

www.astesj.com 395

Relational Databases Versus HBase: An Experimental Evaluation

Zakaria Bousalem*,1, Inssaf El Guabassi2, Ilias Cherti1

1Faculty of Sciences and Technologies, Hassan 1st University, Settat, Morocco

2Faculty of Sciences, Abdelmalek Essaadi University, Morocco

A R T I C L E I N F O A B S T R A C T
Article history:
Received:21 February, 2019
Accepted:07 April, 2019
Online: 26 April, 2019

 Relational database management systems (RDBMS) have been imposed for more than three
decades as a facto standard for data storage, management, and analysis. They have a good
reputation by supporting ACID properties (Atomicity, Consistency, Isolation, and
Durability) and by adopting the SQL language which has become a standardized language.
However, despite their power, RDBMS have failed to meet the modern application's
requirements. That's why the need arises for new database management systems that
support the manipulation of large amounts of data. NoSQL database systems allow a
flexible schema, whereas RDBMSs require a strictly defined schema. They support
horizontal scalability and prioritize data availability over consistency (BASE properties)
and have performance that remains good with scalability. In this paper, we present an
experimental comparison between a relational database (MySQL) and a NoSQL database
(HBase) in terms of runtime and latency in different scenarios using the YCSB Framework.

Keywords:
Relational database
HBase
NoSQL
Comparative study
Benchmarking
YCSB

1. Introduction

For more than three decades Relational databases has been the
de-facto standard in the database management systems market
thanks to its maturity[1], [2]. Nowadays, with a constant growth
of data generated by modern web applications such as social
networks, e-commerce sites, and mobile applications; the
management, querying and analysis data have become a real
challenge for relational database management systems (RDBMS).
Besides, these data are recorded in several formats (structured,
semi-structured and unstructured), whereas the traditional
database management systems based on a rigid schema. These
limitations of the relational model led the leaders of the internet
such as Google, Amazon, eBay, Alibaba and Facebook to develop
a new model named NoSQL databases[3], in order to overcome
the weakness of relational database management systems towards
the variety, the velocity and the large volume of new data
captured. "NoSQL" databases are not usually a replacement, but
rather a complementary complement to RDBMS and SQL. The
NoSQL model is based on the CAP theorem (Consistency
Availability Partition Tolerance) as opposed to RDBMS based on
ACID properties (Atomicity, Coherence, Isolation, Durability).
NoSQL databases management systems (DBMS) can be
classified into four categories: Key-Value databases, Document
Oriented databases, Column Oriented databases and Graph
databases. This classification is due to the fact that each type of

database arises in a specific context and based on different
architectures [4]. Comparing different models provides a clear
vision for choosing the most appropriate model for a given
context. The purpose of this article is to compare the relational
model (MySQL) and the NoSQL model (HBase)[5] in terms of
runtime and latency in different scenarios using the YCSB
Framework. We will measure the latency of three cases of
operations: 100% read operations, 100% update operations, and a
mix of 50% reads and 50% updates with two scenarios. The first
is increasing the number of records however the total number of
operations remains fixed at 10000. The second is increasing the
number of operations while fixing the total number of records at
1 million records in order to reveal how the number of operations
and number of records affect the performance in terms of the
latency metric and runtime for data loading. In order to make an
efficient approach for migration from Relational databases to
HBase database, we have started by a feasibility assessment[6],
and in this paper, we have made an experimental comparison
between relational databases and HBase database. The goal of this
comparison is clearly identifying which case is better to migrate
from relational to HBase.

The rest of the paper is structured as follows: In section 2 we
introduce the basic definitions starting with an introduction to the
NoSQL databases after we present the HBase database, so we will
see what Databases Benchmarking is, then we provide a brief
presentation of YCSB Framework. In section 3 we introduce the
experimental strategy used in our paper. In section 4 we describe

ASTESJ

ISSN: 2415-6698

*Zakaria Bousalem, Faculty of Sciences and Technologies, Hassan 1st
University, Settat, Morocco, zakaria.bousalem@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 395-401 (2019)

www.astesj.com

https://dx.doi.org/10.25046/aj040249

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj040249

Z. Bousalem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 395-401 (2019)

www.astesj.com 396

the experimental setup for evaluation. In Section 5 we present the
MySQL and HBase evaluation results. In Section 6, a summary
and general observations about the results of this evaluation are
provided. Finally, Section 7 concludes our paper.

