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The distribution of bit patterns is an important measure to check the
randomness of a sequence. The authors of this paper observed this cru-
cial property in a binary sequence which generated by using a primitive
polynomial, trace function, and Legendre symbol defined over the sub
extension field. The authors create a new dimension in the sequence gen-
eration research area by considering the sub extension field, whereas all
our previous works are focused in the prime field. In terms of distribution
of bit patterns property, this research work has notable outcomes more
specifically the binary sequence (defined over the sub extension field)
holds much better (close to uniform) bit distribution than the previous
binary sequence (defined over the prime field). Furthermore, the authors
theoretically proved the distribution of bit property in this paper.

1 Introduction

In this IoT era, we communicate with each other
through the internet. Therefore, secure communica-
tion is the major matter of concern. We use symmetric
cryptosystems (Advanced Encryption Standard (AES)
[1]) and asymmetric cryptosystems (Rivest Shamir
Adleman (RSA) [2], and Elliptic Curve Cryptography
(ECC) [3]) to establish a secure communication. A
pseudo-random number is one of the crucial parts
of these cryptosystems. More specifically, in case of
cryptography, to generate the keys (public key, pri-
vate, session key, and so on) a pseudo-random number
generator is used. A prominent pseudo-random num-
ber generator is essential to generate pseudo-random
number having randomness property (along with other
good statistical properties). Consequently, the security
of these cryptosystems deliberately depends upon the
randomness property regarding a sequence. Thus, it is
mandatory to evaluate the randomness of a sequence
before utilized them in any cryptosystems. Basically,
two crucial properties namely the linear complexity

[4] and the distribution of bit patterns regarding a
sequence are nowadays well-known to check the ran-
domness of a pseudo-random sequence. In this work,
the authors restrict the discussion on the distribution
of bit patterns property to evaluate the randomness of
a sequence.

Most renowned pseudo-random number generators
are the Mersenne Twister (MT) [5], Blum-Blum-Shub
(BBS) [6], Legendre sequence [7, 8], and M-sequence
[9]. Among those the former two pseudo-random num-
ber generators (MT and BBS) are well-known consider-
ing their applications in cryptography rather than the
theoretical aspect. On the other hand, the M-sequence
and Legendre sequence are prominent geometric se-
quences regarding the theoretical aspect. As a result,
the authors attracted in the pseudo-random sequence
generation research area by observing the theoretical
prospect on the M-sequence and Legendre sequences.

The Legendre sequence [7, 8] is generated by ap-
plying the Legendre symbol over the odd characteris-
tic field. It has a long period, high linear complexity,
and the distribution of bit patterns of the Legendre se-
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quence is known to be close to uniform [10, 11]. On the
other hand, M-sequence is generated by a linear recur-
rence relation over the finite field. It has a maximum
period but minimum linear complexity. In addition, M-
sequence [9] is well-known for its uniform distribution
of bit patterns [12]. Our previous work on geometric
sequence [13] combines the features of the Legendre
sequence and M-sequence. As mentioned previously,
linear complexity and distribution of bit patterns are
the important measures to evaluate the randomness
of a sequence. So, regarding the linear complexity,
our previous sequence [13] always possess high value.
Unlike the linear complexity, the distribution of bit
patterns in [13] doesn’t reaches up to the mark alike
the Legendre sequence and M-sequence. Hence, its a
scope to improve the distribution of bit patterns in our
previous sequence.

The trace calculation is an important step during
our sequence generation procedure. Lets focus on the
important aspect regarding this calculation. In case of
prime field Fp, the trace function maps an element of
the extension field FqM to an element of the prime field
Fp. Therefore, the number of possible trace outputs
will be in the range of {0 ∼ p − 1}. In other words, if
we calculate the trace over the prime field, then it will
output p kinds of values. On the other hand, in case
of the sub extension field Fq, the trace function maps
an element of the extension field FqM to an element of
the sub extension field Fq and the number of possible
trace outputs will be in the range of {0 ∼ q − 1} which
means the trace outputs q kinds of values. It should
be noted that here M = m/m′, q = pm

′
, and m′ be one

of the factors of m. From the theoretical perspective,
more variation in the trace values contribute to the
better appearance of bits (0 and 1) in a sequence. This
is one of the important aspects to consider the sub ex-
tension during the sequence generation procedure to
improve the distribution of bit patterns in our previous
sequence [13]. After utilizing the sub extension field,
the detailed improvement in distribution of bit pat-
terns is introduced in the result and discussion section
in this paper.

