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Vision-based defect detection techniques are widely used for quality con-
trol purposes. In this work, an efficient deflectometry based detection
system is developed for semi-specular/painted surface defect detection.
This system consists of a robotic arm that carries a screen/camera setup
and can detect defects on large surfaces with different topologies, such
as a car bumper, by traversing its profile. A hybrid pipeline is designed
that utilizes multi-threading for optimal resource utilization and pro-
cess speed. Specific filters are also designed to remove spurious defects
introduced by acute curvature changes and part edges. The system was
successful in consistently detecting various defects on small test samples
as well as on large bumper parts with varying topology and color and
can accommodate inherent ambient lighting and vibration issues.

1 Introduction

Quality control is a crucial factor in manufacturing
industry as it affects customer satisfaction, reduces
production cost and increases profitability. In the auto-
motive industry, vehicles are usually assembled from
parts shipped by various original equipment manu-
facturers (OEM) to the assembly plant. Example of
these parts includes front and back bumper covers,
side fenders, and other exterior parts which are nor-
mally manufactured and painted to specific colour
before being shipped to another plant for assembly.
These outer body parts are made by Thermoplastic
PolyOlefin (TPO) injection moulding process. This
process consists of three main steps: moulding, clean-
ing, and painting. Defects may induce during any of
these processes, which results in part rejection or re-
work, causing loss of revenue. As such, it is essential
to perform a full inspection of every part. This inspec-
tion process is usually carried out by human inspec-
tors. It is a costly and a labour intensive job which
requires multiple inspection lines for high volume
yield. Further, the defect judgement is very subjective,
which results in inconsistencies. As a result, overall
productivity and quality are diminished. This paper
presents a system for inspecting automotive painted
semi-specular exterior body parts and is an extension

of work originally presented in 15th Conference on
Computer and Robot Vision (CRV 2018) [1]. This ex-
tended version includes expended testing and analysis.

There are a series of challenges that impact the
development of an inspection system for this task, in-
cluding:

1. Parts are in motion while they are inspected on
the production line. The vibrations induced from
this motion makes profiling the surface harder.

2. The inspection process must fit within the exist-
ing production cycle time.

3. The part being inspected vary in curvature, size,
shape and material, with different specular char-
acteristics.

4. The visibility characteristic of the defect depends
on the external lighting conditions. Designing a
proper lighting environment for such a system is
a challenging task due to high reflection coeffi-
cient of the test surface [2].

5. Each type of defect varies in shape and size, and
experienced inspectors even miss some defects.

In recent years, vision-based surface inspection sys-
tems have found a burst of application in areas such as
defect detection in aluminium sheets [2], locomotive
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rail tracks [3], liquid crystal displays (LCDs) [4], plas-
tic objects [5], sphere parts [6], agricultural food pro-
duce [7], fabric and textile industry [8] etc. However,
defect detection and surface profiling of a specular
surface remains a challenging problem due to the re-
flective nature of the surface. Profilometry is a widely
used approach for characterization, reconstruction and
inspection of such surfaces. Profilometry approaches
can be generally divided into contact and non-contact
methods. Contact-based profilometry, such as stylus
profilometer, scanning tunnelling microscopy, scan-
ning force microscopy, coordinate measuring machine
(CMM), etc., is a high-resolution method. The mea-
surement accuracy is in the order of nanometers and
is considered as a gold standard for surface finish mea-
surement. This approach is independent of surface
characteristics or shape and also works well in dirty
environments. As a result, it can be used for both spec-
ular and non-specular surface measurement. However,
being a direct contact method, it may damage high
finish inspection surfaces such as painted automotive
parts and its operating speed is also sluggish.

