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 Vowel classification is an essential part of speech recognition. In classical studies, this 
problem is mostly handled by using spectral domain features. In this study, a novel 
approach is proposed for vowel classification based on the visual features of speech 
waveforms. In sound vocalizing, the position of certain organs of the human vocal 
system such as tongue, lips and jaw is very effective on the waveform shapes of the 
produced sound. The motivation to employ visual features instead of classical 
frequency domain features is its potential usage in specific applications like language 
education. Even though this study is confined to Turkish vowels, the developed method 
can be applied to other languages as well since the shapes of the vowels show similar 
patterns. Turkish vowels are grouped into five categories. For each vowel group, a time 
domain speech waveform with an interval of two pitch periods is handled as an image. 
A series of morphological operations is performed on this speech waveform image to 
obtain the geometric characteristics representing the shape of each class. The extracted 
visual features are then fed into three different classifiers. The classification 
performances of these features are compared with classical methods. It is observed that 
the proposed visual features achieve promising classification rates. 
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1. Introduction 

Vowel classification has been an attractive research field with 
growing intensity over the recent years. It is closely related to voice 
activity detection, speech recognition, and speaker identification. 
Vowels are the main parts of speech and the basic building units of 
all languages and an intelligible speech would not be possible 
without them. They are the high energy parts of speech and also 
show almost periodic patterns. Therefore, they can be easily 
identified by time characteristics of their speech waveforms. Each 
vowel is produced as a result of vocal cord vibrations. The 
frequency of these vibrations is known as pitch frequency, which 
is a characteristic feature of the speech and the speaker. Pitch 
frequency variations occur mainly at voiced parts which are mostly 
formed by vowels. Consequently, vowels are an important source 
for features in speech processing. 

Detecting the locations of the vowels in an utterance is critical 
in speech recognition because their order, representing the syllable 
form of the word, can help in determining the possible candidate 
words in speech. In addition, voice activity detection can be 

accomplished by determining the voiced parts of the speech which 
are mainly constituted from vowels. Speech processing 
technologies using spectral methods are also dependent on vowels 
and other voiced parts in speech. These methods are mostly built 
on the magnitude spectrum representation, which displays peaks 
and troughs along the frequency axis. Voiced segments of speech 
cause such peaks in the magnitude spectrum. The frequencies 
corresponding to the peaks, known as formants, are useful for both 
classifying the speech signal and identifying the speaker. Therefore, 
vowels are inevitable in the area of speech processing [1]. 

There are quite a number of studies on vowel classification in 
the literature. Most of them are based on frequency domain 
analysis using features such as formant frequencies [2,3], linear 
predictive coding coefficients (LPCC), perceptual linear prediction 
(PLP) coefficients [4], mel frequency cepstral coefficients (MFCC) 
[5,6,7,8], wavelets [9], spectro-temporal features [10], and spectral 
decomposition [11]. However, there are fewer studies using time 
domain analysis [12, 13]. There are also vowel classification 
studies for the imagined speech [14]. 
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Although most of the studies on speech recognition make use 
of the acoustic features, the visual characteristics obtained from 
speech waveform shapes can also carry meaningful information to 
represent the speech. Shape characteristics, for example, envelope 
of the waveform, area under that waveform, and some other 
geometrical measurements can be utilized for classification 
purposes. Extracting these properties can be accomplished by basic 
image processing techniques such as edge detection and 
morphological processing. In other words, a speech waveform can 
be treated as an image. The notion of visual features is perceived 
as the shapes of the mouth and lips in general, and used also in 
vowel classification [15]. There exist some articles in the literature 
concerning the speech and sound signals as an image. Many of 
them utilize visual properties from the spectral domain. Matsui [16] 
et al. propose a musical feature extraction technique based on scale 
invariant feature transform (SIFT), which is one of the feature 
extractors used in image processing. Dennis et al. [17] use visual 
signatures from spectrogram for sound event classification. 
Schutte offers a parts-based model, employing graphical model 
based speech representation, which is applied to spectrogram 
image of the speech [18]. Dennis et al. [19] propose another 
method for recognizing overlapping sound events by using visual 
local features from the spectrogram of sounds and generalized 
Hough transform. Apart from these time-frequency approaches, 
Dulas deals with the speech signal in the time domain. He proposes 
an algorithm for digit recognition in Polish making use of the 
envelope pattern of the speech signal. A binary matrix is formed 
by placing a grid on the speech signal of one pitch period. 
Similarity coefficients are, then, calculated by comparing the 
previous and next five matrices around the matrix to be analyzed 
[20, 21]. Dulas also implements the same approach for finding the 
inter-phoneme transitions [22].  