Recently, the authors started to consider the sub
extension field during the sequence generation proce-
dure, which is a new dimension of our research work
on generation of pseudo-random sequence (whereas
our previous works on binary sequence [13] and multi-
value sequence [14, 15] are considered in the prime
field). As a result, our recent works on binary sequence
[16] and multi-value sequence [17] experimentally ob-
served the linear complexity, autocorrelation proper-
ties, respectively. As mentioned previously, the dis-
tribution of bit patterns is an important measure to
evaluate the randomness of a sequence. Thus, the
authors of this paper consider the distribution of bit
patterns in a binary sequence which generated over
the sub extension field.

The Legendre sequence and M-sequence are the
base of the sequence research area. Their properties are
already proven, therefore many researchers attracted
by those sequences. As mentioned previously, our se-

quence also generated by the idea of the Legendre and
M-sequences. Consequently, the authors thought that
its properties can be theoretically proven and fortu-
nately its proven (which shown in the later section
of this paper). This is one of the contributions of the
authors in this paper. Moreover, they also make a
comparison between the binary sequence defined over
the sub extension field with their previous work on
binary sequence in terms of distribution of bit patterns
property. According to the comparison result, binary
sequence (defined over sub extension field) holds much
better (close to uniform) distribution of bit patterns
than the previous binary sequence [13]. Finding this
improvement by considering the sub extension field is
the major contribution of this paper.

The authors of this paper observed the distribution
of bit patterns in a binary sequence which generated
by a primitive polynomial, trace function, and Legen-
dre symbol over the sub extension field. In brief, the
sequence generation procedure is as follows: at first, it
uses a primitive polynomial over the odd characteristic
field Fp to generate maximum length vector sequence
as elements in FqM , then the trace function maps the
extension field FqM elements to the sub extension field
Fq elements, and finally the Legendre symbol bina-
rizes the sub extension field Fq elements to a binary
sequence. The authors already observed the period,
autocorrelation, cross-correlation, and linear complex-
ity properties of the binary sequence (which generated
over the sub extension field) in their previous works
[16, 17]. Thus, this paper focused on the distribution
of bit patterns property. In brief, the authors count the
number of appearances for each n-bit patterns (where
1 ≤ n ≤ (m/m′)). After observing many experimental
results, the authors found that the number of appear-
ances of each bit pattern is related to the number of
zeros contained in each bit pattern. Furthermore, the
authors theoretically proven the distribution of bit pat-
terns equation. Moreover, they also make a comparison
with their previous work [13].

Throughout this paper, p and q denote an odd
prime number and its power q = pm

′
, respectively,

where m be a positive integer which mainly denotes
extension degree and m′ be one of the factors of m. In
addition, M =m/m′ and F

∗
q denotes the multiplicative

group of Fq, that is F ∗q = Fq − {0}.

2 Preliminaries

This section briefly explains some fundamental con-
cepts of the finite field theory such as group, field,
primitive polynomial, trace function, Legendre symbol,
and dual bases. Then, binary sequence is introduced
along with its period and distribution of bit patterns
properties.

2.1 Group

A group is a non-empty set G with a binary operation
◦ on its elements denoted as < G,◦ >, which satisfies
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the following axioms.

• Closure For ∀a,b ∈G, the result of a◦b also exists
in G and it is uniquely given.

• Associativity Elements in group G should fol-
low associativity. i.e. (a ◦ b) ◦ c = a ◦ (b ◦ c), where
a,b,c ∈G.

• Identity element There exists an element e ∈ G
such that ∀a ∈G, a ◦ e = e ◦ a = a.

• Inverse element For ∀a ∈ G, there exists an ele-
ment b ∈ G such that a ◦ b = e = b ◦ a, where b is
called inverse element of a.

Commutative group A group G will be commutative
if a ◦ b = b ◦ a for all a,b ∈G.
Group generator For a given group G if there is an
element g ∈ G such that for any a ∈ G there exists an
unique integer i with a = g i then g will be called as a
generator of G.
Order of a group The order of a group G often denoted
as #G is the number of elements in the group G.
Cyclic group A group G will be cyclic if there exists at
least one generator g ∈G and it is denoted as G =< g >.
From the definition of cyclic group, it can be visualized
that each element in a cyclic group can be generated
with iterative operations of generator g which shown
in the following Figure 1.

Figure 1: cyclic group.

Multiplicative group A cyclic group is called multi-
plicative if we tend to write its group operation in the
same same way we do multiplication, that is

f = g · x or f = gx.

2.2 Field

A field < F ,+, · > is a set that obeys two binary opera-
tions denoted by + and · , such that

• F is a commutative group with respect to addi-
tion (+) having identity element 0.

• Let F ∗ is a subset of F having non-zero elements
of F i.e. F

∗ = F − {0}. Then F
∗ will be called a

commutative group with respect to multiplica-
tion (·), where every element should have multi-
plicative inverse in F

∗.

• For all a,b,c ∈ F the distributive law will be fol-
lowed, i.e. a·(b+c) = a·b+a·c and (b+c)·a = b·a+c·a.

