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 Pursuit Evasion Game (PEG) is an abstract model of various significant problems that 
appear in both civil and military applications. Bio- Inspired strategies are found to be very 
useful in studying the PEG. While optimal response to the pursuit strategies are available 
using geometric control theory, it is shown in this paper that application of linear feedback 
control laws can further improve the time and tracking response of these strategies in 
capturing the evader by the pursuer. Empirical results based on computer simulation are 
used to illustrate the findings. Further, considering the case of sudden turn of the evader, 
moving at a lower speed, it is shown that both in theory and simulation that the evader can 
delay the capture by pursuer and in some cases even escape from being captured. These 
findings are in line with what is found in nature. 
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1. Introduction 

Pursuit evasion game (PEG) is widely prevalent in nature. It is 
a game that is considered to be between the pursuer and an evader. 
PEG can be observed among animals when they chase a victim or 
when they battle for territory and even when they mate. In the 
context of engineering, PEG finds application in missile guidance 
and avoidance, aircraft pursuit and evasion, maritime asset 
protection etc.[1].  

Initial study of PEG was mainly from the point of view of game 
theory [2]. PEG was further studied from the point of view of 
geometric control theory in [3]. Pursuit manifold is defined in 
terms of certain criteria involving relative distance and relative 
velocity between the pursuer and the evader. Using a control law 
which enables the pursuer to reach the pursuit manifold in an 
optimum way and keeping the pursuit invariant on the manifold, 
[3] studied three strategies found in nature, viz., motion 
camouflage (CM), constant bearing (CB) and classical pursuit 
(CP). The objective of the work reported in [3] is to find a 
justification for the prevalent use of CM in PEG in nature. It turned 
out that, keeping the speed of the pursuer and the evader constant 
and ensuring that the pursuer moves faster than the evader, [3] has 
been able to show through evolutionary games that CB and CP 
strategies always converge to CM strategy under certain fixed 

assumptions on evader motion thus supporting what is seen in 
nature.  

However, Pais [4] has argued that if the evader control law is 
reactive (i.e. it is in some way dependent on the baseline vector 
joining the pursuer and evader locations and its rate of change), 
then the conclusions in [3] might not hold good. Wei [5] has 
dropped the constant speed assumption of both the pursuer and 
evader and allowed the pursuer to change its acceleration as 
required. Wei also introduced the case of victim turning suddenly 
left or right when the pursuer comes too close to the evader. A 
related problem to PEG of confinement and escape is addressed in 
[6].  

Our aim in this paper is this. Considering PEG of a robotic 
pursuit of an enemy agent, can we consider the problem as a 
feedback control problem introducing proportional 
(P),proportional plus integral (PI) and proportional plus integral 
plus derivative (PID) laws to improve the performance of the 
pursuer? The performance can be studied under different bio- 
inspired pursuit strategies, such as CM, CB and CP. The evader 
may be allowed to follow reactive and non- reactive control laws. 
A simpler version of this study for the CM case only has been 
reported earlier in [7]. Further, in view of the increased agility of 
the evader (i.e. ability to turn at a lower speed compared to the 
pursuer), we ask what is the outcome of the PEG given the chance 
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that evader makes a sudden 90 degree turn left or right? This paper 
is a much expanded version of [8] especially in regard to the 
sudden turn strategy of the evader. 

 
Bopardikar [9] has shown the Bio- inspired co-operative 

strategies of pursuer for successful confinement of evader. [9] 
gives the required number of pursuers and speed ratio for 
guaranteed confinement strategy. X Liang and Y Xiao [10] show 
the coalition formation of robots for intrusion detection by using 
the game theory approach. The paper is based on the nature’s 
coalition formation such as predator trying to catch the prey. An 
analytical method is used to study the tradeoff of coalition or 
collaboration between the robots. 

 
Initial study of camouflage strategies [11,12] are considered 

when either pursuer or evader is stationary. Srinivasan [13] 
analyzed and investigated the motion camouflage and highlighted 
many ways for future extension. The authors of [14] study the 
unmanned surface vehicles (USVs) for performing patrolling 
operations and detecting intruders for harbor protection with a 
view to reducing the number of humans exposed to threat. An 
intelligent swarm management unit (SMU) is used for the 
supervision of all the USVs in operation. A real time motion 
planner for the USVs in the presence of multiple obstacles is also 
presented.  

 
 [15] addresses the problem associated with the classical 

pursuit evasion games and mentions that their study is more 
difficult than the classical one. The author of [15] also explored 
the geometry of the problem by obtaining sufficient conditions for 
both pursuer and evader to win. A max- min problem is 
formulated, from the pursuers point of view, which is solved using 
outer approximation method. The solution of the max- min 
formulation is used to synthesize a feedback solution governing 
the pursuer’s behavior in the form of receding horizon control. 
[16] discusses a harbor defense situation and the author highlights 
the important features where the problem is different from the 
classical PEG.   

 
The main contribution of the paper can be summarized as 

follows: (i) PI and PID feedback laws are shown to enable the 
pursuer to capture the evader in a shorter time compared to P alone 
for different conditions of the evader following non-reactive and 
reactive control laws. (ii) The PI, PID feedback laws followed by 
the pursuer enable him to capture the evader and not allow him to 
escape contrary to the the case of P alone. This is termed tracking 
performance of the pursuer (iii) In the case the evader uses his 
agility to turn 90 degree left or right suddenly with respect to the 
baseline, it is shown that the time to capture the evader can be 
delayed when the pursuer follows any of the CM, CB and CP 
strategies. (iv) It is also shown that in certain cases of CB followed 
by pursuer, with the evader following the sudden turn strategy, the 
evader is able to totally escape from the pursuer inspite of the 
speed advantage enjoyed by the pursuer. 

 
The rest of the paper is organized as follows: The following 

section gives the required background on modeling of PEG and 
the pursuit manifolds under different strategies. Section 3 presents 

the feedback control system configuration considered together 
with the derivation of expressions for PI and PID for the three 
strategies. Also provided in section 3 is an analysis of the effect 
of sudden turn of the evader in respect of the CM, CB and CP 
strategies of the pursuer. Section 4 gives the simulation results 
together with the discussion on the comparative performance of 
the different control strategies as well as different control modes 
of the evader. Section 5 concludes the paper. 

 

2. Background 

Wei and Krishnaprasad [17], [18] model the interaction in 
pursuit in terms of gyroscopically interacting particles. We follow 
a similar approach. 

  �̇�𝑟𝑝𝑝 =  𝑥𝑥𝑝𝑝  ,   �̇�𝑥𝑝𝑝 =  𝑦𝑦𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝 ,   �̇�𝑦𝑝𝑝 =  − 𝑥𝑥𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝 (1) 

where 𝑟𝑟𝑝𝑝 ∈ ℝ2is the position of the pursuer, 𝑥𝑥𝑝𝑝 its velocity and 𝑦𝑦𝑝𝑝  
is the acceleration of the pursuer. The steering control of the 
pursuer is given by the scalar upr. The  motion of the evader (with 
speed ʋ) is given by 

 �̇�𝑟𝑒𝑒 =  ʋ𝑥𝑥𝑒𝑒  ,   �̇�𝑥𝑒𝑒 =  ʋ𝑦𝑦𝑒𝑒𝑢𝑢𝑒𝑒 ,   �̇�𝑦𝑒𝑒 =  −ʋ𝑥𝑥𝑒𝑒𝑢𝑢𝑒𝑒 (2) 

where 𝑟𝑟𝑒𝑒 ∈ ℝ2 is the position, 𝑥𝑥𝑒𝑒 is the velocity and 𝑦𝑦𝑒𝑒 is the 
acceleration of the evader. The steering control of the evader, 𝑢𝑢𝑒𝑒, 
is a scalar. We also define  

   𝑟𝑟 =   𝑟𝑟𝑝𝑝 − 𝑟𝑟𝑒𝑒                               (3) 

which is referred to as the ‘baseline’ between the pursuer and the 
evader. 

2.1. Pursuit manifolds and cost functions 

Two particle pursuer evader system is described in the 
Euclidean plane of two dimensions. We define the cost functions 
F on the pursuit manifold  G∈ ℝ2 as F: G × G → ℝ  associated 
with different pursuit strategies as in [4] as follows where (∙) 
represents  the dot product between two unit vectors and |∙|  stands 
for  the Euclidean norm. 

𝛤𝛤 = � 𝑝𝑝
|𝑝𝑝|

. �̇�𝑝
|�̇�𝑝|
� =

𝑑𝑑|𝑟𝑟|
𝑑𝑑𝑑𝑑

�𝑑𝑑𝑟𝑟𝑑𝑑𝑑𝑑�
 (motion camouflage)  (4) 

and 

𝛬𝛬 = ( 𝑝𝑝 
|𝑝𝑝|

   .  𝑅𝑅  𝑥𝑥𝑝𝑝 )(constant bearing)                (5) 

where 

  𝑅𝑅 = �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐
𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �,            (6) 

for 𝑐𝑐 ∈ (−𝜋𝜋/2, 𝜋𝜋/2).  