Non-contact profilometry methods are used for
high-speed surface scanning and 3D reconstruction
[9]. Over the years, many different non-contact pro-
filometry techniques are developed, such as common
structured light projection, phase shifting interferome-
try, deflectometry, digital holographic microscopy, etc.
These approaches are based on the inhomogeneous re-
flection of light from defects. The visibility of defects
can be enhanced by the use of a structured light source.
In common structured light projection method, the
specular surface is coated with a thin layer of powder
to make it behave like a diffused surface [10] and then
fringe pattern profilometry is used for analysis. This
additional coating changes the surface geometry so
cannot be reliably used for surface defect detection.
On the other hand, interferometry is highly accurate
but requires a reference and is not suitable for compli-
cated free-form surfaces. Further, the field of view is
limited, so it cannot be used for large surfaces. Hence,
deflectometry is recently used for measuring a large
object with varied surface topology. A sinusoidal fringe
pattern is widely used as a structured light source in
deflectometry analysis [11]. In smooth defect-free re-
gions, imaging process obeys specular reflection while
the incident rays are dispersed in defected areas. As a
result, an acute gradient variation is observed in defect
bearing regions, which is used for defect segmentation.
These approaches have a lower measurement accuracy
(in micrometres range) compared to contact profilom-
etry approaches. Since these approaches are surface
dependent, so are affected by the testing environment
as any dirt or external dust particles will affect the
obtained results.

A new defect detection system is presented in this
paper, which is based on the deflectometry principle.
The developed system can overcome the practical chal-
lenges of a production line. Controlled lighting and
camera configurations are designed to counterpoise
vibration effects. Various filters are used to segment

the region of interest and eliminate false defects due
to edge effect and abrupt curvature changes. Finally,
to track parts while going through the production line,
the system is designed to be mounted at the end of a
robotic arm. The proposed system is validated by field
testing in an operational automotive painting booth.

The remainder of this paper is organized as follows:
Section 2 provides a brief review of the deflectometry
principle as it is the foundation of the defect detec-
tion system. Section 3 describes the proposed system
and explains the working of its different components.
Section 4 depicts the system setup and presents im-
plementation details. Section 5 archives the obtained
experimental results with analysis. Finally, Section
6 summarizes the findings of this research and high-
lights some areas of future development.

2 Deflectometry Principle

In this section, we will provide a brief overview of
the deflectometry principle, which forms the basis
of the proposed system’s working principle. The use
of deflectometry is actively explored by researchers
for the measurement of objects with an abrupt slope
change or large size. Many different deflectometry
methods are proposed for surface profilometry and de-
fect detection. Some of these include Moier deflectom-
etry [12–16], Ronchi method [17, 18], laser scanning
deflectometry [19–21], and phase measuring deflec-
tometry (PMD) [11, 22–24].

PMD technique is used in this paper as it is highly
accurate and provides continuous data for surface pro-
filing. It has a large dynamic range and can give full-
field measurements. This technique is first developed
by Horneber et al. [25]. Over the years, researchers
have modified PMD to measure different specular ob-
jects [11, 26, 27]. PMD is also successfully applied
for specular and semi-specular surface defect detec-
tion [28–33]. However, various challenges arise while
implementing deflectometry to inspect a larger part
like a car bumper which are successfully addressed in
the developed system.

2.1 Phase-shifting Deflectometry

In deflectometry, the topographical information of a
specular surface is obtained by analysing the reflec-
tions of a structured light source. A sinusoidal fringe
pattern, displayed on an LCD screen located at some
distance from the specular test surface, acts as the light
source. The attached camera setup captures the reflec-
tions of the deformed pattern from the test surface.
By applying phase-shifting and phase-unwrapping al-
gorithms, useful information is extracted from these
deformed fringe patterns which are used for surface
profile construction. A phase varying single frequency
pattern is generally used for deflectometry analysis.
A pixelated version of such a multi-phase single fre-
quency pattern is defined as [34]:
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where, f (x,y) is the displayed pattern intensity at (x,y)
pixel location,G is the maximum of the image intensity
range, f is the frequency of the displayed pattern, p is
the total pixels in a time period and n is the number of
phase-shifted patterns selected.

These phase-shifted patterns are one-by-one dis-
played on the LCD screen, and their reflections are
captured from the specular surface. The intensity of
the captured pattern is given by (2) [35].