2. Basic definitions

2.1. NoSQL Databases

NoSQL (Not Only SQL) is a broad category of next-generation
database management systems, as they are typically non-relational,
distributed, open source, and support horizontal scaling. Unlike
relational databases, they can better respond to big data problems.
These database systems do not rely on a rigid relational schema
and the database can therefore grow without constraint.

There are various classes of NoSQL DBMS [7]:

• Key / Value: These databases function as a key/value
associative array. This structure makes it a simple database to
set up and allows quick access to information. The value can
be a string or an object. It offers high scalability thanks to
schema-less approach. E.g. Riak, Azure Table Storage, and
Redis.

• Document-Oriented databases: These databases
management systems are an extension of the key/value
databases. Document-oriented engines do not associate a key
with a value but with a schema-less document like JSON and
XML. The flexibility of these databases makes them
polyvalent. E.g. MongoDB, Couchbase Server, and
OrientDB.

• Column-oriented databases: The data representation is done
by columns contrary to traditional DBMS. This structure
makes it easier to add a column to a table and manage millions
of columns. These databases are known for their ability to
scale and to store a large volume of data. These DBMSs are
mainly used in environments where it is necessary to access
many columns. They are especially useful for streaming data
and Real-time analytics. E.g. HBase, Cassandra, and
BigTable.

• Graph databases: Store data based on graph theory using
graph structures (nodes, arcs, and properties). This storage
model facilitates the representation of all highly connected
data, which is particularly well adapted to the social networks
data processing, fraud detection, and recommendation
engine[8]. E.g. AllegroGraph, Neo4j, and FlockDB.

2.2. HBase

HBase is a distributed database management system,
developed on top of the HDFS file system. It belongs to the
column-oriented databases category. HBase is designed to provide
real-time access to data stored on HDFS. It supports horizontal
scalability which allows it to support extremely large database
tables[9]. It was based on "BigTable" DBMS [10].

As shown in Figure 1, the HBase data model is based on six
concepts [11]:

• Table: HBase was organizing data in tables.
• Row: Within tables, the data is organized in rows.

RowKey is the identifier for each row.

• Column Family: In each row, data is grouped by "Column
Families ". All rows have the same "Column Families". The
"Column Family" is set when the table is created in HBase.

• Column Qualifier: Access to data within a "Column
Family" is done via the "column qualifier". It’s specified at
the data insertion phase.

• Cell: Cell is identified by the combination of the
"RowKey", the "Column Family" and the "Column
Qualifier". It’s Stores the values.

• Version: The values within a cell are versioned. The
versions are identified by their timestamp.

2.3. Databases Benchmarking

Database benchmarks (Performance evaluation by
experimentation on a real system) [13] are an important tool for
database researchers, designers, and users. Its role is to generate
application-specific workloads and to test databases in order to
assess the relative performance and ease the process of making
comparisons between different database specifications. As
mentioned by [14] the big data benchmarking process is composed
of five steps: Planning, Generating data, Generating tests,
Execution and Analysis, and evaluation Figure 2[14].

There are many existing tools for Big Data benchmark [15] like
BigBench [16], TPC-C[17] , TPC-E[18], TPC-H[19], TPC-D[20],
Bigdatabench [21] and YCSB [22]. In this paper, we are going to
use Yahoo! Cloud Serving Benchmark (YCSB) because is
currently the most popular choice for benchmarking performance
of big data databases [23].

2.4. YCSB

YCSB benchmark is an extensible, modular benchmarking
tool, it was developed by Yahoo teams for the aim of measuring
the performance of various storage solutions, with adapters for a
variety database systems such as Relational databases (with JDBC
driver), Big data databases(HBase, Mongo, Cassandra, Redis,
HyperTable, Couchbase, DynamoDB, Accumulo, etc) and others.