For R =𝐼𝐼2 the identity matrix of order 2, we define 

                       𝛬𝛬0 = � 𝑝𝑝 
|𝑝𝑝|

   .  𝑥𝑥𝑝𝑝 �                              (7) 

to be the cost function associated with classical pursuit.  

All three cost functions Γ, Λ and 𝛬𝛬0 are well defined and that 
they take values in the interval [-1,1]. The cost functions Γ, Λ and 
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𝛬𝛬0 define the respective pursuit manifolds. Γ is seen to correspond 
to the cosine of the angle between r and �̇�𝑟. Camouflage pursuit 
manifold is defined by the condition 𝛤𝛤 = −1, which corresponds 
to the case of the angle between r and �̇�𝑟 being π. (see Figure 1(a)). 

                                                                   
(a)                                        (b)                                           (c) 

Figure. 1 Geometric representation of pursuit manifolds: (a) motion camouflage 
(CM) pursuit, (b) constant bearing (CB) pursuit and (c) classical pursuit (CP). 

 The constant bearing pursuit manifold is represented by the 
condition 𝛬𝛬 = −1. This condition is satisfied when the heading of 
the pursuer makes an angle 𝑐𝑐 with the baseline vector (as shown 
in Figure 1(b)). Similarly, the classical pursuit manifold is defined 
by the condition 𝛬𝛬0 = −1. This condition is satisfied when the 
heading of the pursuer is aligned (in opposite direction) with the 
baseline (see Figure 1 (c)). 

3. System Modelling 

3.1. Pursuit-Evasion system 

Representing  

𝑟𝑟𝑝𝑝 = [𝑟𝑟𝑝𝑝𝑝𝑝  𝑟𝑟𝑝𝑝𝑝𝑝]𝑡𝑡 

𝑟𝑟𝑒𝑒 = [𝑟𝑟𝑒𝑒𝑝𝑝  𝑟𝑟𝑒𝑒𝑝𝑝]𝑡𝑡 

we write (1) and (2) in terms of state equations as follows: 

𝑥𝑥1 = 𝑟𝑟𝑝𝑝𝑥𝑥;           𝑥𝑥7 = 𝑟𝑟𝑒𝑒𝑥𝑥;
𝑥𝑥2 = 𝑟𝑟𝑝𝑝𝑦𝑦;           𝑥𝑥8 = 𝑟𝑟𝑒𝑒𝑦𝑦;
𝑥𝑥3 = 𝑥𝑥𝑝𝑝𝑥𝑥;           𝑥𝑥9 = 𝑥𝑥𝑒𝑒𝑥𝑥;
𝑥𝑥4 = 𝑥𝑥𝑝𝑝𝑦𝑦;           𝑥𝑥10 = 𝑥𝑥𝑒𝑒𝑦𝑦;
𝑥𝑥5 = 𝑦𝑦𝑝𝑝𝑥𝑥;           𝑥𝑥11 = 𝑦𝑦𝑒𝑒𝑥𝑥;
𝑥𝑥6 = 𝑦𝑦𝑝𝑝𝑦𝑦;           𝑥𝑥12 = 𝑦𝑦𝑒𝑒𝑦𝑦;⎭

⎪⎪
⎬

⎪⎪
⎫

  (8) 

�̇�𝑥1 = �̇�𝑟𝑝𝑝𝑝𝑝 = 𝑥𝑥𝑝𝑝𝑝𝑝 = 𝑥𝑥3
�̇�𝑥2 = �̇�𝑟𝑝𝑝𝑝𝑝 = 𝑥𝑥𝑝𝑝𝑝𝑝 = 𝑥𝑥4

�̇�𝑥3 = �̇�𝑥𝑝𝑝𝑝𝑝 = 𝑦𝑦𝑝𝑝𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝 = 𝑥𝑥5𝑢𝑢𝑝𝑝𝑝𝑝
�̇�𝑥4 = �̇�𝑥𝑝𝑝𝑝𝑝 = 𝑦𝑦𝑝𝑝𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝 = 𝑥𝑥6𝑢𝑢𝑝𝑝𝑝𝑝

�̇�𝑥5 = −�̇�𝑦𝑝𝑝𝑝𝑝 = −𝑥𝑥𝑝𝑝𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝 = −𝑥𝑥3𝑢𝑢𝑝𝑝𝑝𝑝
�̇�𝑥6 = −�̇�𝑦𝑝𝑝𝑝𝑝 = −𝑥𝑥𝑝𝑝𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝 = −𝑥𝑥4𝑢𝑢𝑝𝑝𝑝𝑝

�̇�𝑥7 = ʋ�̇�𝑟𝑒𝑒𝑝𝑝 = ʋ𝑥𝑥𝑒𝑒𝑝𝑝 = ʋ𝑥𝑥9
�̇�𝑥8 = ʋ�̇�𝑟𝑒𝑒𝑝𝑝 = ʋ𝑥𝑥𝑒𝑒𝑝𝑝 = ʋ𝑥𝑥10

�̇�𝑥9 = ʋ�̇�𝑥𝑒𝑒𝑝𝑝 = ʋ𝑦𝑦𝑒𝑒𝑝𝑝𝑢𝑢𝑒𝑒 = ʋ𝑥𝑥11𝑢𝑢𝑒𝑒
�̇�𝑥10 = ʋ�̇�𝑥𝑒𝑒𝑝𝑝 = ʋ𝑦𝑦𝑒𝑒𝑝𝑝𝑢𝑢𝑒𝑒 = ʋ𝑥𝑥12𝑢𝑢𝑒𝑒

�̇�𝑥11 = −ʋ�̇�𝑦𝑒𝑒𝑝𝑝 = −ʋ𝑥𝑥𝑒𝑒𝑝𝑝𝑢𝑢𝑒𝑒 = −ʋ𝑥𝑥9𝑢𝑢𝑒𝑒
�̇�𝑥12 = −ʋ�̇�𝑦𝑒𝑒𝑝𝑝 = −ʋ𝑥𝑥𝑒𝑒𝑝𝑝𝑢𝑢𝑒𝑒 = −ʋ𝑥𝑥10𝑢𝑢𝑒𝑒⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

   (9) 

            𝑟𝑟 = 𝑟𝑟𝑝𝑝 − 𝑟𝑟𝑒𝑒 = �
𝑥𝑥1
𝑥𝑥2� − �

𝑥𝑥7
𝑥𝑥8� = �

𝑥𝑥1 − 𝑥𝑥7
𝑥𝑥2 − 𝑥𝑥8� (10) 

   �̇�𝑟 = �̇�𝑟𝑝𝑝 − �̇�𝑟𝑒𝑒 = ��̇�𝑥1�̇�𝑥2
� − ��̇�𝑥7�̇�𝑥8

� = �
𝑥𝑥3
𝑥𝑥4� − ʋ �

𝑥𝑥9
𝑥𝑥10�              (11) 

3.2. Feedback Laws. 

In this sub-section, we formulate the pursuit strategies in terms 
of feedback control laws. The maintenance of the cost function Γ, 
Λ and 𝛬𝛬0 associated with a strategy at the reference value of −1 
on the respective manifold is represented in the form of a feedback 
control system as shown in figure 2. 𝑢𝑢𝑝𝑝𝑝𝑝 will take expresson for 
proportional control as 𝑢𝑢𝑝𝑝, for proportional integral control as 𝑢𝑢𝑝𝑝𝑝𝑝 
and for proportional, integral and derivative control as 𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝. 

 
Figure. 2 Manifold Control 

3.2.1. Feedback Laws for CM. 

Using the results of [4] the feedback control law is defined as 
     𝑢𝑢𝑝𝑝 = −µ1 〈

𝑝𝑝
|𝑝𝑝|

 . �̇�𝑟⊥〉             (12) 

where 〈∙〉 represents  the dot product of  two vectors and 𝑥𝑥⊥ is 
defined as the vector 𝑥𝑥 rotated counter- clockwise in the plane by 
an angle 𝜋𝜋

2
. In terms of the system model, (12) can be put as 

𝑢𝑢𝑝𝑝 = −µ1 〈�
(𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)

�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2
 �  . [( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 − ʋ𝑥𝑥9)]〉  (13) 

where µ1 is the proportional (P) setting of the controller. 

Proposition 1: 

 Using (13) under CM, PI and PID control laws can be derived 
as 

𝑢𝑢𝑝𝑝𝑝𝑝 =     −µ1 〈
𝑟𝑟

|𝑟𝑟|  . �̇�𝑟⊥〉  −µ2 � 〈
𝑟𝑟

|𝑟𝑟|  . �̇�𝑟⊥〉  𝑑𝑑𝑑𝑑 

= −µ1 〈�
(𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)

�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2
 �  . [( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 − ʋ𝑥𝑥9)]〉 −

µ2 ∫ 〈�
(𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)

�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2
 � . [( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 − ʋ𝑥𝑥9)]〉 dt   (14) 

where µ2 is the Integral (I) setting of the controller. 

 𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝 =     −µ1 〈
𝑝𝑝

|𝑝𝑝|
 . �̇�𝑟⊥〉  −µ2 ∫ 〈

𝑝𝑝
|𝑝𝑝|

 . �̇�𝑟⊥〉  𝑑𝑑𝑑𝑑 −µ3
𝑝𝑝
𝑝𝑝𝑡𝑡

 〈 𝑝𝑝
|𝑝𝑝|

 . �̇�𝑟⊥〉 

= −µ1 〈�
(𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)

�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2
 �  . [( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 − ʋ𝑥𝑥9)]〉 −

µ2 ∫ 〈�
(𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)

�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2
 � . [( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 − ʋ𝑥𝑥9)]〉 dt 

−µ3  〈� (𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2

 � . [(ʋ2𝑥𝑥12 𝑢𝑢𝑒𝑒,−ʋ2𝑥𝑥11𝑢𝑢𝑒𝑒)]〉            (15) 

where µ3 is the derivative (D) setting of the controller.  

 PI/PID 
(ref) upr 

 

output 
 

Pursuit Evasion 
System 
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Proof: - see Appendix 1 

3.2.2. Feedback Laws for CB. 

 Considering CB, the expressions for the control law is given as 
follows. 

   𝑢𝑢𝑝𝑝 = −µ1 �𝜂𝜂 〈
𝑝𝑝

|𝑝𝑝|
.𝑅𝑅𝑦𝑦𝑝𝑝〉 + 1

|𝑝𝑝|
〈 𝑝𝑝

|𝑝𝑝|
. �̇�𝑟⊥〉�          (16) 

In terms of system model, (16) can be put as 

𝑢𝑢𝑝𝑝 = −𝜇𝜇1(𝜂𝜂 〈
(𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)

�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2
.𝑅𝑅(𝑥𝑥5, 𝑥𝑥6)𝑡𝑡〉 + 

1
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2     

〈 (𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2

. ( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 −

ʋ𝑥𝑥9)〉)                 (17) 

 

Proposition 2: 

 For CB the control laws for PI and PID can be expressed as 
follows. 

𝑢𝑢𝑝𝑝𝑝𝑝 = −µ1 �𝜂𝜂 〈
𝑟𝑟

|𝑟𝑟| .𝑅𝑅𝑦𝑦𝑝𝑝〉 +
1

|𝑟𝑟|
〈
𝑟𝑟

|𝑟𝑟| . �̇�𝑟⊥〉�

− µ2 � �𝜂𝜂 〈
𝑟𝑟

|𝑟𝑟| .𝑅𝑅𝑦𝑦𝑝𝑝〉 +
1

|𝑟𝑟|
〈
𝑟𝑟

|𝑟𝑟| . �̇�𝑟⊥〉� 𝑑𝑑𝑑𝑑 

 

= −𝜇𝜇1(η 〈
(𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)

�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2
.𝑅𝑅(𝑥𝑥5, 𝑥𝑥6)𝑡𝑡〉 + 

1
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2     

〈 (𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2

. ( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 −

ʋ𝑥𝑥9)〉)−µ2 ∫(η 〈 (𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2

.𝑅𝑅(𝑥𝑥5, 𝑥𝑥6)𝑡𝑡〉 +
1

�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2     
〈 (𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2

. ( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 −

ʋ𝑥𝑥9  )  〉 )𝑑𝑑𝑑𝑑              (18) 
 
 

𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝 = −µ1 �𝜂𝜂 〈
𝑟𝑟

|𝑟𝑟| .𝑅𝑅𝑦𝑦𝑝𝑝〉 +
1

|𝑟𝑟|
〈
𝑟𝑟

|𝑟𝑟| . �̇�𝑟⊥〉�

− µ2 � �𝜂𝜂 〈
𝑟𝑟

|𝑟𝑟| .𝑅𝑅𝑦𝑦𝑝𝑝〉 +
1

|𝑟𝑟|
〈
𝑟𝑟

|𝑟𝑟| . �̇�𝑟⊥〉� 𝑑𝑑𝑑𝑑

− µ3
𝑑𝑑
𝑑𝑑𝑑𝑑

 ��𝜂𝜂 〈
𝑟𝑟

|𝑟𝑟| .𝑅𝑅𝑦𝑦𝑝𝑝〉 +
1

|𝑟𝑟|
〈
𝑟𝑟

|𝑟𝑟| . �̇�𝑟⊥〉�� 

 

= −𝜇𝜇1(η 〈
(𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)

�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2
.𝑅𝑅(𝑥𝑥5, 𝑥𝑥6)𝑡𝑡〉 + 

1
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2     

〈 (𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2

. ( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 −

ʋ𝑥𝑥9)〉)−µ2 ∫(η 〈 (𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2

.𝑅𝑅(𝑥𝑥5, 𝑥𝑥6)𝑡𝑡〉 +
1

�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2     
〈 (𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2

. ( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 −

ʋ𝑥𝑥9  )  〉 )𝑑𝑑𝑑𝑑 
−𝜇𝜇3{〈((𝑥𝑥3 − 𝜐𝜐𝑥𝑥9) 1

�(𝑝𝑝1−𝑝𝑝7)2+(𝑝𝑝2−𝑝𝑝8)2
−  (𝑥𝑥1 −

𝑥𝑥7) 1

��(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2�
3 ((𝑥𝑥1 − 𝑥𝑥7)(𝑥𝑥3 − 𝜐𝜐𝑥𝑥9) + (𝑥𝑥2 − 𝑥𝑥8)(𝑥𝑥4 −

𝜐𝜐𝑥𝑥10), ((𝑥𝑥4 − 𝜐𝜐𝑥𝑥10) 1
�(𝑝𝑝1−𝑝𝑝7)2+(𝑝𝑝2−𝑝𝑝8)2

− (𝑥𝑥2 −

𝑥𝑥8) 1

��(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2�
3 �(𝑥𝑥1 − 𝑥𝑥7)(𝑥𝑥3 − 𝜐𝜐𝑥𝑥9) + (𝑥𝑥2 − 𝑥𝑥8)(𝑥𝑥4 −

𝜐𝜐𝑥𝑥10)�.𝑅𝑅(𝑥𝑥5,𝑥𝑥6)𝑑𝑑〉) +
1

�(𝑝𝑝1−𝑝𝑝7)2+(𝑝𝑝2−𝑝𝑝8)2
〈 (𝑝𝑝1−𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1−𝑝𝑝7)2+(𝑝𝑝2−𝑝𝑝8)2

, (𝜐𝜐2𝑥𝑥12𝑢𝑢𝑒𝑒 ,−𝜐𝜐2𝑥𝑥11𝑢𝑢𝑒𝑒)〉 +

�−((𝑥𝑥1 − 𝑥𝑥7)2 + (𝑥𝑥2 − 𝑥𝑥8)2)
−3
2 �(𝑥𝑥1 − 𝑥𝑥7)(𝑥𝑥3 − 𝜐𝜐𝑥𝑥9) + (𝑥𝑥2 −

𝑥𝑥8)(𝑥𝑥4 − 𝜐𝜐𝑥𝑥10)�� . 〈 (𝑝𝑝1−𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1−𝑝𝑝7)2+(𝑝𝑝2−𝑝𝑝8)2

. (ʋ𝑥𝑥10 − 𝑥𝑥4,𝑥𝑥3 − ʋ𝑥𝑥9)〉     (19) 

Proof: - See Appendix 2 
 
3.2.3 Feedback Laws for CP. 

Considering CP, the expressions for PI and PID control laws 
derived under proposition 2 are valid with R= I2. 
 
3.3 Control law for the Evader. 
 

For the evader the steering control common to (CM, CB and 
CP of pursuer) can be as follows. 

 
𝑢𝑢𝑒𝑒 = cos 𝑑𝑑          (prescribed)            (20) 
𝑢𝑢𝑒𝑒 = 〈 𝑝𝑝

|𝑝𝑝|
 .  𝑟𝑟�̇�𝑒⊥〉             (reactive) 

       = 〈� (𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2

 � . [(−𝑥𝑥10  , 𝑥𝑥9  )]〉           (21) 

 
𝑢𝑢𝑒𝑒 = 〈𝑟𝑟. �̇�𝑟𝑒𝑒〉  (sudden turn) 

             = 〈� (𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2

 � . [𝑥𝑥3 − 𝜗𝜗𝑥𝑥9, 𝑥𝑥4 − 𝜗𝜗𝑥𝑥10]〉  (22) 

 
3.3.1 Sudden Turn of evader 

Sudden turn is followed by the evader when the baseline 
length is shorter than a threshold. The sharp turn is again prevalent 
in nature where the reduced speed of the evader (victim) 
compared to that of the predator gives the evader the advantage of 
agility which enables him to turn sharply trying to escape from 
the pursuer. The choice of abandoning the other steering laws in 
favour of the sudden 90-degree turn is taken once the baseline 
length between the pursuer and evader is perceived to be below a 
certain threshold. We show below the property that once the 
evader takes a sudden 90 degree turn with respect to the baseline, 
he continues to do so in all subsequent moves since the baseline 
distance between the pursuer and the evader continues to be below 
the threshold. The property is stated and proved next for the three 
cases of pursuer strategy, viz, CM, CB and CP. 