I(x,y) = A(x,y) +B(x,y)cos(φ(x,y)) (2)

where I(x,y) is the captured image intensity, A(x,y) is
the ambient light intensity, B(x,y) is the amplitude of
the modulated fringe pattern and φ(x,y) is the desired
phase measurement.

The measured phase is directly related to the sur-
face topology. Computing this phase at each pixel loca-
tion will create a surface phase map. Captured surface
reflections of the phase-shifted patterns are used to cal-
culate this phase map by applying Windowed Discrete-
Fourier Transform (WDFT). For seven phase-shifted
single frequency patterns, the closed-form solution is
represented by the following relation [36]:

φ = tan−1
[

(I1 − I7)− 3(I3 − I5)
4(I4)− 2(I2 + I6)

]
(3)

where I1,··· ,7 correspond to the captured reflections of
the seven phase-shifted patterns displayed on the LCD
screen. The phase map (φ(x,y)) is in 0− 2π range, so
a phase unwrapping step is needed to recover the ac-
tual phase with the inclusion of appropriate multiples
of 2π [37]. Then the absolute derivative of the phase
map is computed with respect to pattern variation axis
(x-axis) as defined by the following equation [33]:

Dy(x) =

∣∣∣∣∣∣∣d
∣∣∣φ(x)

∣∣∣
dx

∣∣∣∣∣∣∣ (4)

here, Dy(x) is a continuous function which represents
line topography for the corresponding yth-axis.

The effect of this differential operation is the at-
tenuation of low-frequency signal information and ac-
centuation of high-frequency contents induced due to
the presence of defects in the specular/semi-specular
surface. As a result, Dy(x) remains almost constant
in defect-free regions, whereas an acute variation is
observed in defect-bearing areas.

3 Defect Detection System

Use of deflectometry for big automobile bumper in-
spection brings its own set of challenges. Its imprac-
tical to examine the entire part surface in one scan.
Therefore, it is divided into smaller segments based on

the reflection of the displayed pattern. Since external
light sources impact the detection results, controlled
lighting setup is constructed to minimize the effect
of these external factors. Figure 1 shows the image
processing pipeline used. Captured surface reflections
are pre-processed before deflectometric defect detec-
tion operation. Several false positives are observed due
to the topographical variation in the test surface. A
set of spurious defect removal filters are designed to
eliminate these false positives. Camera shutter speed,
aperture and robotic motion are adjusted to reduce
vibration effects and eradicate motion blur. Since the
detection operation is carried out in small segments,
the results are then combined and localized on test
parts. Finally, defect characteristics are gathered and
archived in the designed database which can later be
used for display or higher level decision making for
process improvement. The following sections provide
additional details on the functionality of different com-
ponents.

Figure 1: Defect detection scheme

3.1 Capturing and Pre-processing

Figure 2 and Figure 3 show the process involved in cap-
turing and pre-processing of images. OpenGL library
is used for the rendering of seven phase-shifted sinu-
soidal patterns. The patterns are generated only once
during the run-time using pattern screen resolution
and then stored in memory as 2D matrices. Later on,
these stored patterns are displayed one-by-one for de-
flectometry analysis. The reflection of these patterns is
captured from the part surface by an attached camera.
Pattern display and capture of surface reflections are
carried out sequentially. Once a set of seven surface
reflections is captured, a pre-processing thread is initi-
ated to compute the phase map and find its derivative.
It is noted that a single phase-map-derivative image
is created for each segment. While the pre-processing
step is running, the next set of seven patterns are ready
to be displayed on the screen and captured by the cam-
era. This multi-threading approach reduces cycle time
through parallel computation.
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Figure 2: Sequential image capture and mutli-threaded pre-
processing steps

Figure 3: Surface reflection capturing and phase-map-derivative
image generation

Once the Capturing and Pre-processing steps are
completed, a defect detection thread is initiated,
which extracts defect information from the phase-map-
derivative image. Defect detection process can be di-
vided into three main stages; Fringe region segmenta-
tion, Defect pool and spurious defect elimination and
Defect attributes extraction and registration.