As shown in Figure 3 YCSB client is composed of four
modules: the executor workload, client-threads module, Database
interface module and statistics module. After generating the data
to be loaded to the database by YCSB client, the executor
workload will launch several client threads that execute a series

Figure 1: HBase model [12]

Figure 2: Benchmarking process for big data systems [14]

http://www.astesj.com/

Z. Bousalem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 395-401 (2019)

www.astesj.com 397

of operations (client-threads module) by using the (Database
Interface Layout). The statistics module will retrieve statistics

from each operation and analyze them.

YCSB benchmark varies the proportion of read, write, update,
insertion, and scan operations in a series of queries named
workloads. The YCSB distribution includes six workloads:

• Workload A: A mixed workload with 50% of reads and
50% of writes

• Workload B: A mixed workload with 95% of reads and
5% of writes.

• Workload C: A workload of 100% read
• Workload D: A mixed workload with 95% of reads and

5% of inserts.
• Workload E: A mixed workload with 95% of scans and

5% of inserts.
• Workload F: Read-modify-write: A mixed workload

with 50% of reads and 50% of read-modify-writes

3. Experimental strategy

 Much work on the potential of comparing database
performances by YCSB has been carried out [24]–[26].
Abramova et al [24] compare five NoSQL databases (Redis,
Cassandra, HBase, MongoDB, and OrientDB) in terms of their
capabilities, based on read and update operations. They affirm that
MongoDB, Redis, and OrientDB are better for reads, Cassandra
and HBase are optimized for updates. Yassien and Desouky [26]
compare MySQL, MongoDB, and HBase by using YCSB for the
aim to study the effect of varying the operation and thread count
with respect to runtime, throughput, and latency. The authors state
that each database performs at its best in different circumstances.
They recommend HBase to use for the applications that require
the high update and insert operations, MySQL for the applications
whose perform mostly reads operations and MongoDB for the
applications that require both adequate read and write
performance. Matallah et al [25] compare MongoDB and HBase
in order to evaluate loading and running time of five workloads.
According to their results, when performing reads, MongoDB
showed good performance, unlike HBase which showed good

performance for updates.

Latency means the time of response can get user when sending
a request. It’s one of the essential metrics to evaluate databases
performance [27]. Consequently, we chose in our paper to
compare MySQL and HBase in terms of runtime and response
time (latency) based on read and update operations since they are
the most used operations[24] while increasing the number of
records however the total number of operations remains fixed at
10000. Then we will increase the number of operations while
fixing the total number of records at 1 million records in order to
reveal how the number of operations and number of records affect
the performance in terms of latency and runtime for data loading.

4. Experimental setup
In order to perform our comparative study, we present the

experimental setup for evaluation. The experiments were run
using a single physical machine with Ubuntu operating system,
YCSB benchmark, Cloudera Hadoop, Cloudera HBase, and,
MySQL. All specifications are listed in Table1.

Table 1 Experimental specifications

CPU Intel® Xeon(R)
CPU E5504 @ 2.00GHz × 8

Memory 16 GB
Hard disk 237 GB SSD
Operating system Ubuntu 14.04 (64-bit)
Java version 1.8.0_16
YCSB version 0.14
CDH version 5.14.1
Cloudera HBase version 1.2.0
Cloudera Hadoop version 2.6.0
MySQL 5.6.26

The main focus of this study is to evaluate read and update
operations since they are the most used operations [24]. Therefore
this comparison mainly consists of three workloads namely A and
B included in the YCSB project and we create new workload G
proposed by [24] to evaluate the Update Only case. Table 2 shows
the tested workloads:

Table 2 Used workloads

 The dataset used in this databases benchmarking is generated
by YCSB data generator which is a part of YCSB client. The
dataset records are composed of 10 fields. Each field is filled by
a random string with 100 bytes which give 1 KB per record. The
‘YCSB_KEY’ is the primary key for each row[22]. Table 3 shows
the YCSB dataset structure.

Table 3 YCSB Dataset structure

 YCSB_KEY FIELD1 FIELD2 FIELD3 FIELD4 FIELD5 FIELD6 FIELD7 FIELD8 FIELD9
Row 1
Row 2

......