 
3.3.1.1 CM 

Proposition 3: 

Referring the initial baseline between the pursuer and evader 
as r and after a tangential move for a time 𝑑𝑑𝑑𝑑, the baseline is 
denoted as r’. Assuming that the pursuer follows the CM strategy 
it follows that |𝑟𝑟′| ≤ |𝑟𝑟|. 
 

Proof: - See Appendix 3. 
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Table. 1 Time to reach |𝑟𝑟| = 0 and 𝛤𝛤 = −1 for different combinations of 𝑃𝑃(𝜇𝜇1), 𝐼𝐼(𝜇𝜇2),𝐷𝐷 (𝜇𝜇3) for different initial values of 𝑟𝑟𝑝𝑝 and 𝑥𝑥𝑝𝑝 for CM.

 

Table. 2 Time to reach |𝑟𝑟| = 0 and 𝛬𝛬 = −1 for different combinations of 𝑃𝑃 (𝜇𝜇1), 𝐼𝐼(𝜇𝜇2),𝐷𝐷(𝜇𝜇3) for different initial values of 𝑟𝑟𝑝𝑝 and 𝑥𝑥𝑝𝑝 for CB. 

3.3.1.2 CB 

Proposition 4: 

For the case of CB, considering the instantaneous case of 
sudden turn of 90 degrees left or right by the evader, with the 
pursuer following the CB law under two cases. 

 

where r and r’ are the baseline vectors initially and after the 
lapse of an infinitesimal time respectively. 
 

and (ii) ∅ < 𝜋𝜋
2
, it follows that  

 
|𝑟𝑟| = |𝑟𝑟′| 

if 

�
𝜗𝜗
𝑝𝑝

+ sin∅�
2

+ (cos∅)2 =
2|𝑟𝑟| cos∅
𝑝𝑝 𝑑𝑑𝑑𝑑

 

where 𝑑𝑑𝑑𝑑 is the instantaneous period of the step considered. 𝜗𝜗 
and 𝑝𝑝 are the velocities of the evader and the pursuer respectively. 

 
Proof: - See Appendix 4. 

Remark 1: To illustrate the use of result of proposition 4(ii) 

Assume, 𝑘𝑘 = |𝑝𝑝|
𝑝𝑝𝑝𝑝𝑡𝑡

. 

When 𝜗𝜗 = 0.6, 𝑝𝑝 = 1, |𝑟𝑟| = 1, 𝑝𝑝 𝑑𝑑𝑑𝑑 = 0.1, 

𝑘𝑘 = 10. Then as per the result of proposition 4 (ii), 

(0.6 + sin∅)2 + (cos∅)2 = 20 cos∅ 

∅ ≈ 82.65 degrees 
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Table. 3 Time to reach |𝑟𝑟| = 0 and 𝛬𝛬0 = −1 for different combinations of 𝑃𝑃(𝜇𝜇1), 𝐼𝐼(𝜇𝜇2),𝐷𝐷(𝜇𝜇3) for different initial values of 𝑟𝑟𝑝𝑝 and 𝑥𝑥𝑝𝑝 for CP.

 
3.3.1.3 CP 

Proposition 5: 

Assume r and r’ defined as in Proposition 3. When the evader takes 
a sudden turn left or right 90 degree, with pursuer following CP 
law case, it can be shown that 

|𝑟𝑟′| ≤ |𝑟𝑟| 

Proof: - See Appendix 5. 

4. Simulation Results. 

4.1. Time response 

4.1.1 Non-reactive case 

In this section, we provide the results of simulation of the 
dynamic equations given in section 3 and discuss the same. We 
assume 𝑢𝑢𝑒𝑒 given by (20) corresponds to the non-reactive case of 
the evader. Tables 1-3 provide results obtained through computer, 
simulation of the pursuit evasion game for CM, CB and CP 
strategies respectively under P, PI and PID control. The first 
columns of Tables 1-3 provide the P, I and D gains used 
corresponding to 𝜇𝜇1,𝜇𝜇2,𝜇𝜇3  respectively. The next six columns 
correspond to different initial starting coordinates for 𝑟𝑟𝑝𝑝 and 𝑥𝑥𝑝𝑝, 

 
𝑟𝑟𝑒𝑒  and 𝑥𝑥𝑒𝑒 are assumed to be (0,0)t and (1,0)t respectively. The two  
sub- columns in Tables 1-3  correspond to time (𝑑𝑑𝑝𝑝) to reach zero 
for the magnitude of r and the time (𝑑𝑑𝑚𝑚𝑚𝑚 ) to reach manifold 
characterized by 𝛤𝛤 = −1, 𝛬𝛬 = −1 and 𝛬𝛬0 = −1 corresponding 
to CM, CB and CP strategies respectively for the first time. In 
Table 3, the blank cells correspond to the case of no significant 
results being obtained in the simulation. 

It is seen in Table 1, corresponding to CM, that PI and PID 
laws tend to improve the performance of the pursuer compared to 
using P alone, which is the existing method. For example, 
comparing the rows corresponding to (1, 3, 0) and (1, 3, 3) against 
(1, 0, 0) in the first column, it is seen that 𝑑𝑑𝑝𝑝 and 𝑑𝑑𝑚𝑚𝑚𝑚 are reduced 
in the case of PI and PID settings compared to P alone. This holds 
for all possible starting points considered. Similarly, it is seen in 
Table 2, corresponding to CB that PI and PID laws tend to 
improve on the performance of the pursuer compared to using P 
alone, which can be considered as the existing method. That is, 𝑑𝑑𝑝𝑝 
and 𝑑𝑑𝑚𝑚𝑚𝑚  are much reduced in the case of PI and PID settings 
compared to P alone. This holds for all possible starting points 
considered. Similarly, it is seen in Table 3, corresponding to CP, 
that PI and PID laws tend to improve the performance of the 
pursuer compared to using P alone, which is the existing method. 
That is, 𝑑𝑑𝑝𝑝 and 𝑑𝑑𝑚𝑚𝑚𝑚 are much reduced in the case of PI and PID 
settings compared to P alone. This holds for all possible starting 
points considered.

Table. 4 Time to reach |𝑟𝑟| = 0 and 𝛤𝛤 = −1 for different combination of 𝑃𝑃(𝜇𝜇1), 𝐼𝐼(𝜇𝜇2),𝐷𝐷(𝜇𝜇3) for different initial values of 𝑟𝑟𝑝𝑝 and 𝑥𝑥𝑝𝑝 for CM. 
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Table. 5 Time to reach |𝑟𝑟| = 0 and 𝛬𝛬 = −1 for different combination of 𝑃𝑃(𝜇𝜇1), 𝐼𝐼(𝜇𝜇2),𝐷𝐷(𝜇𝜇3) for different initial values of 𝑟𝑟𝑝𝑝 and 𝑥𝑥𝑝𝑝 for CB. 

Comparing the performance of CM, CB and CP under 
feedback laws, the initial condition column (1, 3, 5, 6) in Tables 
1-3, show that the CM outperforms followed by CP and CB in 
terms of shorter 𝑑𝑑𝑝𝑝. In column 2 in Tables 1-3 the CP outperforms 
followed by CM and CB in terms of shorter 𝑑𝑑𝑝𝑝, and in column 4 
in Tables 1-3 the CP outperforms followed by CM and CB in 
terms of shorter 𝑑𝑑𝑝𝑝. Similarly, in terms of shorter 𝑑𝑑𝑚𝑚𝑚𝑚 columns (1-
4) in Tables 1-3, CM outperforms followed by CB and CP. For 
column 5 in Tables 1-3, CB outperforms followed by CM and CP 
in terms of shorter 𝑑𝑑𝑚𝑚𝑚𝑚 . For column 6 in Tables 1-3, CB 
outperforms followed by CP and CB in terms of shorter 𝑑𝑑𝑚𝑚𝑚𝑚. 

4.1.2 Reactive case 

Simulation results of the dynamic equations given in section 3 
by using 𝑢𝑢𝑒𝑒 corresponding to (21) are given below. 

