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 Many robots have been proposed for smart applications in recent years However, while 
these robots have good ability to move between fixed points separated by short distances, 
they perform less well when required to navigate complex interior spaces with an irregular 
layout and multiple obstacles due to their relatively crude positioning and path control 
capabilities. Accordingly, the present study proposes an integrated system consisting of a 
Raspberry Pi development platform, various sensor devices and iBeacon technology to 
facilitate the path control, indoor positioning, and obstacle avoidance of a programmable 
iRobot Create 2 sweeping robot. The capabilities of the proposed system and its various 
components are investigated by means of practical experiments and numerical simulations. 
In general, the results confirm that the proposed integrated system provides a viable 
platform for the future development of sophisticated indoor robots for smart indoor 
applications. 
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1. Introduction  

In recent years, robot technology has been introduced into 
related application of smart network. However, interior space is a 
very complicated environment because signal transmission can be 
easily influenced by architectural structure. Thus, for many years, 
well-known services to the mess such as GPS positioning system 
or Google map are most applied in outdoor public infrastructure 
instead of interior space. This has blocked the application of robots 
in smart homes; at present, smart robots mostly move between 
fixed points, on certain tracks or only in short distance; for the 
movement in interior space of robots, there have not proper 
solutions because researches in this field is still in startup stage and 
robots are in lack of the support in IoT environment; plus, 
problems emerged when it comes to the sensing technology, 
spatial orientation, path planning, obstacles avoidance, robot 
learning and communication between robots still need to be solved 
and overcome by further integration. 

To introduce the application of robots from factories to homes, 
we need to enable smart robots to arrive the right position rapidly 
through the indoor application service or precisely identify robots 

or users via indoor positioning navigation. Thus, it is necessary to 
conduct further research on smart robots to develop a positioning 
service system used indoor. In this way, smart robots can be 
extended from industrial application in factories to caring service 
in smart homes, bringing more diverse possibilities to home 
application service of IoT.  

This study is organized as below: Section 2 introduces related 
work on indoor positioning, path planning and searching, avoiding 
obstacles and automatic following; Section 3 introduces research 
steps and system implementation; Section 4 represents conclusions. 

2. Research on related application of home robots  

How to let robots assist people to deal with daily tasks in 
various scenarios and precisely identify their location and arrive 
target areas to complete tasks will be important goals to introduce 
robots to smart home application. The following are some related 
study of home robots. 

2.1. Indoor positioning 

In view of this, [1] proposed to utilize RSSI signal of wireless 
network and triangulation algorithm as be indoor positioning 
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mechanism for robots. The results showed the positioning 
precision is 0.125 m and the error is below 0.4%. 

In [2], the author proposed to utilize laser distance meter to 
construct indoor environment model. The meter can measure its 
moving path and calculate via the assistance of cloud server, 
effectively avoiding obstacles on moving path. In [3], it proposed 
to utilized the information change in the sensor or the robot and 
calculate its moving direction and location. Through change values 
measured by gyro and accelerometer, the robot can calculate its X, 
Y and θ. After calibration, it can obtain the reference coordinate of 
robots and plan an effective moving path. 

2.2. Path planning 

Coverage path planning [4] algorithm for robots is an important 
efficiency indicator for home robots; random path planning is an 
intuitive way to move of robots. Robots forward linearly towards 
any direction and change path only when hitting on obstacles and 
repeat this process until it reaches maximum coverage scope. Such 
algorithms have the advantage of simplicity since very few sensors 
are required and there is no need to construct and maintain an 
indoor environment map [5]. However, they require a long time to 
achieve full coverage of the target environment; DmaxCoverage 
[6] an algorithm which can assist robots to construct environment 
map to reach maximum coverage scope; furthermore, in [7], this 
study utilized Dijkstra's algorithm to generate optimum path in 
environment to avoid the decrease of efficiency during random 
path planning. 

2.3. Search, obstacle avoidance and automatic follow-up 
Unlike robots, humans can use their own sense organs to create 

space and sense of distance. Therefore, in [8] this paper 
implements a mobile robot with an automatic following system. 
The mobile robot can perform positioning, mapping, and moving 
the target side. Tasks such as distance, human detection and target 
tracking, and can be applied in real life, such as museum, office or 
library guidance; in [9], this paper implements a wheeled robot that 
can perform search and obstacle avoidance work. The robot is 
equipped with a vision and distance sensor, which can match 
multiple objects by visual system identification objects to create 
multiple hypothesis blocks for the environment. These multiple 
hypothesis blocks can make the robot avoid obstacles and explore 
the target object. 