In this paper, we propose the visual features obtained from the 
shapes of speech waveforms to classify vowels. We are inspired by 
the fact that one can determine the differences among the vowels 
by visually inspecting their shapes. The proposed approach, called 
herein Speech Vision method (SV), henceforth considers the 
speech waveform as an image. The images corresponding to the 
respective vowels are formed from two-pitch period speech 
segments. After applying several image processing techniques to 
these waveform images, some useful geometrical descriptors are 
extracted from them. Later, these descriptors are used for training 
Artificial Neural Network (ANN), Support Vector Machine 
(SVM), and eXtreme Gradient Boosting (XGB) models to 
recognize the vowels. Experiments show that comparable 
recognition rates are obtained. The use of visual features makes a 
clear distinction between the application areas of classical 
frequency domain approach and our suggested method. A 
possibility of application is in the field of language education, 
especially language learning of a foreign language, where one 
needs to test learner’s pronunciation of vowels, or the learner tries 
to make the shape of the vowel as he/she sees both his/her own 
pronunciation and the ideal shape of the corresponding vowel on a 
screen for example. By the same token, the method could also be 
used in the speaking education of those with hearing disabilities. 
Another alternative area of application would be text to speech 
conversion tasks, in which ideal vowel shapes could be used in 
order to enhance the quality of the digital speech. 

This paper is organized as follows. After this Introduction part, 
in Section II we discuss vowels and their properties. Section III 
presents the proposed method in details. Tests and results are given 

in Section IV, and a comparison with other vowel classification 
studies in the literature is carried out in Section V. Finally, 
conclusions and discussion appear in Section VI. 

2. Characteristics of Vowels 

In the Turkish language, there are 8 vowels and 21 consonants. 
The vowels are {a,e,ı,i,o,ö,u,ü}. There are 44 phonemes, 15 of 
which are obtained from vowels and the rest from consonants. The 
production of vowels basically depends on the position of the 
tongue, lips and jaw. For instance, for the vowel “a”, tongue is 
moved back, lips are unrounded and the jaw is wide open. 
Therefore, all the vowels are generated differently depending on 
the various positions of the parts of the mouth. By considering the 
shape of the mouth, Turkish vowels are distributed as given in 
Table 1 [23]. According to this table, there are several categories 
for the vowels. For example, {a,ı,o,u} are vocalized with the 
tongue pulled back, while {e,i,ö,ü} are vocalized with the tongue 
pushed forward. Similarly, {a,e,ı,i} are generated with lips 
unrounded and {o,ö,u,ü} are generated with lips rounded. We 
establish vowel groups to be classified in this study according to 
the position of lips and jaw.  

Table 1: Classes of Turkish vowels 

 Unrounded (lips) Rounded (lips) 

Wide 
(jaw) 

Narrow 
(jaw) 

Wide 
(jaw) 

Narrow 
(jaw) 

Back 
(tongue) 

a ı o u 

Front 
(tongue) 

e i ö ü 
 

When a voice plot is stated, it is basically meant to be the graph 
of voice intensity against time. A sample plot of a recorded vowel 
is given in Figure 1. 

 
Figure 1: Waveform of Vowel “a” 

It is noted that the vowel has a certain waveform. If we take a 
closer look, we can see that there is a repeating pattern in the 
waveform. This pattern is illustrated in Figure 2. The duration of 
each repeating pattern is known as the pitch period. This pattern 
keeps repeating with slight perturbations until the intensity starts 
to die off. When we focus on an interval of one pitch period of 
waveforms of all the vowels, we obtain the shapes illustrated in 
Figure 3. The vowels used in this paper come from a database [24]. 
As seen in that figure, each waveform generally differs from others 
in terms of appearance. The similar pattern can be experienced in 
certain English vowels, which sound like their corresponding 
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Turkish counterparts. Figure 4 shows these vowels chosen from the 
words within parenthesis. 