Workload Operations
Workload A 50% of reads and 50% of writes
Workload C 100% read: Read Only
Workload G 100% update : Update Only

Figure 3: YCSB client architecture [22]

http://www.astesj.com/

Z. Bousalem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 395-401 (2019)

www.astesj.com 398

Row N

5. Experimental results
We performed three tests. The first is loading data, the second

is running workloads while increasing the number of records and
fix the number of operations at 10000 and the last is running
workloads while increasing the number of operations and set the
number of records to 1 million.

5.1. Loading data

• Runtime (less is better): As shown in Figure 4 as the size
of data increases the runtime of loading data for MySQL
and HBase increases, HBase exhibited an immense
increase but MySQL shows starting from 100000 records a
dramatic increase. Additionally, HBase has the lowest
runtime. In the first test (Record number=1000) MySQL
and HBase have almost identical runtime. As the record
number increases, the runtime for MySQL to load data
ranges from 2 times slower than HBase for the second
test(Record number=10000), to more than 4 times slower
for MySQL for the third test and more than 5 times for the
fourth test.

• Insert latency (less is better): decreases as the size of data
increases for HBase. Unlike MySQL that shows a steadiness
initially and then it exhibited a decline and increase
thereafter. As shown in Figure 5 HBase has the shortest insert
latency.

5.2. Increasing the number of records
5.2.1. Workload A

• Runtime: As illustrated in Figure 6 as the size of data
increases the runtime of MySQL for data loading increases.

MySQL exhibits a slight steady increase in runtime, unlike
HBase that shows a slight decline and increase thereafter.
HBase has the lowest runtime.

• Read latency (less is better): HBase shows a slight decline
and increases thereafter, unlike MySQL that exhibits a
slight steady increase as shown in Figure 7. MySQL has the
shortest read latency.

• Update latency (less is better): As shown in Figure 8, like
runtime in update latency MySQL exhibits a slight steady
increase in runtime, unlike HBase that shows a slight
decline and increase thereafter. HBase has the lowest

update latency.

5.2.2. Workload C

Figure 4: Loading data Runtime

Figure 6: Workload A Runtime

Figure 7: Workload A Read Latency

Figure 8: Workload A Update Latency Figure 5: Loading data Insert latency

Figure 12: Workload G Latency

http://www.astesj.com/

Z. Bousalem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 395-401 (2019)

www.astesj.com 399

As illustrated in Figure 9 and Figure 10 HBase exhibits a
slightly decline initially, it shows an alternating increase and
decline thereafter in terms of runtime and read latency, unlike
MySQL that shows a steadiness initially, then it exhibited a slight
increase after reaching 100000 records. MySQL has the shortest
run time and read latency.

5.2.3. Workload G

As illustrated in Figure 11 and Figure 12 the HBase exhibits a
steadiness both for runtime and update latency, unlike MySQL that
shows a slight increase. HBase has the lowest value of runtime and
read latency.

5.3. Increasing the number of operations
5.3.1. Workload A

• Runtime: As shown in Figure 13 as the number of
operations increases the runtime of MySQL and HBase
increases, HBase and MySQL show an immense increase
but MySQL exhibits starting from 100000 operations a
dramatic increase. HBase has the lowest runtime.

• Read latency (less is better): HBase and MySQL show an
immense decline until reaching 10000 records, then exhibit
slightly decline as shown in Figure 14. MySQL has the
shortest read latency.

• Update latency (less is better): As illustrated in Figure 15
as the number of operations increases the update latency of
HBase decline. MySQL exhibits a slightly decline initially,
it shows an alternating increase and a steadiness thereafter
in terms of update latency. HBase has the lowest update
latency.

5.3.2. Workload C

• Runtime: As shown in Figure 16 as the number of
operations increases the runtime of MySQL and HBase
increases, HBase and MySQL show an immense growth
but starting from 100000 operations they exhibit a dramatic
increase. MySQL has the lowest runtime.

Figure 13: Workload A Runtime

Figure 11: Workload G Runtime

Figure 9: Workload C Runtime

Figure 10: Workload C Read Latency

Figure 14: Workload A Read Latency

Figure 15: Workload A Update Latency

Figure 19: Workload G Update Latency

http://www.astesj.com/

Z. Bousalem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 395-401 (2019)

www.astesj.com 400

• Read latency(less is better): HBase shows an immense
decrease, unlike MySQL that exhibits a steady decline as
shown in Figure 17. MySQL has the shortest read latency.