Sub field Let F1 is a sub field of a field F . Then F1
will be called a sub field if F1 obeys the laws of field
with respect to the field operation inherited from F . In
addition, if F1 , F , then F1 is a proper sub field of F .

Prime field Let p be a prime. The ring of integers mod-
ulo p is a finite field of characteristic p having field
order p denoted as Fp is called a prime field.

Extension field A subset F0 of a field F that is itself
a field under the operations of F will be called a sub
field of F . In this case, F is called an extension field
of F0. An extension field of a prime field Fp can be
represented as m-dimensional vector space that has m
elements in Fp. Let the vector space be the m-th exten-
sion field be denoted as FqM . The order of a extension
field FqM is given as pm (here q = pm

′
and M =m/m′).

In very brief, it can be said that a prime field (Fp) is
a subset of sub extension field (Fq) and sub extension
field Fq is also a sub set of extension field FqM which
shown in Figure 2.

Figure 2: Fp ⊂ Fq ⊂ FqM .

2.3 Primitive Polynomial

Consider a polynomial f (x) of degree m over prime
field Fp. If it is not factorized into smaller degree
polynomials over the prime field Fp, it is called an ir-
reducible polynomial. Consider the smallest number e
such that xe −1 is divisible by f (x) over Fp, it is known
that e becomes a factor of qM − 1. Then f (x) is espe-
cially called a primitive polynomial, when e is equal
to qM − 1. Its zero ω belongs to the extension field FqM

and it becomes a primitive element in FqM that gener-
ates every non-zero element in FqM as its power ωi (for
i = 0,1,2, . . . , qM−2).
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2.4 Trace Function

This work utilizes the trace function to map an element
of the extension field X ∈ FqM to an element of the sub
extension field x ∈ Fq as,

x = TrqM |q (X) =

m
m′ −1∑
i=0

Xp
im′
. (1)

A crucial point, the above trace becomes an arbitrary
element in Fq and the trace function has a linearity
property over the sub extension field Fq as follows,

TrqM |q (aX + bY ) = aTrqM |q (X) + bTrqM |q (Y ) , (2)

where a,b ∈ Fq and X,Y ∈ FqM .

2.5 Legendre Symbol

The Legendre symbol
(
a/q

)
2

is used to check the
quadratic residue for any arbitrary element a in Fq.
It is defined as,(
a/q

)
2

= a(q−1)/2

=


0, if a = 0,
1, else if a is a QR in F

∗
q ,

p − 1, otherwise a is a QNR in F
∗
q .

(3)

Here, QR and QNR stand for Quadratic Residue (QR)
and Quadratic Non-Residue (QNR), respectively. Ad-
ditionally, the non-zero element a is called the QR if it
has a square root in Fq, otherwise a is called the QNR.
In this paper, the Legendre symbol is used for translat-
ing a vector sequence generated by the trace function
over Fq to a binary sequence. Above mentioned QR
and QNR in Fq holds the following important property.

Non-zero elements are the roots of xq−1 − 1 in F
∗
q

over Fq without any duplicates. Since it is factorized
as follows:

xq−1 − 1 =
(
x(q−1)/2 − 1

)
−
(
x(q−1)/2 − 1

)
. (4)

It is thus found that the number of QR’s and QNR’s
in F

∗
q are the same and it is given by (q − 1)/2. In addi-

tion, these numbers are important part in proving the
theorem in the later section of this paper.

2.6 Dual Bases

The dual bases plays an important role in proving the
theorem shown in this paper. It is defined as follows:

Let FqM be a finite field and Fq be a finite extension
of FqM . Then the two bases A = {α0,α1, . . . ,αm−1} and
B = {β0,β1, . . . ,βm−1} of Fq over FqM are said to be the
dual (or complementary) bases if

TrqM |q
(
αiβj

)
=

 1, if i = j,
0, otherwise,

(5)

where 1 ≤ i, j ≤m− 1.

2.7 Binary Sequence and Its Properties

This paper introduces a binary sequence along with its
period and distribution of bit patterns properties as
follows.

2.7.1 Generation Procedure and Period

Let ω be a primitive element in the extension field FqM ,
where M =m/m′ , m be a composite number which de-
notes the extension degree of the primitive polynomial,
andm′ be one of the factors ofm. Then, by utilizing the
trace function and Legendre symbol a binary sequence
S is generated as follows:

S = {si}, si = f2

((
TrqM |q

(
ωi

)/
p

))
, (6)

where i = (0,1,2, . . . ,λ − 1, . . .), si ∈ 0,1 and f2(·) be a
mapping function, which translates the 0, 1, and p − 1
values sequence generated by the Legendre symbol
to a pseudo-random binary sequence. This mapping
function is defined as follows:

f2(s) =

 0, if x = 0,1 mod q,
1, otherwise.