The argument in this study is that the vowels can be identified 
by examining their waveform shapes as an image. In other words, 
visual features extracted from the waveform images can make 
vowel classification possible without the need for spectral features 
such as MFCC, LPCC and/or PLP coefficients. From this point of 
view, the proposed technique contributes to the feature selection 
part in speech processing. Therefore, some of the image processing 
and machine vision techniques are applied to those waveforms. 
The main novelty of this work lies in providing visual features for 
speech waveforms. 

 
Figure 2: Repeating Patterns in Vowel “a”

 

 
a  

 
e 

 
ı 

 
i 

 
o  

ö 
 

u 
 

ü 

Figure 3: Sample Pitch Period Plots for 8 Turkish Vowels 

 
a  (by) 

 
e  (bat) 

 
ı  (father) 

 
i (beet) 

 
o  (boat) 

 
ö  (burr) 

 
u  (book) 

 
ü  (abuse) 

Figure 4: Sample Pitch Period Plots for 8 of the English Vowels 

 
Figure 5: Proposed Method for Vowel Classification 

 

Figure 6: Operations in the “Visual Processing of ROI”
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3. Speech Vision Methodology 

The overall view of our proposed method is shown in Figure 
5. In addition, Figure 6 shows the operations carried out in 
“Visual Processing of ROI” block. Our method comprises four 
main parts: the first is the extraction of Region of Interest (ROI), 
the second is visual processing of ROI, the third is extraction of 
shape features, and the fourth is the ANN/SVM/XGB part, 
where inputs are formed from the matrix and fed into the 
previously trained model to obtain a classification result. The 
following subsections explain the functions of each block in 
detail. 

 
Figure 7: A Sample Closed Shape of Double Pitch Periods 

3.1.  Processing of region of interest 

The input speech signals are segmented into two-pitch 
length waveform images as seen in Figure 7. The reason for 
choosing double pitch periods is that the shapes of a single, 
double, and triple pitch periods are compared, and two 
consecutive pitch periods give the highest scores in 
classification. As can be seen in Figure 8a, the image contains 

little jagged edges because of the noise level and the style of the 
speaker. In order to make vowel recognition speaker 
independent, one should dispose of those rapid ups and downs. 
Hence, we apply a sequence of image processing operations to 
smooth these details and, consequently, obtain a more general 
appearance of the waveform.  

A selected waveform image to be processed is shown in 
Figure 8a. Then, a range filter which calculates the difference 
between maximum and minimum gray values in the 3x3 
neighborhood of the pixel of interest is applied to the obtained 
gray-level image. The resulting image can be seen in Figure 8b. 
After this, we determine the edges of this image using Sobel 
algorithm with a threshold value of 0.5. 

The image obtained is shown in Figure 8c. Following this, 
we apply a morphological structuring for line thickening, whose 
result is given in Figure 8d. Then, we clear the edges and borders 
using 4-connected neighborhood algorithm and obtain the 
image shown in Figure 8e. Following this operation, we erode 
the image and close it using a morphological closing method, 
whose result is shown in Figure 8f. Finally, the gaps on the 
background are flood-filled while changing connected 
background pixels (0's) to foreground pixels (1's). The result is 
seen in Figure 8g. A closing operation is applied to this figure 
and the resulting image is later contained in the smallest 
rectangle as depicted in Figure 8h. In the morphological    
operations performed on the images, we used structuring 
elements of line with length of 3 and angles of 0 and 90 degrees, 
as well as diamond with size of 1 and disk with size of 10. 

3.2. Extraction of shape features 

The geometric features that characterize the waveform 
image seen in Figure 8h are presented in this section. Since the 
aim is to analyze the rough shape rather than the detailed one, 
the features are selected in a way that represents the general 

  
  

(a) Original image (b) Gray level−range filtered image (c) Image after the Sobel edge 
algorithm (d) Image with lines thickened 

    

(e) Image with lines cleared (f) Image eroded and closed (g) Background gaps filled (h) Image contained in the 
smallest rectangle 

Figure 8: Steps for Image Operations 
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silhouette of the waveform. The authors in [25] used ten features 
describing the general silhouettes of aircraft. In this study, we 
use these features along with the orientation angle as an 
additional feature.  Table 2 lists these features. They are 
calculated by using the function of regionprops in Matlab [26].  
In the features F1, F2, F6, and F11, the white region in Figure 
8h, referred to as the image region, is approximated by an ellipse. 