5.3.3. Workload G

• Runtime: As shown in Figure 18 as the number of
operations increases the runtime of MySQL and HBase
increases, HBase and MySQL show an immense increase
but MySQL exhibits starting from 100000 operations a
dramatic increase. HBase has the lowest runtime.

• Update latency (less is better): HBase shows an immense
decrease, unlike MySQL that exhibits a steady increase as
shown in Figure 19. HBase has the shortest update latency.

6. General observations

According to our experimental results, it can be observed that
MySQL runtime is higher in all scenarios for data loading and
HBase performed far better compared to MySQL. Concerning
read/write latencies, it can be stated that MySQL’s latency is
lower for read operations and HBase’s latency is lower for write
operations. In terms of the running workloads runtime; HBase
beats the competition in all cases except for the read-only

workload. Also from our experimental results it can be stated that
on the one hand the increasing the number of records seems to
have mediocre effects on read latency for MySQL and HBase, no
consequences in term of read latency and great impact with
respect to runtime data loading (Taken into account that number
of records tested was not of a real large size). On the other hand,
increasing the number of operations seems to have a significant
impact on read and write latency for MySQL and HBase, and
immense effects on the running workloads runtime.
Consequently, we believe that HBase outperforms MySQL on I/O
bound (‘write’) operations but lagged behind in bound (‘read’)
operations with respect to runtime and latency metrics. HBase
exhibits good performance in update operations thanks to using
the log files and cache memories to store all transactions and then
write only the log files on disk which reduce the input/output
operations [25], contrary to MySQL that stores data directly on
disk. Additionally, HBase lagged behind in reads capabilities due
to comparing all copies by HBase before running a read operation
in order to return the most recent copy, which affects database
performance [25]. So, according to our experimental results, we
can say that is better to migrate from Relational databases
(MySQL) to HBase in case of the applications that require a heavy
update, most update and high insert operations like session store
in order to record recent actions.

7. Conclusion and future work

In this paper, we present an experimental comparison between
a relational database (MySQL) and a NoSQL database (HBase)
with respect to runtime and latency in different scenarios using
the YCSB Framework. Based on the above results we can deduce
that HBase performed far better compared to MySQL in data
loading because MySQL runtime is higher in all scenarios for this
kind of operation. Additionally, we have found that HBase
outperforms MySQL on I/O bound (‘write’) operations but lagged
behind in bound (‘read’) operations with respect to runtime and
latency metrics. In perspective, we envisage to compare MySQL
and HBase in terms of database performance of the aggregate
functions and also pass to higher scales by using a very large
database and performing the evaluation in a really distributed and
parallel environment.

References

[1] Z. Bousalem and I. Cherti, “XMap: A Novel Approach to Store and Retrieve
XML Document in Relational Databases.,” JSW, vol. 10, no. 12, pp. 1389–
1401, 2015.

[2] Z. Bousalem, I. El Guabassi, and I. Cherti, “Toward Adaptive and Reusable
Learning Content Using XML Dynamic Labeling Schemes and Relational
Databases,” in Advanced Intelligent Systems for Sustainable Development
(AI2SD’2018), 2019, pp. 787–799.

[3] D. J. Abadi, “Data management in the cloud: Limitations and opportunities.,”
IEEE Data Eng Bull, vol. 32, no. 1, pp. 3–12, 2009.

[4] J. R. Lourenço, B. Cabral, P. Carreiro, M. Vieira, and J. Bernardino,
“Choosing the right NoSQL database for the job: a quality attribute
evaluation,” J. Big Data, vol. 2, no. 1, p. 18, 2015.

[5] L. George, HBase: the definitive guide: random access to your planet-size
data. O’Reilly Media, Inc., 2011.

[6] Z. Bousalem, I. Cherti, and G. Zhao, “Migration from Relational Databases
to HBase: A Feasibility Assessment,” in International Conference on
Advanced Information Technology, Services and Systems, 2017, pp. 383–
395.