It is shown in Tables 4-6, that PI/PID control (proposed) laws 
correspond to much shorter 𝑑𝑑𝑝𝑝 and 𝑑𝑑𝑚𝑚𝑚𝑚 compared to P alone for 
the three strategies CM, CB and CP. 

Comparison of the different strategies, under feedback laws, 
shows that in the column (1, 3, 6) in Tables 4-6 CM outperforms 

followed by CP and CB. In column (2, 4, 5) of Tables 4-6 CP 
outperforms followed by CM and CB in terms of shorter 𝑑𝑑𝑝𝑝 . 
Similarly, in terms of shorter 𝑑𝑑𝑚𝑚𝑚𝑚  column (1, 4) in Tables 4-6 
shows that CB outperforms followed by CM and CP. For column 
(2, 3) in Tables 4-6, CB outperforms followed by CP and CM in 
terms of 𝑑𝑑𝑝𝑝  and 𝑑𝑑𝑚𝑚𝑚𝑚 . For column (5, 6) in Tables 4-6, CM 
outperforms followed by CB and CP in terms of  𝑑𝑑𝑝𝑝 and 𝑑𝑑𝑚𝑚𝑚𝑚. The 
controller setting of D is not included in Table 6 since no 
significant improvement is seen through simulation using 
derivative control. 

4.1.3 Sudden Turn 

Simulation results of the dynamic equations given in section 3 
by using 𝑢𝑢𝑒𝑒 corresponding to (22) are given below. 

Tables 7-9 give the data of 𝑑𝑑𝑝𝑝  and 𝑑𝑑𝑚𝑚𝑚𝑚  of CM, CB and CP 
strategies under sudden turn evader steering control laws. The 
empty cells in these tables mean insignificant value within the 
considered time frame. In CM strategies, we can see from Table 
4 and Table 7 that by using sudden turn evader control laws, 𝑑𝑑𝑝𝑝 
and 𝑑𝑑𝑚𝑚𝑚𝑚 are much delayed (compare the first rows of Table 4 and  

Table. 6 Time to reach |𝑟𝑟| = 0 and 𝛬𝛬0 = −1 for different combination of 𝑃𝑃(𝜇𝜇1), 𝐼𝐼(𝜇𝜇2),𝐷𝐷(𝜇𝜇3) for different initial values of 𝑟𝑟𝑝𝑝 and 𝑥𝑥𝑝𝑝 for CP. 
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Table 7) from using reactive or non-reactive evader control law 
for different initial conditions. In case of CB strategy, we can see 
from Table 5 and Table 8 that by using sudden turn evader control 
laws, evader escapes from the pursuer for all different initial 
conditions (compare the first rows of Table 5 and Table 8). This 

is a very significant result for the evader. For CP strategies, from 
Table 6 and Table 9, we can see that by using sudden turn evader 
control laws, capturing of evader is delayed for all initial 
conditions compared to the case when evader used reactive 
control law (compare the first rows of Table 6 and Table 9).

Table. 7 Time to reach |𝑟𝑟| = 0 and 𝛤𝛤 = −1 for P (µ1) control for different initial values of 𝑟𝑟𝑝𝑝 and 𝑥𝑥𝑝𝑝 for CM. 

 
Table. 8 Time to reach |𝑟𝑟| = 0 and 𝛤𝛤 = −1 for P(µ1) control for different initial values of 𝑟𝑟𝑝𝑝 and 𝑥𝑥𝑝𝑝 for CB. 

 

Table. 9 Time to reach |𝑟𝑟| = 0 and 𝛤𝛤 = −1 for P(µ1) control for different initial values of 𝑟𝑟𝑝𝑝 and 𝑥𝑥𝑝𝑝 for CP. 

 

 
Figure. 3 𝑟𝑟 𝑣𝑣𝑐𝑐 𝑑𝑑 plot for CM using (a) P and (b) PID. 

 

 
Figure. 4 𝑟𝑟 𝑣𝑣𝑐𝑐 𝑑𝑑  plot for CB using (a) P and (b) PID. 
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Figure. 5 𝑟𝑟 𝑣𝑣𝑐𝑐 𝑑𝑑 plot for CP using (a) P and (b) PI. 

4.2. Tracking response 

Figures 3-4 show the response of the baseline magnitude 
|𝑟𝑟|(𝑑𝑑) as function of time for different initial settings. When |r| 
becomes zero, it means the distance between pursuer and evader 
is zero, and hence the evader is captured. Figure 3(a) and Figure 
4(a) correspond to P control while Figure 3(b) and Figure 4(b) 
corresponds to PID control. Similarly, for Figure 5(a) and Figure 
5(b) correspond to P and PI respectively for different initial 
conditions. It is clearly seen from Figures 3-5 that tracking 
response of the zero line of the baseline magnitude (i.e. the zero 
line of the distance between the pursuer and evader) is clearly 
superior for PID/ PI control, compared to P alone (top rows in 
Figures 3-5). In fact, P alone is not able to track the zero-baseline 
magnitude at all. Note that the magnitude of baseline vector going 
to zero corresponds to evader being captured. 

 
(a)                                     (b)                               (c) 

Figure. 6 𝑟𝑟 𝑣𝑣𝑐𝑐 𝑑𝑑 plot for CM using sudden turn evader steering law.   

 

(a)                                (b)                                     (c) 
Figure. 7 𝑟𝑟 𝑣𝑣𝑐𝑐 𝑑𝑑 plot for CB using sudden turn evader steering law. 

 

(a)                         (b)                             (c) 
Figure. 8 𝑟𝑟 𝑣𝑣𝑐𝑐 𝑑𝑑 plot for CP using sudden turn evader steering law. 

Figures 6-8 show the response of the baseline magnitude 
|𝑟𝑟|(𝑑𝑑) as function of time for different initial settings for CM, CB 
and CP strategies respectively. In Figure 6(a) represents the initial 
starting position of pursuer given as (0, 8) in x- y co-ordinate. 6(b) 
and 6(c) correspond to starting positions of (-2, 10) and (-4, 9) 
respectively. For the sake of comparison, (a), (b) and (c) in 
Figures 7 and 8 also correspond to the same respective starting 
positions. It is clearly seen from Figures 6-8 that the time to 
capture the evader by the pursuer is much delayed by using the 
sudden turn strategy compared to the case when evader used the 
reactive and non-reactive steering control laws. This can be seen 
by comparing Figure 3(a) with Figure 6, Figure 4(a) with Figure 
7 and Figure 5(a) with Figure 8. In fact in Figure 4, |𝑟𝑟|(𝑑𝑑) never 
reaches zero meaning that the evader is never captured in that case. 

4.3. Trajectories of pursuer and evader.  

We consider in this section, the actual trajectories followed by 
evader and pursuer. 

 
(a)                                            (b) 

Figure. 9 For normal pursuer capture evader, (a) magnitude of r, (b) 
trajectories of pursuer (solid line) and evader (dashed line). 

Figure 9 shows evader being captured in a certain time by the 
pursuer. Figure 9(a) shows the magnitude of r. Figure 9(b) shows 
the trajectories of pursuer and evader for a 30 sec timeline. The 
starting point of evader is (0, 0) in x-y coordinate and the starting 
point for the pursuer is (-4, 9). Figure 10 shows the case when the 
evader escapes from the pursuer. This happens only in the case of 
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(a)                                             (b) 

Figure. 11 For ∅ = 82.65°, (a) magnitude of r, (b) trajectories of pursuer 
(solid line) and evader (dashed line). 

CB strategies when evader suddenly turn 90 degree left or right as 
discussed in Proposition 4 case (i). So, in Figure 10 (a) the value 
of r keeps on increasing. Figure 10 (b) shows  the trajectories of 
pursuer and evader in 30 sec timeline. Figure 11 is for the case 
when ∅ = 82.65° and the baseline distance between the pursuer 
and the evader tend to reach a constant value. 

5. Conclusions 

Pursuit evasion game (PEG) has been studied in the literatiure 
using geometric control theory. Control laws for the pursuer have 
been derived so as to make the pursuer follow a certain manifold 
according to the different bio-inspired strategies used. The 
performance of the pursuer control laws is specified in terms of  
time to capture the evader and tarcking of pursuer path on the 
manifold given certain fixed evader escape strategies Though the 
existing pursuer control laws are optimal, it is shown in the paper,  
through simulations, that adding integral and derivative actions to 
the pursuer control laws tends to improve the performance of the 
pursuer further independent of the strategy used. Towards that, 
the pursuer path tracking on the manifold is specified in terms of 
a feedback loop with the reference being the cost function of the 
manifold used. The proportional (P), proportional- integral (PI) 
and proportional- integral- derivative (PID) control laws are 
studied on the loop with the existing control law being considered 
as proportional law.  Due to the noninear nature of control laws in 
a vector setting the derivation of PI and PID control laws are non-
trivial.To mimic the nature further, a sudden turn strategy is 
assumed to be employed by the evader in view of evader’s agility 
advantage while moving at a lower speed compared to the pusuer. 
The dynamics of the PEG with the sudden turn strategy of the 
evader has been studied through a theoretical analysis supported 
by simulation. It is shown that the sudden turn strategy can help 
the evader delay the capture by the pursuer and in a certain case 
the evader can even totally excape from the pursuer. As a future 
work, one could consider the case when the evader moves at a 
varying speed (instead of the constant speed assumed in the paper) 
as in commonly seen in nature. 
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Appendix 1: 
Proof of Proposition 1 

P and PI control: 

𝑢𝑢𝑝𝑝 𝑎𝑎𝑠𝑠𝑑𝑑 𝑢𝑢𝑝𝑝𝑝𝑝 are the control output of P and PI controller derived 
as given in the proposition in a straightforward way. 