The followings are the descriptions of the features; 

Table 2: Features Obtained from the Processed Image 

Feature Name of the feature 

F1 Major axis length 

F2 Minor axis length 

F3 Horizontal length 

F4 Vertical length 

F5 Perimeter 

F6 Eccentricity 

F7 Mean 

F8 Filled area 

F9 Image area 

F10 Background area 

F11 Orientation angle 

F1- Major axis length: the length of the longer axis of the 
image region in pixels. See Figure 9. 

F2- Minor axis length: the length of the shorter axis of the 
image region in pixels. See Figure 9. 

F3- Horizontal length: horizontal length of the image 
region in pixels. See Figure 10. 

F4- Vertical length: vertical length of the image region in 
pixels. See Figure 10. 

F5- Perimeter: perimeter of the image region in pixels, 
shown in red. See Figure 10. 

F6- Eccentricity: a parameter of an ellipse indicating its 
deviation from the circularity, whose value ranges from 0 
(circle) to 1 (line). 

F7- Mean: the ratio of the total number of 1’s in the binary 
image to the total number of pixels. 

F8- Filled area: the total number of white pixels in the 
image. 

F9- Image area: estimated area of the object in the image 
region which is correlated with the filled area. The area is 
calculated by placing and moving a 2x2 mask on an image. 
Depending on the corresponding pixel values in the mask, the 
area is computed. For example, if all the pixels in the mask 
are black, then the area is zero. When all are white, then the 
area equals one. The other distributions of pixels in the mask 
result in area values between zero and one.  

F10- Background area: estimated area of the black region 
in the image. 

 
Figure 9: Major Axis, Minor Axis, and Orientation Angle 

 
Figure 10: Horizontal and vertical lengths, and perimeter 

F11- Orientation angle: the angle between the horizontal 
axis and the major axis of the ellipse approximating the image 
region. See Figure 10. 

 All the features describe the spatial domain properties 
of the underlying image. On the other hand, these images are the 
time domain representations of the speech signals. Thus, 
classifying the images corresponds to recognizing the speech 
sounds. Adopting such simple features in speech recognition 
leads to promising results, as shown in our experiments. 

3.3. Classifiers 

A general description of the employed classifiers is given 
here in order to facilitate a better understanding. We utilized 
three widely used classifiers in our study; namely ANN, SVM, 
and XGB method. It is well known that these are among the 
strongest classification tools for pattern recognition applications. 
They are all able to classify nonlinearly distributed input 
patterns into target classes. The classifiers are trained using the 
features in Table 2.  

When sounding a vowel; the position of mouth, tongue, and 
lips is the key factor. The dotted and non-dotted (front and back) 
vowels in Turkish are quite similar in the way that only the 
position of the tongue changes when sounding the dotted and 
non-dotted vowels. Out of the eight vowels in Turkish, five 
vowel classes are formed in this study, combining ‘dotted’ 

major axis  

minor axis  
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vowels with non-dotted ones. Those combined vowels were: ‘ı’ 
and ‘i’, ‘o’ and ‘ö’, ‘u’ and ‘ü’. Besides, the vowels ‘a’ and ‘e’ 
are treated as separate classes. Therefore, these five vowel 
classes are considered as the outputs of the classifier.  

Following a parameter optimization, an ANN is constructed 
with a multi-layered feed forward network structure having 11 
inputs, 5 outputs, 2 hidden layers with 22 and 13 neurons, 
respectively. A hyperbolic tangent is chosen as activation 
function. The network is trained by back propagation algorithm. 

As another classifier, SVM is implemented using the kernel 
Adatron algorithm, which optimally separates data into their 
respective classes by isolating the inputs, which fall close to the 
data boundaries. Hence, the kernel Adatron is especially 
effective in separating sets of data which share complex 
boundaries. Gaussian kernel functions are preferred in this study. 

As a third classifier, a decision tree-based XGB method is 
used. Again, following a parameter optimization, a multi-class 
XGB model is employed with 89 booster trees having a 
maximum depth of three, whilst default values are used for the 
rest of the parameters. 