3. System design and implementation 

Figure 1 shows the functional block diagram of the 
implemented robot. The function of positioning is a crucial factor 
to introduce robots into interior application. To achieve this goal, 
this study combines Raspberry Pi with BLE Bluetooth 
communication technology to implement iBeacon of robots; when 
the robot moves, if it detects iBeacon and reports the positioning 
information, the system is able to know the location of the robot. 

Sensor application
Direction sensor
Ultrasonic sensor
Laser sensor

Collecting signals
Beacon

Raspberry Pi
iRobot

Data storage and analysis
Task execution
Autonomous communication

 
Figure 1: System block diagram of the sweeping robot 

Figure 2 shows the original look of programmable sweeping 
robot. This study combines iRobot Create 2 programmable 
sweeping robot with Raspberry Pi programmable control electric 
circuit with I/O device to explore straight movement and rotation 
of robots. We also use Python to write tests of every control 
application. developing a smart robot which is equipped with 
indoor positioning function; Figure 3 is the prototype of the robot 
for indoor application. 

 
Figure 2: Programmable Sweeping Robot (Original Look) 

 
Figure 3: Smart Robot Developed by Combining iRobot Create 2 Programmable 

Sweeping Robot with Raspberry Pi 

3.1. Composite sensing device 

Linear walking and rotation are the basic movement 
instructions of the robot. In order to understand the difference 
between the expected result and the actual result after the 
instruction is executed, this study installed sensing devices such as 
distance, magnetic field, acceleration, and gyroscope on the 
cleaning robot. This study first measure the robot's motion data and 
then use the analysis results to correct the robot's motion 
parameters. 

Show as Figure 4, take the orientation sensor as an example. 
After the robot adds the orientation sensor, the system developer 
can use the sensor's numerical change to determine the robot's 
movement state; because the X axis represents the robot's direction 
of travel, the robot can use it to determine the robot when 
performing a task. The forward direction; on the other hand, since 
the Z axis of the accelerometer is negative when the robot's 
operation panel is upward and downward when it is positive, it is 
possible to use the Z axis of the acceleration sensor to detect 
whether the robot is running when the robot is operated. 
Overturned or tilted state. 

 
Figure 4: The result of the smart robot orientation and the tilt state of the car 

body 
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3.2. Robot moving path planning mechanism 

To enhance the accuracy of control command, we need to 
measure reaction delay time and error when executing assigned 
process after robots receive commands. 

3.2.1. Measure and Observe the Straight Movement 

To enhance the accuracy of control command, we need to 
measure reaction delay time and error when executing assigned 
process after robots receive commands. 

Assume the program execution time is 10.05 seconds to 11.00 
seconds, and forwarding speed of the robot is set as 200 mm/sec; 
Table 1 shows the measured moving distance of the robot at 
different second. 

As shown in Table 1, the experimental results indicate after the 
control device gives commands to the robot, the actual complete 
time of robots executing commands will have delay for about 
0.5155 second (time error) and the average value of distance error 
is 10.1662 cm. This result can be used by the system to modify 
parameters so as to enhance the accuracy of positioning of the 
robot. 

Table 1: Computed Measured Results of Experimented Robot Move Straightly 
for 11 Seconds 

Execution 
Time 

Time 
Error 

Computed 
Distance 

Actual 
Distance 

Distance  
Error 

10.5657 0.5157 211.3148 200.0 11.3148 
10.6153 0.5153 212.3066 201.9 10.4066 
10.7120 0.5120 214.2402 203.5 10.74024 
10.8067 0.5067 216.1356 205.9 10.2356 
10.9189 0.5189 218.3784 208.0 10.3784 
11.0167 0.5167 220.3347 210.0 10.3347 
11.1192 0.5192 222.3845 212.0 10.3845 
11.2163 0.5163 224.3278 214.3 10.0278 
11.3168 0.5168 226.3371 217.0 9.3371 
11.4165 0.5165 228.3313 219.0 9.3313 
11.5168 0.5168 230.3377 221.0 9.3377 