(7)

After observing many experimental results, the au-
thors derive the equation for the period λ of the binary
sequence as,

λ =
2(qM − 1)
q − 1

. (8)

2.7.2 Distribution of Bit Patterns

From the viewpoint of security, the distribution of bit
patterns is as important as the linear complexity. If
a sequence holds the uniform distribution of bit pat-
terns, then it becomes difficult to guess the next bit
after observing the previous bit patterns. For example,
let’s assume a binary sequence having a period of 12 as
S12 = {1,0,1,0,1,0,1,0,1,0,1,0}. If we observe the 1-bit
pattern in this sequence, then we can find that it has a
uniform distribution of 1 and 0. In other words, 1 and
0 appear same in number. However, when we check
2-bit patterns on S12, we find that it only has two types
of patterns (10 and 01). In this case, we can easily pre-
dict the next bit patterns after observing the previous
patterns. For example, let us make a sub-sequence of
S12 as {1,0,1,0,x5,x6}, we can easily guess x5 and x6 as
x5 = 1 and x6 = 0. Therefore, it is also essential to eval-
uate the distribution of bit patterns of the sequence
to confirm its randomness. In other words, the unifor-
mity of the distribution contributes to the randomness
from the viewpoint of unpredictability.
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3 Distribution of Bit Patterns in
Binary Sequence

In this section, we will introduce the bit distribu-
tion of binary sequence which generated over the sub
extension field. In addition, bit distribution of M-
sequence and Legendre sequence is also introduced
here. Throughout this section b(n), Z(b(n)) andDSλ(b(n))
denotes a bit pattern of length n, number of 0’s in b(n),
and number of appearance of b(n) in Sλ, respectively.
For example, in a binary sequence of period 15, a 3-bit
pattern b = 101 appears 4 times. Then, these notations
become b(3) = 101, Z(b(3)) = 1, and DS15

(b(3)) = 4.

3.1 Bit Distribution of M-sequence

The M-sequence [9] is generated by a linear recurrence
relation over the finite field. M-sequence has a maxi-
mum period and uniform distribution of bit pattern
except for the case of Z(b(n)) = n but it has minimum
linear complexity. Let, f (x) = x4 + x+ 1 be a primitive
polynomial over F2, then using the linear recurrence
relation a M-sequence of period 15 becomes as follows.

S15 = {1,0,0,0,1,1,1,1,0,1,0,1,1,0,0}. (9)

The distribution of n-bit pattern in (9) is shown in
Table 1, here 1 ≤ n ≤m. In the case of M-sequence, ex-
cept the all-zero pattern, every pattern appears same
in number. For example, when n = 3 all patterns ap-
pear 2 times (except 000 pattern). In other words, they
are uniformly distributed. Every M-sequence has such
good distribution of bit pattern feature.

Table 1: Bit distribution of the M-sequence S15.

n b(n) Z(b(n)) DS15
(b(n))

1
0 1 7
1 0 8

2

00 2 3
01 1 4
10 1 4
11 0 4

3

000 3 1
001 2 2
010 2 2
100 2 2
011 1 2
101 1 2
110 1 2
111 0 2

3.2 Bit Distribution of LegendreSequence
Legendre sequence [7, 8] is generated by applying the
Legendre symbol over the odd characteristic field. Leg-
endre sequence has a long period, high linear com-
plexity, and the distribution of bit pattern is close to

uniform. Let, p = 23, then the Legendre sequence of
period 23 becomes as follows.

S23 = {0,0,0,0,0,1,0,1,0,0,1,1,0,0,1,1,0,1,0,1,1,1,1}. (10)

The distribution of n-bit pattern in (10) is shown in
Table 2. In case of Legendre symbol, bit patterns ap-
pearance is close to uniform.

Table 2: Bit distribution of the Legendre sequence S23.

n b(n) Z(b(n)) DS23
(b(n))

1
0 1 12
1 0 11

2

00 2 6
01 1 6
10 1 5
11 0 5

3

000 3 3
001 2 3
010 2 3
100 2 3
011 1 2
101 1 3
110 1 2
111 0 2

3.3 Bit Distribution of the Proposed Bi-
nary Sequence

Let Sλ be a binary sequence of having a period of λ.
Again, let b(n), Z(b(n)), and DSλ(b(n)) denotes a bit pat-
tern of length n, number of 0’s in b(n), and number of
appearance of b(n) in Sλ, respectively. Then, the dis-
tribution of bit patterns in the binary sequence which
defined over the sub extension field can be given by
the following theorem.