4. Tests and Results 

For the design of experiments, 551 samples are used; 
consisting of 100, 88, 90, 76, 197 samples for Class1 through 
Class5, respectively, for vowel classification. The vowels are 
parsed from the diphone database developed in [24]. Noisy 
conditions are not considered because we aimed to use the 
classification of the ideal shaped waveforms in different 
applications as opposed to classical voice recognition 
techniques. The data are randomized in order to achieve a fair 
distribution, 80% of which is used for training, 15% for testing, 
and the remaining 5% for cross validation. The ANN and SVM 
are trained until the results cannot improve the validation set any 
further. The Neurosolutions software is used for this process 
[27]. During the training process how the mean squared training 
error changes for the SVM and ANN is illustrated in Figure 11 
as an example. The Python software is used for XGB modeling 
and training [28]. 

A statistical error and R-value analysis is made on the test 
data in order to compare the produced outputs of the trained 
models with the actual values that indicate whether estimations 
succeed or not. The results of this analysis appear in Table 3 and 
Table 4 for the training and test sets respectively. It can be seen 
from the tables that ANN and XGB perform better in terms of 
almost all criteria with XGB having a slightly better 
performance. ANN performs very well on all vowel classes 
except Class 4, i.e. ‘o’ and ‘ö’ vowels in Turkish; whereas XGB 
has more than 80% sensitivity on all classes. In Classes 1 and 3, 
there is a 100% correct classification for all classifiers. 

In both tables, MSE is Mean Squared Error, NMSE is 
Normalized Mean Squared Error, and R is linear correlation 
coefficient.  NMSE is calculated as follows: 

   
  

       (1) 

 

 

where P is the number of output processing elements (neurons), 
N is the number of exemplars in the data set, yij is the network 
output for exemplar i at processing element j, and dij is the 
desired output for exemplar i at processing element j. Since 
NMSE is an error term, values closer to zero denote better 
predictability. MSE is simply the numerator of NMSE.  

 
(a) 

 
(b) 

Figure 11: Mean Squared Error as (a) SVM and (b) ANN Training 

Another statistically meaningful variable used for 
predictability performance is the correlation coefficient R. It is 
used to measure how well one variable fits on another, linear 
regression wise. In our case, these variables are predicted 
against the desired outputs. The R value is defined as: 
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where y is the network output, and di is the desired output. 
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Table 3: Statistical Parameter Analysis and Comparison over Training Sets 

 
Table 4: Statistical Parameter Analysis and Comparison over Test Sets 

 

The mean squared error (MSE) can be used to determine how 
well the network output fits the desired output, but it does not 
necessarily reflect whether the two sets of data move in the same 
direction. For instance, by simply scaling the network output, we 
can change the MSE without changing the directionality of the data. 
The correlation coefficient R solves this problem. By definition, 
the correlation coefficient between a network output y and a 
desired output d is defined by Eq. (4). The correlation coefficient 
is limited to the range [-1 1]. When R = 1, there is a perfect positive 
linear correlation between y and d; i.e., they vary accordingly. 
When R = -1, there is a perfect linear negative correlation between 
y and d;  

i.e., they vary in opposite ways (when y increases, d decreases by 
the same amount). When R =0, there is no correlation between y 
and d; i.e., the variables are called uncorrelated. Intermediate 
values describe partial correlations. 

We evaluate the performances of all classifiers in terms of 
sensitivity, specificity, accuracy, and precision. These parameters 
are statistical measures for classification. Values close or equal to 
100% are desirable. They are related with true positive (TP), true 
negative (TN), false positive (FP) and false negative (FN) values, 
as explained below: 

TP: Number of cases belonging to a certain class that are 
correctly classified. 

TN: Number of cases not belonging to a certain class that are 
correctly classified. 

FP: Number of cases belonging to a certain class that are 
incorrectly classified. 

FN: Number of cases not belonging to a certain class that are 
incorrectly classified. 

