polynomial number of queries exists.
Thus, the cloud\attacker is unable to discern the output generated by
a real user from a simulator’s output unless with a neg(λ) amount or
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it shatters the employed pseudo random functions or the encryption
scheme.

8 Conclusions
In this paper, first, we demonstrated that DSSE schemes with for-
ward privacy are vulnerable to leakage-abuse attacks. Moreover,
we introduced two new attacks to demonstrate the vulnerability of
the forward-private approaches. All SSE schemes, including ap-
proaches with forward privacy, allow a defined level of information
leakage (e.g., access\search pattern) to acquire more efficiency. In
our introduced attacks, we showed by reverse analyzing the access
pattern, it is feasible to recover the search pattern accurately. The re-
covered data can be used by traditional attacks to reveal the queries,
search tokens, and as a result the documents in approaches with
forward privacy. Our research demonstrates that the former attacks
on traditional SSE schemes are adequate to methods that follows
forward privacy principals.

We then addressed this problem by constructing a new Dynamic
SSE approach that support update, search, and parallelization. Our
method also obfuscates the search and access pattern. In our ap-
proach, we first create an inverted-index that maps each keyword
to the documents IDs containing the respective keyword. We inject
fake documents’ IDs in the result-set of each keyword to hide the
access pattern. Only the user can discern the fake IDS from real
ones. Furthermore, each search request consists of a number of sub
queries where all except one are noise which is only known to the
user.

Last, using a standard simulation model, we provided the se-
curity proof of our approach. Moreover, we conducted a through
performance analysis on the implemented prototype that demon-
strates the efficiency and low system-cost of our proposed method.
As a future work, we plan to upgrade our scheme to support semi-
honest cloud servers.

References
[1] D. X. Song, D. Wagner, A. Perrig, “Practical techniques for searches on en-

crypted data,” in Security and Privacy, 2000. S&P 2000. Proceedings. 2000
IEEE Symposium on, 44–55, IEEE, 2000.

[2] E.-J. Goh, et al., “Secure indexes.” IACR Cryptology ePrint Archive, 2003,
216, 2003.

[3] Y.-C. Chang, M. Mitzenmacher, “Privacy preserving keyword searches on
remote encrypted data,” in International Conference on Applied Cryptography
and Network Security, 442–455, Springer, 2005.

[4] N. Cao, C. Wang, M. Li, K. Ren, W. Lou, “Privacy-preserving multi-keyword
ranked search over encrypted cloud data,” IEEE Transactions on parallel and
distributed systems, 25(1), 222–233, 2014, doi:10.1109/TPDS.2013.45.

[5] E. Stefanov, C. Papamanthou, E. Shi, “Practical Dynamic Searchable Encryp-
tion with Small Leakage.” in NDSS, volume 71, 72–75, 2014.

[6] R. Bost, “Forward Secure Searchable Encryption,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, 1143–
1154, ACM, 2016, doi:10.1145/2976749.2978303.
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