DSλ
(
b(n)

)
=



qM−(n·m′) ·
(q − 1

2

)n−Z(
b(n)

)
−1
·
(q+ 1

2

)Z(
b(n)

)
(11a)

when 0 ≤ Z
(
b(n)

)
< n,

λ−
Z
(
b(n)

)∑
u=0

nCu ·DSλ
(
b(n)

)
(11b)

when Z
(
b(n)

)
= n.

Let ω be a primitive element in the extension field
FqM , whereM =m/m′ ,m be a composite number which
denotes the extension degree of the primitive polyno-
mial, and m′ be one of the factors of m. Then, utilizing
the trace function and Legendre symbol one period of
a binary sequence is generated as follows.

Sλ = {si }, si = f2

((
TrqM |q

(
ωi

)/
p

))
, i = 0,1,2, . . . ,λ−1, . . . , (12)
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Here λ be the period of the sequence and it is given by
the following equation as,

λ =
2(qM − 1)
q − 1

. (13)

At first, a primitive polynomial is used, then the trace
value is calculated, then the Legendre symbol outputs
zero, QR or QNR in Fq, and finally the sequence coeffi-
cients si is given by the mapping function f2(·).

The authors of this paper observe the distribu-
tion of n-bit patterns in a binary sequence. It should
be noted that here n satisfies 1 ≤ n ≤ (m/m′) rela-
tion. The distribution of n-bit patterns evaluated
by observing the consecutive sequence coefficients
(si , si+1, . . . , si+(n−1)). Particularly,

si+0 = f2

((
Tr

(
ωi ·ω0

)/
p

))
,

si+1 = f2

((
Tr

(
ωi ·ω1

)/
p

))
,

...

si+(n−1) = f2

((
Tr

(
ωi ·ωn−1

)/
p

))
,

where 0 ≤ i ≤ (qM − 2). By observing the above se-
quence coefficients, the distribution of bit patterns DSλ
is determined by the following trace values.

Tr
(
ωi ·ω0

)
,Tr

(
ωi ·ω1

)
, . . . ,Tr

(
ωi ·ωn−1

)
. (14)

Let A = {α0,α1, . . . ,αm−1} be a basis, ω be a primitive
element and with this basis ωi is represented as,

ωi =
m−1∑
j=0

ai,jαj ,where ai,j ∈ Fq and 0 ≤ i ≤ qM −2. (15)

Again let B = {ω0,ω1, . . . ,ωn−1,βn, . . . ,βm−1} be a dual
basis of A in Fq over FqM . Then we also have

ωt =ωt +

m
m′ −1∑
j=0

0 · βj ,where 0 ≤ t < n. (16)

Since A and B are dual bases to each other, then
Tr

(
ωi ·ωt

)
be calculated as follows.

Tr
(
ωi ·ωt

)
= Tr


m−1∑
j=0

ai,jαj ·

ωt +

m
m′ −1∑
j=0

0 · βj




= ai,t .

Therefore, by using the dual basis, the distribution of
bit patterns DSλ

(
b(n)

)
determined by the trace values

becomes as follows.

Tr
(
ωi ·ω0

)
,Tr

(
ωi ·ω1

)
, . . . ,Tr

(
ωi ·ωn−1

)
=

(
ai,0, ai,1, . . . , ai,n−1

)
.

Thus, instead of using sequence coefficients (si , si+1, . . . ,
si+(n−1)), we can consider the dual basis representation

of these coefficients as
(
ai,0, ai,1, . . . , ai,(n−1)

)
. Addition-

ally, all the above trace values belong to the sub exten-
sion field Fq.

Furthermore, ωi
(
0 ≤ i ≤ qM − 2

)
in (15) represents

every non-zero vectors in the extension field FqM as,{
Tr

(
ω0

)
,Tr

(
ω1

)
,Tr

(
ω2

)
,Tr

(
ω3

)
, . . . ,Tr

(
ωq

M−2
)}
. (17)

According to the trace property, non-zero Fq elements
appear qM−m

′
times and zero appears one less than

the other elements i.e. qM−m
′ − 1 times in the above

equation.

3.3.1 Relation Between the Sequence Coefficients
With the Trace Values and Legendre Symbol
Calculation

Depending on the three different types of trace values
(0, QR, and QNR), the Legendre symbol outputs three
different values (0, 1, and p − 1), and finally the map-
ping function outputs 0 and 1 as sequence coefficients
si . This dependency between the trace and Legendre
symbol is explained as follows.

Table 3: Relation between the sequence coefficients with trace and
Legendre symbol calculation -I.

si Tr
(
ωi

)
0

0 or
QR in F

∗
q

1 QNR in F
∗
q

According to the above table, the sequence coeffi-
cient 0 comes from the two cases: one is for the Tr(0)
case and another one is for the QR in F

∗
q case. To deal

with this two cases uniquely, let us denote 0 and 0 for
the first and second cases, respectively. In addition, 1
comes for QNR in F

∗
q case. Thus the above table can

be further modified as follows.