These parameters are calculated by the following equations: 

TPSensitivity
TP FN

=
+  

                                            
(3) 

TNSpecificity
TN FP

=
+  (4) 

TPPrecision
TP FP

=
+  

             
(5) 

TP TNAccuracy
TP FP FN TN

+
=

+ + +  
             

(6) 
 Table 5 shows the performance results of the classifiers 

adapting the proposed features on the basis of sensitivity, 
specificity, accuracy and precision. As can be seen, the 
performance of each classifier justifies that the visual features can 
be successfully employed in vowel classification. It is noted that 
the ANN and XGB classifiers perform better than the SVM. Since 
the XGB method is decision tree-based, and not a black-box, it is 
possible to see which features are more useful in the model as 
shown in Figure 12. In fact, this is a score that denotes the goodness 
of each feature during the building of the boosted decision tree 
model based on the splits. The more the feature is used in split 
decisions, the higher the score.  The overall score for a feature is 
calculated as the average of the scores of that feature across all 
decision trees of the model. 

 
Figure 12: Feature Importance’s for XGB Model 

In order to show the effectiveness of the offered visual features, 
the same vowel classes are also classified by utilizing the MFCCs, 
which are commonly used for speech recognition. Table 6 depicts 
the sensitivity results obtained from the proposed and MFCC 
features classified by all three classifiers. This table also includes 
the classification performance of the study in [7] which classifies 
the Turkish vowels by MFCCs using ANN. 

It is fair to say that the proposed SV method yields better results, 
on average, on all classes with the exception of Class 2(E). It is 
observed that unlike the case of visual features, when MFCCs are 
used SVM performs slightly better than ANN and XGB.  

SVM ANN XGB SVM ANN XGB SVM ANN XGB SVM ANN XGB SVM ANN XGB

MSE 0.0149 0.00127 0.0013 0.00588 0.0302 0.0045 0.0047 0.00133 0.0027 0.00665 0.01883 0.0049 0.0079 0.0396 0.0052

NMSE 0.0997 0.0085 0.009 0.04328 0.0222 0.034 0.03534 0.01003 0.0021 0.0567 0.16061 0.1343 0.03407 0.017 0.025

R 0.9668 0.99724 0.9876 0.9875 0.9914 0.9921 0.98271 0.99672 0.9855 0.98464 0.91815 0.9528 0.98898 0.9917 0.9901
Sensitivity 

(%) 100 100 100 100 100 100 100 100 100 100 99.554 100 100 100 100

Class 4(O -Ö ) Class 5(U-Ü)
Performance

Class 1(A) Class 2(E) Class 3(I-İ)

SVM ANN XGB SVM ANN XGB SVM ANN XGB SVM ANN XGB SVM ANN XGB 
MSE 0.0205 0.0006 0.0005 0.0987 0.04529 0.0095 0.01309 0.0004 0.0006 0.07955 0.04946 0.031 0.1074 0.0519 0.063 

NMSE 0.1398 0.0041 0.005 0.78047 0.35815 0.089 0.08244 0.00255 0.0034 0.62906 0.39109 0.3824 0.48823 0.2359 0.2628 
R 0.94 0.99836 0.9993 0.62122 0.83046 0.9172 0.95904 0.99895 0.9808 0.61131 0.78621 0.8086 0.71667 0.8796 0.8781 

Sensitivity  
(%) 100 100 100 54.17 73.68 93.33 100 100 100 80 84.62 80 86.21 93.55 87.88 

Performance Class 1(A) Class 2(E) Class 3(I-?) Class 4(O-Ö) Class 5(U-Ü) 

http://www.astesj.com/


H. Tora et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 3, 16-24 (2019) 

www.astesj.com     23 
 

Table 5: Classification Parameter Analysis and Comparison over Test Sets (%) 
 

 
Table 6: Comparison of Methods Using MFCCs and Proposed Visual Features 

Method Class 1(A) Class 2(E) Class 3(I-İ) Class 4(O-Ö) Class 5(U-Ü) 

ANN (proposed visual features) 100 73.68 100 84.62 93.55 

SVM (proposed visual features) 100 54.17 100 80 86.21 

XGB (proposed visual features) 100 93.33 100 80 87.88 

ANN (MFCC) 83.33 80 66.67 57.14 63.63 

SVM (MFCC) 85.71 80 77.78 66.67 60 

XGB (MFCC) 50 70 60 60 90 

ANN Method  in [7] (MFCC) 88 81 76 78 81 

Table 7: Comparison of Various Vowel Classification Studies 

Ref.No Language Input Features Clasifier Performance 

7 Turkish MFCC ANN 80.8 

29 Australian 
English 

Frequency 
Energy Levels 

Gaussian 
&ANN 88.6 

30 English MFCC SVM 72.34 

31 English Formant 
frequencies ANN 70.5 

32 English Formant 
frequencies ANN 70.53 

33 English Tongue and lip 
movements SVM 85.42 

 