PID Control output upid  can be derived as follows. 

𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝 =     −µ1 〈
𝑝𝑝

|𝑝𝑝|
 . �̇�𝑟⊥〉  −µ2 ∫ 〈

𝑝𝑝
|𝑝𝑝|

 . �̇�𝑟⊥〉  𝑑𝑑𝑑𝑑 −µ3
𝑝𝑝
𝑝𝑝𝑡𝑡

 〈 𝑝𝑝
|𝑝𝑝|

 . �̇�𝑟⊥〉 

= −µ1 〈�
(𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)

�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2
 �  . [( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 − ʋ𝑥𝑥9)]〉 −

µ2 ∫ 〈�
(𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)

�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2
 � . [( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 − ʋ𝑥𝑥9)]〉 dt 

−µ3
𝑑𝑑
𝑑𝑑𝑑𝑑  〈�

(𝑥𝑥1 –𝑥𝑥7, 𝑥𝑥2 − 𝑥𝑥8)
�(𝑥𝑥1 – 𝑥𝑥7 )2 + (𝑥𝑥2 –𝑥𝑥8 )2

 �  . [( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 − ʋ𝑥𝑥9)]〉 

Using the identity 

         𝑝𝑝
𝑝𝑝𝑡𝑡

 〈𝛼𝛼,𝛽𝛽〉 = 〈�̇�𝛼,𝛽𝛽〉  + 〈𝛼𝛼, �̇�𝛽〉                    (A.1) 

 put  

𝛼𝛼 = 𝑝𝑝
|𝑝𝑝|

  and 𝛽𝛽 = �̇�𝑟⊥ 

that is,  

𝛼𝛼 =[ (𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2

] and 𝛽𝛽 = [( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 − ʋ𝑥𝑥9)] 

Considering equation (A.1), since 

�̇�𝛼 = �̇�𝑝
|�̇�𝑝|

 is orthogonal to 𝛽𝛽 = �̇�𝑟⊥ 

the first term of R.H.S of equation (A.1) is zero. 

Now  

𝛽𝛽 = [( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 − ʋ𝑥𝑥9)] 

from which  

�̇�𝛽 = [(ʋ�̇�𝑥10 − �̇�𝑥4), (�̇�𝑥3 − ʋ�̇�𝑥9)] 

that is,  

�̇�𝛽 = ��ʋ2𝑥𝑥12𝑢𝑢𝑒𝑒 − 𝑥𝑥6𝑢𝑢𝑝𝑝�, (𝑥𝑥5𝑢𝑢𝑝𝑝 − ʋ2𝑥𝑥11𝑢𝑢𝑒𝑒)�    

       using (9).  

Approximating the term �̇�𝛽  as �̂̇�𝛽  by neglecting the term 
associated with 𝑢𝑢𝑝𝑝, 

�̂̇�𝛽 = [ʋ2𝑥𝑥12𝑢𝑢𝑒𝑒 ,−ʋ2𝑥𝑥11𝑢𝑢𝑒𝑒] 

Therefore, equation (A.1) becomes 
𝑝𝑝
𝑝𝑝𝑡𝑡

 〈𝛼𝛼,𝛽𝛽〉 = 〈𝛼𝛼, �̂̇�𝛽〉  

𝑑𝑑
𝑑𝑑𝑑𝑑  〈

𝑟𝑟
|𝑟𝑟|  . �̇�𝑟⊥〉 = 〈�

(𝑥𝑥1 – 𝑥𝑥7, 𝑥𝑥2 − 𝑥𝑥8)
�(𝑥𝑥1 –𝑥𝑥7 )2 + (𝑥𝑥2 – 𝑥𝑥8 )2

 � . [(ʋ2𝑥𝑥12 𝑢𝑢𝑒𝑒 ,−ʋ2𝑥𝑥11𝑢𝑢𝑒𝑒)]〉 

Therefore 

𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝 =     −µ1 〈
𝑝𝑝

|𝑝𝑝|
 . �̇�𝑟⊥〉  −µ2 ∫ 〈

𝑝𝑝
|𝑝𝑝|

 . �̇�𝑟⊥〉  𝑑𝑑𝑑𝑑 −µ3
𝑝𝑝
𝑝𝑝𝑡𝑡

 〈 𝑝𝑝
|𝑝𝑝|

 . �̇�𝑟⊥〉 

= −µ1 〈�
(𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)

�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2
 �  . [( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 − ʋ𝑥𝑥9)]〉 −

µ2 ∫ 〈�
(𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)

�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2
 � . [( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 − ʋ𝑥𝑥9)]〉 dt 

−µ3  〈�
(𝑥𝑥1 – 𝑥𝑥7,𝑥𝑥2 − 𝑥𝑥8)

�(𝑥𝑥1 –𝑥𝑥7 )2 + (𝑥𝑥2 – 𝑥𝑥8 )2
 � . [(ʋ2𝑥𝑥12 𝑢𝑢𝑒𝑒 ,−ʋ2𝑥𝑥11𝑢𝑢𝑒𝑒)]〉 

         Hence the result. 

Appendix 2: 

Proof of Proposition 2: 

P and PI control: 

𝑢𝑢𝑝𝑝 𝑎𝑎𝑠𝑠𝑑𝑑 𝑢𝑢𝑝𝑝𝑝𝑝 are easily derived as given in the proposition. 

PID control: 

𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝 = −µ1 �𝜂𝜂 〈
𝑝𝑝

|𝑝𝑝|
.𝑅𝑅𝑦𝑦𝑝𝑝〉 + 1

|𝑝𝑝|
〈 𝑝𝑝

|𝑝𝑝|
. �̇�𝑟⊥〉� − µ2 ∫ �𝜂𝜂 〈

𝑝𝑝
|𝑝𝑝|

.𝑅𝑅𝑦𝑦𝑝𝑝〉 +

   1
|𝑝𝑝|
〈 𝑝𝑝

|𝑝𝑝|
. �̇�𝑟⊥〉� 𝑑𝑑𝑑𝑑 − µ3

𝑝𝑝
𝑝𝑝𝑡𝑡

 ��𝜂𝜂 〈 𝑝𝑝
|𝑝𝑝|

.𝑅𝑅𝑦𝑦𝑝𝑝〉 + 1
|𝑝𝑝|
〈 𝑝𝑝

|𝑝𝑝|
. �̇�𝑟⊥〉��            (A.2) 

 

Using the identity 

  𝑝𝑝
𝑝𝑝𝑡𝑡

 〈𝜌𝜌,𝜔𝜔〉 = 〈�̇�𝜌,𝜔𝜔〉  + 〈𝜌𝜌, �̇�𝜔〉          (A.3) 

  𝑝𝑝
𝑝𝑝𝑡𝑡

 (𝛾𝛾𝜎𝜎) = (�̇�𝛾𝜎𝜎) + (𝛾𝛾�̇�𝜎)           (A.4) 

put 

             𝜌𝜌 = 𝑝𝑝
|𝑝𝑝|

,𝜔𝜔 = 𝑅𝑅𝑦𝑦𝑝𝑝 , 𝛾𝛾 = 1
|𝑝𝑝|

 an𝑑𝑑 𝜎𝜎 = 〈 𝑝𝑝
|𝑝𝑝|

. �̇�𝑟⊥〉       (A.5) 

Now 

�̇�𝜌 =
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑟𝑟
|𝑟𝑟| =

⎣
⎢
⎢
⎡
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑟𝑟𝑝𝑝
|𝑟𝑟|

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑟𝑟𝑝𝑝
|𝑟𝑟|⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡|𝑟𝑟|�̇�𝑟𝑝𝑝 − 𝑟𝑟𝑝𝑝

𝑑𝑑
𝑑𝑑𝑑𝑑 |𝑟𝑟|

|𝑟𝑟|2

|𝑟𝑟|�̇�𝑟𝑝𝑝 − 𝑟𝑟𝑝𝑝
𝑑𝑑
𝑑𝑑𝑑𝑑 |𝑟𝑟|

|𝑟𝑟|2 ⎦
⎥
⎥
⎥
⎥
⎤

 