Table 4: Relation between the sequence coefficients with trace and
Legendre symbol calculation -II.

si Tr
(
ωi

)
0 0
0 QR in F

∗
q

1 QNR in F
∗
q

To distinguish the appearance of 0, this paper uses
the notation 0, when zero comes from Tr(0) and 0 when
zero comes from QR. Let the number of 0 be denoted
by u and Tu,n denotes the number of bit patterns in-
cluding u times 0 and Z(b(n))−u times 0. Thus, Tn can
be considered as,

Z(b(n))∑
u=0

Tu,n. (18)
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In the following section, the distribution of bit patterns
in the binary sequence defined over the sub extension
field theoretically proven.

3.3.2 Proof of (11a)

The period of the binary sequence is given by the fol-
lowing equation as,

λ =
2(qM − 1)
q − 1

. (19)

After rewriting the above equation we obtain,

qM − 1 = λ ·
(q − 1

2

)
. (20)

To observe the distribution of bit patterns, the above
relation becomes as follows.

DSqM−1

(
b(n)

)
=DSλ

(
b(n)

)
·
(q − 1

2

)
. (21)

Thus, we must consider two cases of the sequence
length such as SqM−1 and Sλ. Hence, we will observe

the distribution of bit patterns in SqM−1 asDSqM−1

(
b(n)

)
and Sλ as DSλ

(
b(n)

)
.

In the previous section, we explained that n-bit
patterns can be considered as b(n) =

(
ai,0, ai,1, . . . , ai,n−1

)
.

On the other hand, the remaining (m− (n ·m′))-bit pat-
terns are composed of

(
ai,nm′ , ai,nm′+1, . . . , ai,m−1

)
coeffi-

cients of ωi , which is given by the (16). In addition, the
number of combinations of

(
ai,nm′ , ai,nm′+1, . . . , ai,m−1

)
becomes qM−nm

′
. It should be noted that here ωi repre-

sents all of the non-zero coefficients in the extension
field FqM .

As mentioned previously, when the trace value is
equal to 0 or QR, then the sequence coefficients be-
comes 0 and 0, respectively. In addition, if the trace
value is equal to QNR, then the sequence coefficients
becomes 1. Additionally, u denotes the number of 0 in
b(n)

(
where 0 ≤ u ≤ Z

(
b(n)

))
from Tr(0), then the other

0’s comes from Z
(
b(n)

)
−u QR’s, and finally 1’s comes

from n − Z
(
b(n)

)
QNR’s. Therefore, by separating 0,

Tu,n, and Tn the combination of n-bit patterns can be
given as follows.

Tu,n = nCu · n−uCZ(b(n))−u ·
(q − 1

2

)Z(b(n))

×n−Z(b(n))Cn−Z(b(n)) ·
(q − 1

2

)n−Z(b(n))
(22)

Furthermore, Tn can be derived as,

Tn =
Z(b(n))∑
u=0

Tu,n

=
Z(b(n))∑
u=0

nCu · n−uCZ(b(n))−u ·
(q − 1

2

)Z(b(n))

×
(q − 1

2

)n−Z(b(n))
(23)

According to the above equation, Tn can be calculated
by Z

(
b(n)

)
. In addition, there are nCZ(b(n)) possible bit

patterns that have the same Z
(
b(n)

)
. To calculate the

DSqM−1

(
b(n)

)
for each b(n), Tn needs to be divided by

nCZ(b(n)).

DSqM−1

(
b(n)

)
= qM−(n·m′) · Tn

nCZ(b(n))

= qM−(n·m′)
Z(b(n))∑
u=0

nCu · n−uCZ(b(n))−u

nCZ(b(n))

×
(q − 1

2

)Z(b(n))−u
·
(q − 1

2

)n−Z(b(n))
(24)

The above equation can be further modified as follows.

Z(b(n))∑
u=0

nCu · n−uCZ(b(n))−u

=
n!(

n−Z
(
b(n)

))
!
·
Z(b(n))∑
u=0

· 1

u!
(
Z
(
b(n)

)
−u

)
!

=
n!(

n−Z
(
b(n)

))
!
·
Z(b(n))∑
u=0

· 1

u!
(
Z
(
b(n)

)
−u

)
!

×

(
Z
(
b(n)

))
!
(
n−Z

(
b(n)

))
!

n!