Figure 16: Workload C Runtime

Figure 17: Workload C Read Latency

Figure 18: Workload G Runtime

http://www.astesj.com/

Z. Bousalem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 395-401 (2019)

www.astesj.com 401

[7] A. B. M. Moniruzzaman and S. A. Hossain, “NoSQL Database: New Era of
Databases for Big data Analytics - Classification, Characteristics and
Comparison,” ArXiv13070191 Cs, Jun. 2013.

[8] J. Webber and I. Robinson, “The Top 5 Use Cases of Graph Databases,” Neo
Technol., 2015.

[9] N. Dimiduk, A. Khurana, M. H. Ryan, and M. Stack, HBase in action.
Manning Shelter Island, 2013.

[10] F. Chang et al., “Bigtable: A distributed storage system for structured data,”
ACM Trans. Comput. Syst. TOCS, vol. 26, no. 2, p. 4, 2008.

[11] A. Khurana, “Introduction to HBase schema design,” White Pap. Cloudera,
2012.

[12] Blandine Larbret, “Hadoop Hbase - Introduction,” 09:09:39 UTC.
[13] J. Darmont, “Data-Centric Benchmarking,” in Encyclopedia of Information

Science and Technology, Fourth Edition, IGI Global, 2018, pp. 1772–1782.
[14] R. Han, X. Lu, and J. Xu, “On big data benchmarking,” in Workshop on Big

Data Benchmarks, Performance Optimization, and Emerging Hardware,
2014, pp. 3–18.

[15] R. Han, L. K. John, and J. Zhan, “Benchmarking big data systems: A review,”
IEEE Trans. Serv. Comput., vol. 11, no. 3, 2018.

[16] A. Ghazal et al., “BigBench: towards an industry standard benchmark for
big data analytics,” in Proceedings of the 2013 ACM SIGMOD international
conference on Management of data, 2013, pp. 1197–1208.

[17] “Tpc-c.” [Online]. Available: http://www.tpc.org/tpcc/.
[18] “Tpc-e.” [Online]. Available: http://www.tpc.org/tpce/.
[19] “Tpc-h.” [Online]. Available: http://www.tpc.org/tpch/.
[20] “Tpc-ds.” [Online]. Available: http://www.tpc.org/tpcds/.
[21] L. Wang et al., “Bigdatabench: A big data benchmark suite from internet

services,” in High Performance Computer Architecture (HPCA), 2014 IEEE
20th International Symposium on, 2014, pp. 488–499.

[22] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[23] D. Bermbach, E. Wittern, and S. Tai, “Getting Started in Cloud Service
Benchmarking,” in Cloud Service Benchmarking, Springer, 2017, pp. 151–
153.

[24] V. Abramova, J. Bernardino, and P. Furtado, “Which nosql database? a
performance overview,” Open J. Databases OJDB, vol. 1, no. 2, pp. 17–24,
2014.

[25] H. Matallah, G. Belalem, and K. Bouamrane, “Experimental comparative
study of NoSQL databases: HBASE versus MongoDB by YCSB,” Comput
Syst Sci Eng, vol. 32, no. 4, pp. 307–317, 2017.

[26] A. W. Yassien and A. F. Desouky, “RDBMS, NoSQL, Hadoop: A
Performance-Based Empirical Analysis,” in Proceedings of the 2nd Africa
and Middle East Conference on Software Engineering, 2016, pp. 52–59.

[27] X. Tian, R. Han, L. Wang, G. Lu, and J. Zhan, “Latency critical big data
computing in finance,” J. Finance Data Sci., vol. 1, no. 1, pp. 33–41, 2015.

http://www.astesj.com/

	2. Basic definitions
	2.1. NoSQL Databases
	2.2. HBase
	2.3. Databases Benchmarking
	2.4. YCSB

	Figure 1: HBase model [12]
	3. Experimental strategy
	4. Experimental setup
	5. Experimental results
	5.1. Loading data
	5.2. Increasing the number of records
	5.2.1. Workload A
	5.2.3. Workload G
	5.3. Increasing the number of operations
	5.3.1. Workload A
	5.3.2. Workload C

	6. General observations
	7. Conclusion and future work
	References