 0.5155   10.1662 

According to the above measurement it is found when speed is 
fixed, we can obtain stable second difference and stable distance 
difference. Thus, when controlling the moving distance of robots, 
we can do corrections by substituting values into the Eq.(1): 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠×0.1

� − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  (1) 

Amongst, distance indicates predetermined moving distance, 
difference indicates error correction distance, offset time indicates 
delay time of actual execution; from measured results in Table 2 it 
is known: let difference = 10.1662, offset time = 0.5155, assume 
predetermined straight moving distance of the robot is 800 cm and 
then the values adding into the Eq.(2): 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �80+10.1662
200×0.1

� − 0.5155 = 39.9928   (2) 

Through this equation we obtain predetermined execution time 
of the program is 39.9928 seconds; after the program is execute, 

we obtain the actual execution time of the robot 40.5387 seconds, 
moving distance is 799 cm; the measured results show after adding 
it to the correction equation, the actual moving distance of the 
robot 799 cm is close to the predetermined value 800 cm, and 
difference is about 0.125%. 

Table 2: Measured Results after Adding the Straight Walk to the Correction 
Equation 

Actual Seconds Second Difference Actual Distance 
40.5387 0.5459 799 

 

3.2.2. Measure and Observe the Rotation Angle  

To observe whether the rotation angle and direction of the 
robot are as what we have predicted, we combine the mobile sensor 
with the robot. Through function of iPhone DeviceMotion we 
obtain the measurement data of the robot; experimental data here 
will be compared with that obtained from SenseHat compound 
sensor; Table 3 shows the measured results by observing rotation 
angle per second after the robot finishes straight move and another 
move for 1.1~3.3 seconds at 100 mm/sec rotation speed. The 
testing process is shown in Figure 5. 

 
(a) The Status of Actual Measurement 

 
(b) Measured Results 

Figure 5: Measure Rotation Angles of Robots 

From the experimental results we know when rotation speed is 
fixed, dividing actual angle by program seconds will obtain 
rotation angle per second, rotation angle per second is stable and 
thus we obtain the equation below: 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ÷ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (3) 

Let expected denote the predetermined rotation angle, average 
denote the actual angle/ obtained average rotation angle according 
to program execution seconds (control factor) According to the 
measured results in Table 3,  let average = 55.21061296∘ /sec; 
during the execution, we simply need to substituting the degree of 
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angle to rotate into the above-mentioned equation to obtain the 
required seconds for rotating to the assigned angle; taking rotating 
90-degree angle as example, through the equation we obtain the 
execution time of the program will be expressed as execution time 
= 90 / 55.21061296 = 1.6301 seconds. 

Table 3:: Actual Measured Results of Rotation Angles of Robots 

Execution 
Time in 
Seconds 

Rotation 
Angle 

Rotation 
Angle Per 
Second 

1.502199 55 55 
1.602238 61 55.45454545 
1.702244 67 55.83333333 
1.802489 72 55.38461538 
1.902531 77 55 
2.002577 83 55.33333333 
2.102841 88 55 
2.202954 93 54.70588235 
2.302842 100 55.55555556 
2.403040 104 54.73684211 
2.503230 109 54.5 
2.603253 117 55.71428571 
2.703390 122 55.45454545 
2.803547 126 54.7826087 
2.903717 132 55 
3.003546 139 55.6 
3.103666 142 54.61538462 
3.203762 149 55.18518519 
3.303927 153 54.64285714 
3.404050 161 55.51724138 
3.504325 165 55 
3.604233 171 55.16129032 
3.704476 176 55 
  55.21061296 

Table 4 shows the results obtained when the robot rotated 90 
degrees, 180 degrees, 270 degrees, and 360 degrees. It can be seen 
from the experimental results that with the increase of the program 
execution time, the errors generated by the robot after the 
execution of the rotation action will gradually appear. 