3.2 Fringe Region Segmentation

A fixed focus camera at a defined distance from the test
surface is used in this study. As a result, the camera
captures a fixed size image that may contain both the
fringe projected region and non-fringe region. Further,
the size of the reflected pattern varies with the surface
curvature; the reflected pattern shrinks as the surface
become convex. As a result, the first step in the defect
detection process is to crop the fringe pattern projected
region from the phase-map-derivative image.

The obtained phase-map-derivative image in the
previous step is thresholded and smoothed with a
Gaussian kernel. The resulted blobs are eroded to

remove uneven corners and then selected based on size
to create a mask. This mask is used to extract the fringe
projected region as shown in Figure 4, which is later
used for defect detection.

Figure 4: Fringe region extraction from the generated phase-map-
derivative image

3.3 Defect Pool and Spurious Defect Elim-
ination

Once the fringe projected region is extracted, thresh-
olding and edge detection are used to create a defect
pool. This defect pool consists of possible true and
false defects. False defects are a combination of tiny
defects below the accepted size criterion, edge defects
and defects due to abrupt curvature changes. Three
different filters; Size/Noise filter, Surface curvature
filter and Edge filter are designed to remove these false
defects. These filters work in parallel to remove these
defects as depicted in Figure 5.

Figure 5: Processing and false defect removal

A size based filter is designed to remove tiny noise
like defects. It is observed that after thresholding, sev-
eral very small defects are detected in the binary image.
This filter removes all those defects which are below
the given size criterion. The second filter removes
the false defects from the curved region. This filter
uses parallel lines to determine the curved region in
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the captured surface reflection. A Canny edge detec-
tion operation followed by Hough transform is used
for these lines detection. The angle variation of the de-
tected lines is exploited to determine the curved region
from where the defects are removed. The last filter re-
moves spurious defects in the edge region, which are
the result of the application of WDFT. It makes use of
both curved region information and defect pool gener-
ated by Canny edge detection operation to segregate
defects produced due to edge effect.

The application of these filters results in three sepa-
rate images that contain only legitimate defects. Later
on, all these defects are aggregated together to form
an image which shows all the valid defects in the in-
spected region as depicted in Figure 5. Application of
these filters on a typical gradient image is shown in
Figure 6.

Figure 6: Application of false defect filters on defect pool

3.4 Defect Attributes Extraction and Reg-
istration

Once all the true defects are found, defect attributes
such as size (in terms of pixels), bounding region and
centroid location are determined. To extract these char-
acteristics, close by defects are first fused by a morpho-
logical dilation operation. Later on, a contour-finding
operation is performed to separate different defects
and then above mentioned attributes are computed for
each found contour.

These attributes are also recorded in the appended
database, which can be used in future for tracking,
decision making or other process adjustments. The

results are also overlaid on a part image for physical
defect localization which is saved in a directory for
immediate use. All these different steps are delineated
in Figure 7.

Figure 7: Defect attributes extraction and display

4 Implementation Details and Ex-
perimental Setup

4.1 System Architecture

Figure 8 shows the entire system implementation.
Since the system is expected to inspect large parts,
a robotic arm is used where the pattern screen and
camera are mounted on the end-effector. The system
includes several additional components to enable robot
movement for full part inspection such as positioning
of the robot end effector, generation of inspection pat-
terns and administrative operations such as results
registration and display.