    �̇�𝜌 =

⎣
⎢
⎢
⎢
⎡�̇�𝑝𝑥𝑥

|𝑝𝑝|
−

𝑝𝑝𝑥𝑥
𝑑𝑑
𝑑𝑑𝑑𝑑�𝑝𝑝𝑥𝑥

2+𝑝𝑝𝑦𝑦2

|𝑝𝑝|2

�̇�𝑝𝑦𝑦
|𝑝𝑝|
−

𝑝𝑝𝑦𝑦
𝑑𝑑
𝑑𝑑𝑑𝑑�𝑝𝑝𝑥𝑥

2+𝑝𝑝𝑦𝑦2

|𝑝𝑝|2 ⎦
⎥
⎥
⎥
⎤

= �
�̇�𝑝𝑥𝑥
|𝑝𝑝|
− 𝑝𝑝𝑥𝑥�𝑝𝑝𝑥𝑥�̇�𝑝𝑥𝑥+𝑝𝑝𝑦𝑦�̇�𝑝𝑦𝑦�

|𝑝𝑝|3

�̇�𝑝𝑦𝑦
|𝑝𝑝|
− 𝑝𝑝𝑦𝑦�𝑝𝑝𝑥𝑥�̇�𝑝𝑥𝑥+𝑝𝑝𝑦𝑦�̇�𝑝𝑦𝑦�

|𝑝𝑝|3

�             (A.6) 

    �̇�𝜔 = 𝑝𝑝
𝑝𝑝𝑡𝑡
𝑅𝑅𝑦𝑦𝑝𝑝 = 𝑅𝑅 �

𝑝𝑝
𝑝𝑝𝑡𝑡
𝑦𝑦𝑝𝑝𝑝𝑝

𝑝𝑝
𝑝𝑝𝑡𝑡
𝑦𝑦𝑝𝑝𝑝𝑝

� = 𝑅𝑅 �
𝑥𝑥𝑝𝑝𝑝𝑝𝑢𝑢𝑝𝑝
𝑥𝑥𝑝𝑝𝑝𝑝𝑢𝑢𝑝𝑝�            (A.7) 

�̇�𝜔 is neglected since it is associated with the term 𝑢𝑢𝑝𝑝. 

Therefore, 
𝑝𝑝
𝑝𝑝𝑡𝑡

 〈𝜌𝜌,𝜔𝜔〉 = 〈�̇�𝜌,𝜔𝜔〉 
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= 〈

⎣
⎢
⎢
⎢
⎡ �̇�𝑟𝑝𝑝
|𝑟𝑟| −

𝑟𝑟𝑝𝑝�𝑟𝑟𝑝𝑝�̇�𝑟𝑝𝑝 + 𝑟𝑟𝑝𝑝�̇�𝑟𝑝𝑝�
|𝑟𝑟|3

�̇�𝑟𝑝𝑝
|𝑟𝑟| −

𝑟𝑟𝑝𝑝�𝑟𝑟𝑝𝑝�̇�𝑟𝑝𝑝 + 𝑟𝑟𝑝𝑝�̇�𝑟𝑝𝑝�
|𝑟𝑟|3 ⎦

⎥
⎥
⎥
⎤

,𝑅𝑅 �
𝑦𝑦𝑝𝑝𝑝𝑝
𝑦𝑦𝑝𝑝𝑝𝑝�〉 

= 〈�
𝑥𝑥3 − ʋ𝑥𝑥9

�(𝑥𝑥1 − 𝑥𝑥7)2 + (𝑥𝑥2 − 𝑥𝑥8)2

−
(𝑥𝑥1 − 𝑥𝑥7)�(𝑥𝑥1 − 𝑥𝑥7)(𝑥𝑥3 − ʋ𝑥𝑥9) + (𝑥𝑥2 − 𝑥𝑥8)(𝑥𝑥4 − ʋ𝑥𝑥10)�

�(𝑥𝑥1 − 𝑥𝑥7)2 + (𝑥𝑥2 − 𝑥𝑥8)2
3 � ,𝑅𝑅(𝑥𝑥5,𝑥𝑥6)〉 

using equations (10) and (11). 

 �̇�𝛾 = 𝑝𝑝
𝑝𝑝𝑡𝑡

1
|𝑝𝑝|

= 𝑝𝑝
𝑝𝑝𝑡𝑡
��𝑟𝑟𝑝𝑝2 + 𝑟𝑟𝑝𝑝2�

−12 

  = −��𝑟𝑟𝑝𝑝2 + 𝑟𝑟𝑝𝑝2�
−3
�𝑟𝑟𝑝𝑝�̇�𝑟𝑝𝑝 + 𝑟𝑟𝑝𝑝�̇�𝑟𝑝𝑝�   (A.8) 

  �̇�𝜎 = 𝑝𝑝
𝑝𝑝𝑡𝑡
〈 𝑝𝑝

|𝑝𝑝|
. �̇�𝑟⊥〉 = 〈 �̇�𝑝

|�̇�𝑝|
. �̇�𝑟⊥〉 + 〈 𝑝𝑝

|𝑝𝑝|
. �̈�𝑟⊥〉 (A.9) 

〈 �̇�𝑝
|�̇�𝑝|

. �̇�𝑟⊥〉 = 0, since �̇�𝑝
|�̇�𝑝|

 is orthogonal to �̇�𝑟⊥ 

So, 

�̇�𝜎 =
𝑑𝑑
𝑑𝑑𝑑𝑑
〈
𝑟𝑟

|𝑟𝑟| . �̇�𝑟⊥〉 = 〈
𝑟𝑟

|𝑟𝑟| . �̈�𝑟⊥〉 

Now, 

�̈�𝑟⊥ =
𝑑𝑑
𝑑𝑑𝑑𝑑
�̇�𝑟⊥ =

𝑑𝑑
𝑑𝑑𝑑𝑑

[ʋ𝑥𝑥10 − 𝑥𝑥4, 𝑥𝑥3 − ʋ𝑥𝑥9] 

= [ʋ�̇�𝑥10 − �̇�𝑥4, �̇�𝑥3 − ʋ�̇�𝑥9] = �ʋ2𝑥𝑥12𝑢𝑢𝑒𝑒 − 𝑥𝑥6𝑢𝑢𝑝𝑝, 𝑥𝑥5𝑢𝑢𝑝𝑝 − ʋ2𝑥𝑥11𝑢𝑢𝑒𝑒� 

using (9). 

Neglecting the term associated with 𝑢𝑢𝑝𝑝,   

   �̈�𝑟⊥ = [ʋ2𝑥𝑥12𝑢𝑢𝑒𝑒 ,−ʋ2𝑥𝑥11𝑢𝑢𝑒𝑒] (A.10) 

Therefore, 

 �̇�𝜎 = 〈 𝑝𝑝
|𝑝𝑝|

. (ʋ2𝑥𝑥12𝑢𝑢𝑒𝑒 ,−ʋ2𝑥𝑥11𝑢𝑢𝑒𝑒)〉  (A.11) 

Thus,  
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝛾𝛾𝜎𝜎) = (�̇�𝛾𝜎𝜎) + (𝛾𝛾�̇�𝜎) 

= �− ��𝑟𝑟𝑝𝑝2 + 𝑟𝑟𝑝𝑝2�
−3

�𝑟𝑟𝑝𝑝�̇�𝑟𝑝𝑝 + 𝑟𝑟𝑝𝑝�̇�𝑟𝑝𝑝� . �
�̇�𝑟

|�̇�𝑟| . �̇�𝑟⊥��

+
1

|𝑟𝑟| . 〈
𝑟𝑟

|𝑟𝑟| . (ʋ2𝑥𝑥12𝑢𝑢𝑒𝑒,−ʋ2𝑥𝑥11𝑢𝑢𝑒𝑒)〉 

=
1

�(𝑥𝑥1 − 𝑥𝑥7)2 + (𝑥𝑥2 − 𝑥𝑥8)2
 

〈
(𝑥𝑥1 − 𝑥𝑥7, 𝑥𝑥2 − 𝑥𝑥8)

�(𝑥𝑥1 − 𝑥𝑥7)2 + (𝑥𝑥2 − 𝑥𝑥8)2
, (𝜐𝜐2𝑥𝑥12𝑢𝑢𝑒𝑒 ,−𝜐𝜐2𝑥𝑥11𝑢𝑢𝑒𝑒)〉 

+ �−((𝑥𝑥1 − 𝑥𝑥7)2 + (𝑥𝑥2 − 𝑥𝑥8)2)
−3
2 �(𝑥𝑥1 − 𝑥𝑥7)(𝑥𝑥3 − 𝜐𝜐𝑥𝑥9)

+ (𝑥𝑥2 − 𝑥𝑥8)(𝑥𝑥4

− 𝜐𝜐𝑥𝑥10)�� . 〈
(𝑥𝑥1 − 𝑥𝑥7, 𝑥𝑥2 − 𝑥𝑥8)