Table 4: Actual results of the angles obtained after actual implementation 

Estimated 
rotation 
angle 

Calculated 
time 

Actual 
execution 
time 

Actual 
rotation 
angle 

Angle 
error 

90 1.6301 2.132857 91 1 
  2.133154 90 0 
  2.132777 91 1 
  2.133019 87 3 
  2.132970 91 1 
  2.132866 90 0 

(a) 90 degrees 

Estimated 
rotation 
angle 

Calculated 
time 

Actual 
execution 
time 

Actual 
rotation 
angle 

Angle 
error 

180 3.2602 3.762850 180 0 
  3.764159 183 3 
  3.762853 180 0 
  3.763769 181 1 
  3.764353 181 1 
  3.764293 180 0 

(b) 180 degrees 

Estimated 
rotation 
angle 

Calculated 
time 

Actual 
execution 
time 

Actual 
rotation 
angle 

Angle 
error 

270 4.8904 5.396417 269 1 
  5.396603 272 2 
  5.396394 268 2 
  5.396588 268 2 
  5.396419 271 1 
  5.396533 270 0 

(c) 270 degrees 

Estimated 
rotation 
angle 

Calculated 
time 

Actual 
execution 
time 

Actual 
rotation 
angle 

Angle 
error 

360 6.5205 7.028154 357 3 
  7.028164 362 2 
  7.028282 362 2 
  7.028401 362 2 
  7.028339 362 2 
  7.028357 362 2 

(d)  360 degrees 

SenseHAT is an expansion board for the Raspberry Pi. As 
shown in Figure 6, since the robot's magnetic field will affect the 
SenseHAT's value, in order to improve the accuracy, SenseHAT 
will calibrate the magnetic field, and then measure the SenseHAT 
detection value is correct. Table 5 uses the rotation angle of 72 
degrees as an example to judge the difference between the 
predicted angle and the actual angle. The maximum value of the 
experimental result drops to 5, so it needs to be corrected after each 
rotation command 

 
Figure 6: SenseHAT composite sensor 

3.2.3. Measure and Observe the Rotation Angle  

As mentioned above, the movement of robots is consisted of 
two parts including straight movement and rotation. Thus, we can 
write its moving path into script and then through changing 
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commands to make robots execute tasks. Let s denote straight 
moving, t denote back moving, r denote right turn and l denote left 
turn. Taking Figure 7 as example, the script of the moving path of 
the robot will be written into “s290 r90 s47 l90 s310 r30 s122.” if 
we break down the script by rules, it can be divided into seven 
command list including forwarding 290 cm, rotating right for 90-
degree angle, forwarding 47 cm, rotating left for 90-degree angle, 
forwarding 310 cm, rotating right for 30-degree angle, forwarding 
122 cm and arriving the destination. 

Table 5: Experiment with a rotation of 72 degrees  

Initial 
angle 

Estimated 
rotation 
angle 

Actual 
rotation 
angle 

Angle 
error 

105 177 180 3 
 249 251 2 
 321 323 2 
 33 38 5 
 105 106 1 
 178 181 3 
 250 253 2 
 322 323 1 
 34 38 4 
 106 106 0 

 

 
Figure 7: Moving Path Planning of Robots 

3.2.4. Production of script tools  

Although the path of the robot can use the previously written 
script to write the relevant parameters to the robot. However, in 
order to make the robot's control more flexible, the project also 
developed a Web control interface that allows the user to control 
the walking path of the robot through the Web, as shown in Figure 
8: 

 
Figure 8: Manual specification of robot path 

When the user issues an instruction, the system will put each 
value into the database and then convert it to json format output 
when needed, as shown in Figure 9 

 
Figure 9: Store forward distance and turning angle 

As shown in Figure 10, when robots execute Script, it would 
obtain forwarding distance and rotation angles from the database 
to execute tasks. When all assigned tasks are done, it would show 
the spent time for finishing all movements to notify users of time 
spent to complete cleaning so that users can more easily use it. 

 
Figure 10: Executed Motions and Spent Time of Robots 

3.3. The Design of iBeacon Information Assist System 

Owing to smart robots can provide more human-oriented 
location-based service after combining with perception positioning 
system and have better market competitiveness in the future, this 
study new robot communication application service in view of the 
development of smart home and IoT. This study implements 
diverse simulation test by iRobot Create2 which is designed to 
control robots, applying iBeacon micro-location technology, 
compound multi-axis sensor technology and so on to develop 
smart robots for indoor positioning and path algorithm; for robots, 
the precision of positioning signals is a very crucial parameter. 