The defect detection process consists of both se-
quential and parallel operations. As a result, a hybrid
computational framework is designed. It is evident in
Figure 8 that individual steps need to be completed
to proceed to the next component for processing, so
parallel operations (multi-threading) are only used
for computationally expensive processes. First of all,
robot positions the LCD pattern screen tangent to the
surface to be inspected. Then seven phase-shifted si-
nusoidal fringe patterns are sequentially displayed on
the screen, and the attached camera captures corre-
sponding surface reflections. These surface reflections
are pre-processed, and defect detection operation is
applied to find the surface abnormalities. These two
steps, pre-processing and defect detection, are compu-
tationally expensive, and multi-threading is used here.
This multi-threading operation can be activated/de-
activated by the frontal administrative control panel.
All detected defect information is stored in the de-
signed database system that can be accessed remotely.
All these steps are controlled by a front end admin-
istrative control panel, which also displays a sample
test part image on which detected results are overlaid.
It also provides the option to configure features such
as directory paths for registering captured and pro-
cessed images, the number of segments to divide the
test surface and displays the progress of the detection
operation.
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Figure 8: Schematic of implemented defect detection system

4.2 Experimental Setup

4.2.1 Overall Setup

Testing was conducted at the Robotics Institute @
Guelph lab. The experimental setup is shown in Figure
9. The test parts were placed on a carrier similar to
the ones used at the part manufacturing facility. The
carrier was stationary during the testing. A KUKA
KR 16-2 KS industrial robotic arm is used to carry the
screen/camera setup to transverse the large bumpers
under test. The robotic arm was programmed to move
in a predefined path to inspect each segment and hence
the whole part. This operation controls the movement
of the screen/camera setup. A controlled lighting envi-
ronment was enforced where the pattern screen is the
only source of illumination. Any direct light source in-
cident on the part whose reflection reaches the camera
will create a blind spot in the gradient image. The test
surface should also be free of any dust particles as they
will produce a dispersed reflection of light and will
appear as a defect. A 40 inch commercial TV screen
is used as the pattern screen. The computing system
consists of an Intel Core i7-6700 3.40 GHz processor
and has 16 GB RAM and Nvidia GTX960 graphics card
running on 64-bit Windows 10 OS. The detection code
is written in C++ using Qt Creator 5.6, OpenCV 3.2
and OpenGL libraries. The camera is connected via
high-speed USB 3.0 connection and pattern screen is
interfaced with an HDMI cable.

4.2.2 Camera Setup

A monochrome Point Grey 3.2 MP (GS3-U3-32S4M-
C) camera with a 12.5 mm Fujinon lens HF12.5HSA-1
(LENS-50FS-125C) is used. The camera is attached to
a specially designed fixture on the side of the pattern
screen so that it looks in the middle of the projected
pattern on the test sample, as seen in Figure 10. A
fixed focus camera, as already mentioned, is sharply
focused on the test surface, which is approximately
40 cm away from the camera. Once the robot starts

traversing the surface topology, a distance of 35 cm to
45 cm is maintained so that the image remains within
the camera’s depth of filed and hence sharply focused.

Figure 9: Experimental setup

Figure 10: Camera view
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4.3 Surface Segmentation

It is virtually impossible to inspect the full test part in
one capture due to its large size. There are two reasons
for this. Firstly, there is a lot of variation in the surface
topology of the test surface, and the pattern screen
should be tangent to it to capture the displayed pat-
tern. Secondly, only a limited payload both in terms
of size and weight can be attached to the robot end
effector. Hence, a huge screen which can project the
pattern on the full part cannot be used. As a result,
the test surface is partitioned in small regions based
on the reflected pattern as shown in Figure 11.

Figure 11: Bumper segmentation for inspection

Seven phase-shifted sinusoidal patterns are pro-
jected on each region, and the attached camera cap-
tures corresponding reflections. There is some overlap
in the captured surface reflections among adjacent seg-
ments that accommodate for some variation in part
placement. These different regions are then appended
together to localize the identified defects on the entire
test surface.

4.4 Test Specimen

Ten test samples are used in this study. These samples
are provided by an OEM exterior body parts manufac-
turer. These are large SUV/Minivan bumpers of 5.5 ft
long, 1.5 ft high and 2.5 ft deep, as shown in Figure 11.
These bumpers are of different colours and are rejected
due to the presence of various surface defects. These
defects are marked on the test parts by expert human
inspectors working at the manufacturing facility. In
addition to these defects, some more defects are artifi-
cially created to augment the defect database used as
ground truth (GT). Since the bumpers are symmetric,
we only needed to inspect one half of each bumper. In
real production, two robots can be used to examine
the whole bumper. Each tested part is divided into 24
small segments as depicted in Figure 11.