=
Z(b(n))∑
u=0

(Z(b(n)))!

u!(Z(b(n)))!
= Z(b(n))CZ(b(n))−u . (25)

Thus, (24) becomes as follows:

DSqM−1

(
b(n)

)
= qM−(n·m′)

Z(b(n))∑
u=0

Z(b(n))CZ(b(n))−u

×
(q − 1

2

)Z(b(n))−u
·
(q − 1

2

)n−Z(b(n))
(26)

By using the bilinear theorem, the above equation can
be rewritten as,

DSqM−1

(
b(n)

)
= qM−(n·m′) ·

(q − 1
2

)n−Z(b(n))

×
(q − 1

2
+ 1

)Z(b(n))

= qM−(n·m′) ·
(q − 1

2

)n−Z(b(n))
·
(q+ 1

2

)Z(b(n))
. (27)

From the (21), DSλ
(
b(n)

)
holds the following relation

as follows,

DSλ
(
b(n)

)
=DSqM−1

(
b(n)

)
·
(q − 1

2

)−1
. (28)
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Therefore, using the (27), DSλ
(
b(n)

)
can be given by the

following relation as,

DSλ
(
b(n)

)
= qM−(n·m′) ·

(q − 1
2

)n−Z(b(n))

×
(q+ 1

2

)Z(b(n))
·
(q − 1

2

)−1

= qM−(n·m′) ·
(q − 1

2

)n−Z(b(n))−1
·
(q+ 1

2

)Z(b(n))
. (29)

Thus, the first part of the (11a) is proven.

3.3.3 Proof of (11b)

Let us consider the case that Z
(
b(n)

)
= n. Therefore,

the combination of n-bit patterns except the all-zero
patterns is given as follows:

nCZ(b(n)). (30)

Thus, the distribution of all-zero patterns becomes

DSλ
(
b(n)

)
= λ−

n−1∑
u=0

nCu ·DSλ
(
b(n)

)
. (31)

Thus, the second part of the (11b) is proven. In addi-
tion, the theorem in (11) is also proven.

4 Result and Discussion

This section explains the distribution of bit patterns
in the binary sequence which generated over the sub
extension field based on some experimental results.
Then, a comparison between the binary sequence de-
fined over the sub extension field and our previous
geometric sequence [13] also introduces in terms of
the distribution of bit patterns property. Here, Hwt
denotes the hamming weight.

4.1 Experimental Results

Let us consider the distribution of bit patterns in the
binary sequence, introduced in this paper which gen-
erated over the sub extension field in the following
examples.

Example 1 Let p = 5,m = 4, and m′ = 2, then the se-
quence having a period of 52 becomes as follows its distri-
bution of n-bit patterns is shown in Table 5.

S52 = {01001101000000101011110011

10110010111110010100001100}.
(32)

Table 5: Bit distribution of the binary sequence S52 with p = 5,m = 4,
and m′ = 2.

n Hwt(b(n)) Z(b(n)) DS52
(b(n))

1
0 1 27
1 0 25

2
0 2 14
1 1 13
2 0 12

Example 2 Let p = 3,m = 6, and m′ = 2, then the se-
quence having a period of 182 becomes as follows its dis-
tribution of n-bit patterns is shown in Table 6.

Table 6: Bit distribution of the binary sequence S182 with p = 3,m =
6, and m′ = 2.

n Hwt(b(n)) Z(b(n)) DS182
(b(n))

1
0 1 101
1 0 81

2
0 2 56
1 1 45
2 0 36

3

0 3 31
1 2 25
2 1 20
3 0 16

Example 3 Let p = 7,m = 9, and m′ = 3, then the se-
quence having a period of 235986 becomes as follows its
distribution of n-bit patterns is shown in Table 7.

Table 7: Bit distribution of the binary sequence S235986 with
p = 7,m = 9, and m′ = 3.

n Hwt(b(n)) Z(b(n)) DS235986
(b(n))

1
0 1 118337
1 0 117649

2
0 2 59341
1 1 58996
2 0 58653

3

0 3 29757
1 2 29584
2 1 29412
3 0 29241

4.1.1 Observation

It was found that the experimental results explicitly
support the (11). In addition, the number of appear-
ance of each bit pattern is related to the number of ze-
ros contained in each bit pattern. Moreover, DSλ(b(n))
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increases in proportion to Z(b(n)). To confirm this, let
us check the Example 2 with n = 3.

Z(b(3)) = 0 :

DS182
(b(3) = 111) = 36−(3×2) · 43−0−1 · 50 = 16.

Z(b(3)) = 1 :

DS182
(b(3) = 011) = 36−(3×2) · 43−1−1 · 51 = 20,

DS182
(b(3) = 101) = 36−(3×2) · 43−1−1 · 51 = 20,

DS182
(b(3) = 111) = 36−(3×2) · 43−1−1 · 51 = 20.

Z(b(3)) = 2 :

DS182
(b(3) = 001) = 36−(3×2) · 43−2−1 · 52 = 25,

DS182
(b(3) = 010) = 36−(3×2) · 43−2−1 · 52 = 25,

DS182
(b(3) = 100) = 36−(3×2) · 43−2−1 · 52 = 25.