�(𝑥𝑥1 − 𝑥𝑥7)2 + (𝑥𝑥2 − 𝑥𝑥8)2
. (ʋ𝑥𝑥10

− 𝑥𝑥4, 𝑥𝑥3 − ʋ𝑥𝑥9)〉 
Hence  it follows that  

𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝 = −𝜇𝜇1(η 〈
(𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)

�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2
.𝑅𝑅(𝑥𝑥5, 𝑥𝑥6)𝑡𝑡〉 + 

1
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2     

〈 (𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2

. ( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 −

ʋ𝑥𝑥9)〉)−µ2 ∫(η 〈 (𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2

.𝑅𝑅(𝑥𝑥5, 𝑥𝑥6)𝑡𝑡〉 +
1

�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2     
〈 (𝑝𝑝1 –𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2

. ( ʋ𝑥𝑥10  − 𝑥𝑥4), (𝑥𝑥3 −

ʋ𝑥𝑥9  )  〉 )𝑑𝑑𝑑𝑑 
−𝜇𝜇3{〈((𝑥𝑥3 − 𝜐𝜐𝑥𝑥9) 1

�(𝑝𝑝1−𝑝𝑝7)2+(𝑝𝑝2−𝑝𝑝8)2
−  (𝑥𝑥1 −

𝑥𝑥7) 1

��(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2�
3 ((𝑥𝑥1 − 𝑥𝑥7)(𝑥𝑥3 − 𝜐𝜐𝑥𝑥9) + (𝑥𝑥2 −

𝑥𝑥8)(𝑥𝑥4 − 𝜐𝜐𝑥𝑥10), ((𝑥𝑥4 − 𝜐𝜐𝑥𝑥10) 1
�(𝑝𝑝1−𝑝𝑝7)2+(𝑝𝑝2−𝑝𝑝8)2

−  (𝑥𝑥2 −

𝑥𝑥8) 1

��(𝑝𝑝1 –𝑝𝑝7 )2+(𝑝𝑝2 –𝑝𝑝8 )2�
3 �(𝑥𝑥1 − 𝑥𝑥7)(𝑥𝑥3 − 𝜐𝜐𝑥𝑥9) + (𝑥𝑥2 −

𝑥𝑥8)(𝑥𝑥4 − 𝜐𝜐𝑥𝑥10)�.𝑅𝑅(𝑥𝑥5, 𝑥𝑥6)𝑡𝑡〉) +
1

�(𝑝𝑝1−𝑝𝑝7)2+(𝑝𝑝2−𝑝𝑝8)2
〈 (𝑝𝑝1−𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1−𝑝𝑝7)2+(𝑝𝑝2−𝑝𝑝8)2

, (𝜐𝜐2𝑥𝑥12𝑢𝑢𝑒𝑒 ,−𝜐𝜐2𝑥𝑥11𝑢𝑢𝑒𝑒)〉 +

�−((𝑥𝑥1 − 𝑥𝑥7)2 + (𝑥𝑥2 − 𝑥𝑥8)2)
−3
2 �(𝑥𝑥1 − 𝑥𝑥7)(𝑥𝑥3 − 𝜐𝜐𝑥𝑥9) +

(𝑥𝑥2 − 𝑥𝑥8)(𝑥𝑥4 − 𝜐𝜐𝑥𝑥10)�� . 〈 (𝑝𝑝1−𝑝𝑝7,𝑝𝑝2−𝑝𝑝8)
�(𝑝𝑝1−𝑝𝑝7)2+(𝑝𝑝2−𝑝𝑝8)2

. (ʋ𝑥𝑥10 − 𝑥𝑥4, 𝑥𝑥3 −

ʋ𝑥𝑥9)〉 

Hence the result. 

Appendix 3: 

Proof of proposition 3: 

Referring to Figure 12, r is the initial baseline while r’ is the 
baseline in the next step after a lapse of time 𝑑𝑑𝑑𝑑. p and 𝜗𝜗 are the 
velocities of the pursuer and the evader respectively. The sudden 
turn with respect to the baseline at every move result in a motion 
by the evader in a tangential direction resulting in describing the 
arc ‘ab’ in Figure 12 by the evader for arbitrarily small 𝑑𝑑𝑑𝑑. We 
then have 

|𝑟𝑟| = |𝑟𝑟′| + 𝑝𝑝 𝑑𝑑𝑑𝑑 

with 𝑝𝑝 > 0, 𝑑𝑑𝑑𝑑 > 0 and with 𝑑𝑑𝑑𝑑 → 0, It follows that |𝑟𝑟′| ≤
|𝑟𝑟|. Hence the result. 

 
Figure. 12 Case of CM with sudden turn.  
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Appendix 4 

Case (i): 

 

Figure. 13 Case of CB ∅ = π
2
 with sudden turn.  

Figure 13 shows the initial baseline vector r between the pursuer 
(A) and evader (C). After an infinitesimally small time, with the 
evader taking the sudden turn of 90 degrees, let the position of 
evader and the pursuer be D and B respectively. 

In right angle triangle AOB 

𝑂𝑂𝑂𝑂 > 𝑂𝑂𝑂𝑂 

Similarly, in right angle triangle COD 

𝑂𝑂𝐷𝐷 > 𝑂𝑂𝑂𝑂 

So, 

𝑂𝑂𝑂𝑂 + 𝑂𝑂𝐷𝐷 > 𝑂𝑂𝑂𝑂 + 𝑂𝑂𝑂𝑂 

|𝑟𝑟′| > |𝑟𝑟| 

Case (ii): 

 

Figure. 14 Case of CB ∅ < π
2
 with sudden turn. 

Figure 14 is redrawn from Figure 13 with ∅ < π
2

. Considering 
pursuer (P) as the origin, the coordinates of other points are easily 
derived. Point E denotes the evader. P’ and E’ are the positions of 

pursuer and the evader after a time 𝑑𝑑𝑑𝑑. The baseline after time 𝑑𝑑𝑑𝑑 
is given by  vector  

𝑟𝑟′ = (−𝜗𝜗 𝑑𝑑𝑑𝑑, |𝑟𝑟|) − (𝑝𝑝𝑑𝑑𝑑𝑑 sin∅ , 𝑝𝑝𝑑𝑑𝑑𝑑 cos∅) 

Now, to impose the condition that |𝑟𝑟′| = |𝑟𝑟|. 

(−𝜗𝜗 𝑑𝑑𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑑𝑑 sin∅)2 + (|𝑟𝑟| − 𝑝𝑝𝑑𝑑𝑑𝑑 cos∅)2 = |𝑟𝑟|2 

⇒ (𝜗𝜗 𝑑𝑑𝑑𝑑)2 + (𝑝𝑝 𝑑𝑑𝑑𝑑)2(sin∅)2 + 2𝜗𝜗 𝑑𝑑𝑑𝑑 𝑝𝑝 𝑑𝑑𝑑𝑑 sin∅
+ (𝑝𝑝 𝑑𝑑𝑑𝑑)2(cos∅)2 − 2𝑝𝑝 |𝑟𝑟|𝑑𝑑𝑑𝑑 cos∅ = 0 

⇒ 𝜗𝜗2 + 𝑝𝑝2(sin∅)2 + 2𝜗𝜗𝑝𝑝 sin∅ + 𝑝𝑝2(cos∅)2 −
2|𝑟𝑟|𝑝𝑝 cos∅

𝑑𝑑𝑑𝑑
= 0 

⇒ (𝜗𝜗 + 𝑝𝑝 sin∅)2 + 𝑝𝑝2(cos∅)2 =
2|𝑟𝑟|𝑝𝑝 cos∅

𝑑𝑑𝑑𝑑
 

⇒ �
𝜗𝜗
𝑝𝑝

+ sin∅�
2

+ (cos∅)2 =
2|𝑟𝑟| cos∅
𝑝𝑝 𝑑𝑑𝑑𝑑

 

Hence the result. 

Appendix 5: 

Proof of Proposition 5: 

 
Figure. 15 Case of CP with sudden turn.  

Figure 15 is similar to Figures 13 and 14 except that ∅ = 0 

Considering Figure 15, 

 

sin 𝑑𝑑𝑐𝑐
sin𝑑𝑑∅

=
𝑂𝑂𝑂𝑂
𝑂𝑂𝑂𝑂

=
|𝑟𝑟′|

�|𝜗𝜗 𝑑𝑑𝑑𝑑|2 + |𝑟𝑟|2
≤ 1 

�|𝜗𝜗 𝑑𝑑𝑑𝑑|2 + |𝑟𝑟|2 ≥ |𝑟𝑟′|    ∀𝑑𝑑𝑑𝑑 

when 𝑑𝑑𝑑𝑑 → 0 

|𝑟𝑟′| ≤ |𝑟𝑟| 

Hence the result. 
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