5 Results and Analysis

Two sets of experiments are performed to evaluate the
performance of the developed painted surface defect
detection system. In the first study, small defect sam-
ples are used to verify the effectiveness of the deflec-
tometry principle in detecting various defects. Once,
the efficacy of the deflectometry principle is validated
on these small samples; large parts are tested. Large
parts have their own set of challenges in terms of size,
sudden curvature change, throughput etc.

5.1 Small Test Samples Preliminary Sys-
tem Validation

Different type of surface defects such as dirt, cold
sludge, fisheye, blister etc. occur during moulding
or painting process. Small test samples bearing these
defects are used to validate the effectiveness of the de-
tection principle. Some of the sample parts are shown
in Figure 12. These small parts are mounted on a tri-
pod in front of pattern screen, as shown in Figure 13.
The parts are placed 40 cm away from the camera,
which captures the surface reflections. A set of seven
sinusoidal fringe patterns with a phase shift of 2π/7
are generated to display on the LCD screen and then
their reflections are captured. These surface reflections
are analysed to reconstruct the surface profile. Dur-
ing this testing, the fringe projected area is manually
segmented for deflectometry analysis. This process is
depicted in Figure 14 and the results are tabulated in
Table 1. Here, detection accuracy represents whether
a defect is successfully detected by the developed sys-
tem.

Figure 12: Some typical surface defect samples

Figure 13: Camera with fringe pattern screen and test part on tripod
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Figure 14: Fisheye defect detection

Table 1: Small sample defect detection results

Sr. Defect No. of Detection
No. Type Samples Accuracy
1. Dirt 2 100%
2. Cold Slug 4 75%
3. Spits 1 100%
4. Fish Eye 2 100%

5. Flash 2 100%

6. Blister 3 100%

7. TPO Protusion 2 100%

8. Over Sanded 3 100%

9. Hot Pre-paint 1 100%

10. Overflame Torch 2 100%

11. Water Spots 1 100%

12. TPO Residue 3 100%

13. Popping 1 50%

14. HD Post Paint 3 100%

These results indicate that the developed system
mostly detects the studied defects although some low
detection performance is observed for cold slug and
popping defects. Popping defects are salt-and-pepper
noise like small defects that occur when the solvent
or air trapped in paint film escapes during the drying
process. This creates a lot of tiny defects clustered in
a small area. A 50% popping defect detection accu-
racy indicates that approximately half of these tiny
defects are detected, but it is enough to declare the
part defective.

5.2 Large Parts Defect Detection

Following the experimental setup outlined in section
4, various large bumpers are tested by the developed
system. The developed framework was successful in
detecting most of the manufacturing as well as the arti-

ficially created defects. Some of these detection results
are shown in Figure 15.

Results are reported in two tables. The segment-
wise results are given in Table 2 while body part color
based results are reported in Table 3. These results are
reported in terms of recall, precision and F-measure.
Equal weighting of recall and precision is considered
for computing F-measure. These metrics are defined
as follows:

Recall =
T P

(T P +FN )
(5)

P recision =
T P

(T P +FP )
(6)

F −measure = 2× (P recision×Recall)
(P recision+Recall)

(7)

where TP is true positive, FP is false positive and
FN is false negative. Ground truth data to compute
these measures is provided by the part manufacturer.