34 
Hindi MFCC HMM 91.42 

35 Hindi 

Gammatone 
Cepstral 

Coeficients + 
MFCC + 
Formants 

HMM 91.16 

36 Hindi 
Power 

Normalized 
Cepstral 

Coefficients 
HMM 88.46 

Speech 
Vision 
(SV) 

Turkish 
Time Domain 

Visual 
Features 

ANN 90,37 

SVM 84,08 

XGB 92,24 

 
4.1. Comparison with Relevant Studies 

In order to evaluate the performance of the SV approach more 
objectively, a literature search on various vowel classification 
performances is also carried out. In detail, a brief comparison is 
given in Table 6 with the results of another study; however, this 

study also contained Turkish vowels [7] whereas we are keen to 
look into the success rates of vowel classification in different other 
languages. On the other hand, it should be pointed out that the 
indirect comparison here is just to give a rough idea about the 
performance of the SV approach among other vowel classification 
results in general.  

Harrington and Cassidy conducted a study on vowel 
classification in Australian English, using frequency energy levels 
with Gaussian and ANN classifiers [29]. Indeed, there are a 
number of studies classifying English vowels with SVM and ANN 
classifiers using MFCC and Formant Frequencies [30, 31, 32]. 
Another study was also conducted using tongue and lip movements 
to classify English vowels with SVM [33]. In addition, there are a 
few studies on vowel classification in the Hindi language using 
various frequency domain features and employing Hidden Markov 
Model (HMM) classifiers [34, 35, 36]. A comparison of these 
various studies with our SV approach, in terms of sensitivity, is 
given in Table 7. 

5. Conclusion and Discussion 

This paper describes a novel approach introducing visual 
features for classifying vowels. The proposed approach makes use 
of the geometric features obtained from speech waveform shapes. 
Shape-based features from speech signals have rarely been 
employed for speech recognition. On the other hand, the features 
that are widely used are usually in the transform domain, i.e. 
spectrograms. However, the techniques using spectrograms 
involve computational costs due to the Fourier transform 
calculations. In our approach, the recorded two-pitch long speech 
waveform is first processed to extract the visual features. For this 
purpose, the waveform is treated as an image. Therefore, several 
aforementioned image processing techniques are utilized. Then, 
the features are obtained from the processed waveform image. 
Finally, ANN, SVM, and XGB classifiers are trained for the 
vowels to be classified. The test results show that using visual 
features accomplish quite satisfactory performances.   

SVM ANN XGB SVM ANN XGB SVM ANN XGB SVM ANN XGB SVM ANN XGB

Sensitivity 100 100 100 54.17 73.68 93.33 100 100 100 80 84.62 80 86.21 93.55 87.88

Specificity 100 100 100 97.4 98.78 94.25 100 100 100 92.31 95.45 98.85 88.89 94.29 97.1

Accuracy 100 100 100 87.13 94.06 94.12 100 100 100 91.09 94.06 96.08 88.12 94.06 94.12

Precision 100 100 100 86.67 93.33 73.68 100 100 100 53.33 73.33 92.31 75.76 87.88 93.55

Performance
Class 1(A) Class 2(E) Class 3(I-İ) Class 4(O -Ö ) Class 5(U-Ü)
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It is fair to say, in comparison with the success rates of classical 
speech features; our speech vision approach introduces a 
promising performance. As it can be clearly seen in Table 7, it has 
the highest performance with the XGB classifier, which is slightly 
above 92%, among all the compared studies. Additionally, our 
neural network and SVM classifiers result in better or comparable 
scores with the others. Thus, it is clear that the proposed visual 
features work well for Turkish vowel classification.  

These features can be used in applications where the visual part 
would make a difference such as in teaching hearing disabled 
individuals to speak. Although we applied the proposed features to 
Turkish vowels, it could be adapted to other languages easily, since 
the vowels in all languages share similar characteristics in the time 
domain. Combining both acoustic and visual features for vowel 
classification can be considered for future work. 
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