3.3.1. Experimental field planning and design  

To enable robots to obtain indoor coordinates and execute 
dynamic searching, this study constructs an IoT micro-location 
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system. Through the assistance of the iBeacon system, robots are 
able to inquire past moving track before executing tasks and 
transform the moving process to coordinate record to build up the 
spatial perception ability of robots; when robots calibrate signals 
and connect to system database. The robot can report its location 
to the system while forwarding and meanwhile report its location 
to the IoT micro-location system so that it can plan, correct and 
predict its paths.  

Fig. 11 shows the experimental field. The experimental field is 
an 85m x 20m 2-dimensional space. A total of 14 Beacons are 
arranged to allow the robot to perform tasks that can be used for 
positioning applications. 

 
Figure 11: Experimental space for robotic indoor positioning applications 

3.3.2. Researches on Beacon Positioning  

The iBeacon messages detected by the robot contained various 
items of location-related information, including the UUID, the Tx 
Power, the RSSI, and so on (see Fig. 12) 

 
Figure 12: Contents of iBeacon message  

After obtaining RSSI and TxPower value between robots and 
Beacon, we can then use relative relation between RSSI and 
TxPower as the reference value of distance between the robot and 
Beacon; when ratio between RSSI and TxPower is less than 1.0, 
we use Eq. (3) to obtain distance, or we will use Eq. (4): 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �
� 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

�
10

              , 𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

< 1.0     (3)

� 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

�
7.7095

× 0.89976 + 0.111   , 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (4)
  

Scan the iBeacon through the Raspberry Pi and calculate the 
distance, as shown in Figure 13, but since this method is easy to 
generate large fluctuations through real-time operation, it is 
necessary to increase the stability of the distance by accumulating 
balance, and plan two points iBeacon to be placed at 0.5m and 
2.5m, 30 points are measured for each point, and the first 10 data 
are averaged, and then the last 20 data are corrected by the EWMA 
formula to obtain the distance. Figure 14 is the experimental results. 

 
Figure 13: Raspberry Pi Scan iBeacon and Calculate Distance 

 
Figure 14: Revise the distance of iBeacon 

3.4. Robot positioning and map construction 

Safe walking is a challenge when robots enter an unknown 
environment. SLAM technology can be used to map assisted 
positioning by reading the value of the surrounding environment 
by the sensor. 

 

3.4.1. Robot Operating System  

With the warming of domestic robots in the past two years, 
autonomous positioning has become the primary threshold for 
robotic intelligence. To realize this function, many manufacturers 
have chosen to use ROS as the operating system of robots. 

ROS is more like an application role as a communication 
intermediary software in the entire robot design architecture. At 
the same time, a complete system integration framework for robot 
application design based on an existing operating system can be 
developed in various programming languages such as C++ and 
Python. Through the functions provided by ROS, the use of SLAM 
can be made more convenient. Figure 15 shows the use of ROS to 
generate a simple picture through the virtual machine. It is 
necessary to constantly correct the map through the SLAM 
algorithm to make the map more accurate. 

3.4.2. SLAM map construction  

As shown in Fig. 16, SLAM comprises three components, 
namely localization, mapping and navigation. With advances in 
computer technology and sensing capabilities, SLAM has evolved 
into the method of choice for robots to detect unfamiliar 
environments and find their way through them. As shown in Fig. 
17, various SLAM technologies are available, including VSLAM, 
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Wifi-SLAM and Rplidar SLAM. Among these technologies, 
Rplidar SLAM is one of the most commonly used and is hence also 
adopted in the present study. 

 
Figure 15: A Depicting map outlines through ROS  

 
Figure 16: SLAM application diagram 

   
VSLAM WiFi-SLAM Rplidar SLAM 

Figure 17: Common SLAM technology 

Rplidar Collect data repeatedly, filter noise and produce visual 
map, Rplidar A2 Typical rotational frequency is 10Hz (600RPM), 
can realize 0.9° angle resolution at typical rotational frequency, 
can adjust the rotation frequency in the range of 5Hz-15Hz with 
the user's demand. 

3.4.3. RPLIDAR Scan Value  

As shown in Figure 18, RPLIDAR is performed by Python to 
perform scanning, and the values of four angles are obtained, 
which are 0 degrees, 90 degrees, 180 degrees, and 270 degrees, and 
the results are shown in Table 6, can be applied to robot detection 
and The distance between obstacles. 