Z(b(3)) = 3 :

DS182
(b(3) = 000) = 182− (1× 16 + 3× 20 + 3× 25) = 31.

4.2 Comparison With Our Previous Work

By combining the features of the M-sequence and Leg-
endre sequence our previous work [13] proposed a ge-
ometric sequence, namely NTU (Nogami-Tada-Uehara)
sequence. According to our previous research work,
NTU sequence always holds long period, low correla-
tion, high linear complexity properties which are the
important considerations to use any sequence in cryp-
tographic applications. Another crucial consideration
before utilizing them in any secure applications, is to
judge the randomness of a sequence. To do so, we need
to evaluate the distribution of bit patterns property in
a sequence. After the experimental observation, it was
found that in terms of distribution of bit patterns NTU
sequence is not uniformly distributed. In other words,
in case of binary NTU sequence, there is much differ-
ence in appearance between the 0 and 1. To improve
this drawback, instead of prime field (which used in
the NTU sequence generation procedure), we focused
on the sub extension field during the sequence genera-
tion procedure in this research work. As a result, after
utilizing the sub extension field, the distribution of bit
patterns becomes close to uniform. This comparison is
shown in the following tables (Table 8 and Table 9).

It should be noted that the NTU sequence is con-
trolled by 2 parameters (p and m), on the other hand
the sequence over the sub extension field is controlled
by 3 parameters (p, m, and m′). Therefore, it is not
possible to make the comparison between these two
sequences in terms of the same length (in other words,
the same period λ). The authors kept the difference as
minimum as possible.

One of the most notable outcomes of this compari-
son result is the NTU sequence holds higher difference
in terms of the appearance between the ‘all zero’ and
‘all one’ patterns. In other words, it also confirms the

ununiform distribution of bit patterns. On the other
hand, sequence defined over the sub extension field
minimizes this difference to make it close to uniform.
This comparison graphically shown in Figure 3.

Table 8: Comparison in bit distribution between the sub field binary
sequence and NTU sequence -I.

n Hwt(b(n)) DS182
(b(n)) % DNTU242

(b(n)) %

1
0 101 55.49 161 66.52
1 81 44.51 81 33.48

2
0 56 30.76 107 44.21
1 45 24.72 54 22.31
2 36 19.78 27 11.15

3

0 31 17.03 71 29.33
1 25 13.73 36 14.87
2 20 10.98 18 7.43
3 16 8.79 9 3.71

Table 9: Comparison in bit distribution between the sub field binary
sequence and NTU sequence -II.

n Hwt(b(n)) DS240200 (b(n)) % DNTU275514 (b(n)) %

1
0 122551 51.02 156865 56.93
1 117649 48.98 117649 43.07

2
0 62526 26.03 89637 32.53
1 60025 24.98 67228 24.40
2 57624 23.99 50421 18.30

3

0 31901 13.28 51221 18.59
1 30625 12.74 38416 13.94
2 29400 12.23 28812 10.45
3 28224 11.75 21609 7.84

4

0 16276 6.77 29269 10.62
1 15625 6.50 21952 7.96
2 15000 6.24 16464 5.97
3 14400 5.99 12348 4.48
4 13824 5.75 9261 3.36

Recently, there are lots of considerations to use a
long period pseudo-random sequence in cryptographic
applications. The use of binary sequence in a stream
cipher is one of the most common application. Before
applying a sequence in such applications, the linear
complexity and distribution of bit patterns are con-
sidered as the most important properties regarding a
sequence to check its randomness. Among these two,
the authors observed the linear complexity property
in their previous work [16] and it always holds a maxi-
mum value of the linear complexity. As a continuation,
the authors focused on the distribution of bit patterns
in this paper. According to the comparison results, the
binary sequence generated over the sub extension field
holds much better (close to uniform) compared to our
previous binary sequence in terms of distribution of
bit patterns. Therefore, the binary sequence defined
over the sub extension field can be a suitable candidate
for some cryptographic applications.
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Figure 3: Appearance of ‘all zero’ and ‘all one’ bit patterns in the
NTU and sub field sequence.

5 Conclusion

In this paper, the authors observed the distribution
of bit patterns in a binary sequence which defined
over the sub extension. The number of appearances is
related to the number of zeros contained in each bit
pattern. Furthermore, the authors theoretically prove
the distribution of bit patterns property. In addition,
they also made a comparison between the binary se-
quence defined over the sub extension field and our
previous work on binary sequence based on distribu-
tion of bit patterns property. According to the com-
parison results, the binary sequence generated over
the sub extension field holds much better (close to uni-
form) compared to our previous binary sequence. As a
future work, we would like to consider an efficient im-
plementation to enhance the usability of our proposed
sequence a Cryptographically Secure Pseudo Random
Number Generator (CSPRNG).
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