By reviewing the results, we can deduce that the
performance of the defect detection system varies de-
pending on part colour and segment location. The
performance of the algorithm is lower in segments 8,
9 and 10 where precision drops significantly to 0.46,
0.43 and 0.30, respectively. These segments contain
highly curved sections which drastically distorts the
projected pattern resulting in a higher number of FP.
This can be improved by tuning the system differently
on a per region basis to accommodate the different vari-
ations in surface curvature. The results by part colour
show that the performance of the detection system is
compromised on white parts. White surfaces reflect
all light incident to it, so the algorithm becomes more
sensitive to surrounding light. Besides, the contrast of
the projected pattern is muted by white parts affecting
the visibility of defects on the part surface. The com-
bination of these factors reduces the accuracy of the
algorithm on white parts.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 15: Some defect detection results on large bumpers First row: Gradient image, Second row: Detected defect ((o) is an example where
defect is not detected as it is not enclosed by fringe region and (p) is an example of a defect free region)
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Table 2: Defect detection results by segment

Seg. Samples TP FP FN Recall Precision F-measure
1 10 6 4 0 1.00 0.60 0.75
2 10 0 0 0 NA NA NA
3 10 6 2 1 0.86 0.75 0.80
4 10 3 1 0 1.00 0.75 0.86
5 10 3 1 0 1.00 0.75 0.86
6 10 14 0 1 0.93 1.00 0.96
7 10 8 0 1 0.89 1.00 0.94
8 10 6 7 0 1.00 0.46 0.63
9 10 3 4 0 1.00 0.43 0.60

10 10 6 14 2 0.75 0.30 0.43
11 10 0 3 1 0.00 0.00 NA
12 10 2 0 0 1.00 1.00 1.00
13 10 2 0 0 1.00 1.00 1.00
14 10 4 0 0 1.00 1.00 1.00
15 10 3 0 0 1.00 1.00 1.00
16 10 3 0 0 1.00 1.00 1.00
17 10 0 0 2 0.00 NA NA
18 10 1 0 0 1.00 1.00 1.00
19 10 2 1 0 1.00 0.67 0.80
20 10 3 2 1 0.75 0.60 0.67
21 10 0 0 0 NA NA NA
22 10 7 1 0 1.00 0.88 0.94
23 10 7 0 0 1.00 1.00 1.00
24 10 0 0 0 NA NA NA

Average 0.87 0.76 0.81

Table 3: Defect detection results by color

Part Color TP FP FN Recall Precision F-measure
1 Black 14 0 0 1.00 1.00 1.00
2 Dark blue 3 1 1 0.75 0.75 0.75
3 Dark Blue 6 1 0 1.00 0.86 0.92
4 Dark silver 9 2 2 0.82 0.82 0.82
5 Dark blue 0 1 1 0.00 0.00 NA
6 Purple 16 1 2 0.89 0.94 0.91
7 Dark silver 9 2 1 0.90 0.82 0.86
8 White 5 19 2 0.71 0.21 0.32
9 White 12 9 0 1.00 0.57 0.73

10 Black 15 4 0 1.00 0.80 0.89
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6 Conclusion

A deflectometry based defect detection system is pre-
sented in this research paper. The developed system
has successfully detected large and subtle defects on
large painted automotive parts. The system analyses
gradient variation in the measured phase for defect
detection and does not require an existing dataset or
pre-training for its functioning. The use of robotic
arm lends it the capability to inspect varying surface
geometries. The system examines the whole part by
operating on individual segments. These defects are
then aggregated to localize them on the full part.

The system successfully detected various manufac-
turing defects induced during moulding and painting
processes on small test samples as well as on large
automotive bumpers. For large bumper testing, ad-
ditional algorithms are designed and used to extract
the region of interest, as well as eliminate spurious
defects detected due to edge effects and abrupt curva-
ture changes. The algorithm processing takes approx-
imately 0.35 seconds per segment, and this doesn’t
include the time that it takes the robotic arm to move
between segments.

It is noted that the implemented framework can
only detect defects if they are enclosed by a fringe
projected region from all sides. It is possible to use
multiple cameras to reduce the number of segments
and speed-up the inspection process. A colour fringe
pattern could potentially be used to improve the sys-
tem’s performance on light coloured parts. Use of a
phase shifted coloured pattern can be explored as it
will alleviate the requirement for a stationary part-
camera/screen system by eliminating the need for mul-
tiple phase-shifted patterns.
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