 

 
Figure 18: Use Rplidar to get the value of the angle 

Table 6: 4 angle values 

Angle Distance (cm) 
0 17.6 
90 103.3 
180 13.4 
270 20.0 

3.4.4. SLAM Algorithm  

In the SLAM algorithm, the Hector SLAM algorithm is used. 
The algorithm developed by Hector Labs in Germany was ported 
from the original RoboFram algorithm to the ROS package at the 
end of 2010. Using the 2D mesh method, the value of the laser scan 
is converted in the xy coordinates by the tf library, and possible 
position estimation and rendering obstacles. Repeated scanning 
uses a bilinear filtering method to continuously correct the map 
with low power consumption, immediacy and goodness. Figure 19 
shows the working principle of the Hector SLM, and Figure 20 
shows the experimental results of the Hector SLAM scanning 
virtual machine. 

 
Figure 19: Hector SLAM works 

3.5. Robot Obstacle Avoidance 

To carry out research on robot obstacle avoidance, the robot is 
equipped with three ultrasonic sensors. As shown in Figure 21, the 
ultrasonic sensor can sense a distance of 2cm to 400cm, an 
accuracy of 0.3cm, and an angle range of 15 degrees. The robot 
can read the value of the sensor to determine whether it encounters 
an obstacle, such as Figure 22 shows. 
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Figure 20: Logo 

 
Figure 21:  Install an ultrasonic sensor on the robot 

 
Figure 22: Confirm that the ultrasonic sensor is working 

The robot's ultrasonic sensor determines if an obstacle is 
encountered in front, and the robot will determine which side is 
longer by the left and right sensors to determine how to avoid the 
obstacle. As shown in Fig. 23, when the distance is less than 20 cm, 
the obstacle avoidance behavior is performed. When the sensor's 
value returns to normal, the robot will travel midway through the 
body to ensure that the robot completely bypasses the obstacle and 
rotates back to the original path. 

 
Figure 23: Turning with obstacles less than 20cm 

To understand the execution situation of the obstacle avoidance 
action of the robot, Figure 24 and Figure 25 simulate and observe 
the execution process of the obstacle encountered by the robot, 
where the x-axis is time and the y-axis is the path of the robot to 
avoid obstacles. When the robot turns right the y axis is 
decremented by 1 , the y axis is incremented by 1 when it is turned 
left. Figure 24 simulates the robot encountering an obstacle at 2 
seconds, then turning right around the obstacle and leaving the 
obstacle at 4 seconds. Figure 25 simulates the robot encountering 
an obstacle at 3 seconds, then turns left around the obstacle and 
leaves the obstacle at 5 seconds. 

 
Figure 24: Simulate turn right bypass the obstacle 

 
Figure 25: Simulate turn left bypass the obstacle 

Let the robot perform the task of bypassing obstacles. From the 
experimental results, the robot encountered an obstacle within 2.4 
seconds, began to perform the action of avoiding the obstacle, and 
left the obstacle within 3.8 seconds. Figure 26 is the result of the 
actual walking of the robot. The obtained time is brought into the 
program, and the result chart of the simulation is shown in Fig. 27, 
and the actual obstacle avoidance result chart is consistent. 

 
Figure 26: The actual obstacle avoidance result of the robot 

 
Figure 27: Simulate the results of actual obstacle avoidance 

4. Conclusion 

This study has developed an integrated development platform 
for indoor mobile robots consisting of a programmable iRobot 
Create 2 sweeping robot; a Raspberry Pi computer; a sensing 
system consisting of laser, magneto, accelerometer, gyroscope and 

http://www.astesj.com/


R. Cheng et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 3, 198-206 (2019) 

www.astesj.com     206 

ultrasonic devices; and iBeacon technology. The path planning and 
positioning performance of the proposed platform has been 
evaluated experimentally and calibration equations have been 
proposed for both the linear and rotational motions of the robot. 
The use of SLAM technology to construct a map of the 
surrounding environment has been explained. Finally, the ability 
of the sweeping robot to perform automatic obstacle avoidance 
maneuvers has been demonstrated numerically and experimentally. 
In general, the results confirm the basic feasibility of the proposed 
framework and provide a useful basis for the future development 
of mobile robots for indoor smart network applications. 
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