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 The paper deals with hardware emulation of bio-inspired devices and nonlinear dynamic 
processes of complex nature by means of mixed-mode analog-digital emulators. The 
discretized state model of the emulated system serves for real-time calculation of dependent 
quantities. In contrast to input-output emulation known in control systems, the proposed 
approach emulates the ports of an electrical multiport network. The paper discusses the 
stability of the emulation process and the possibility of partitioning the system into two 
parts, one being emulated digitally and the other via an analog circuitry. The procedure is 
illustrated on the example of emulating the Fitzhugh-Nagumo model of neuron and the 
model of amoeba adaptation. The paper is an extension of our paper presented at the 
NGCAS 2018 conference in Valletta, Malta. The extended version deals newly with the 
choice of the integration method and provides a deeper stability analysis and more 
examples of emulation of biological models. 
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1. Introduction 

Emulation consists in replacing a part of the electrical system 
with another system that has similar characteristics but is more 
convenient to implement. This technique has become popular in 
the field of electronic circuits with the (re)introduction of mem 
elements [1, 2]. For example, the memristors and other promising 
nanodevices for digital computational systems, massively parallel 
analog computations or elegant modeling of the neuron cells, are 
still in the experimental phase and are not available as off-the-shelf 
components. Emulation allows performing circuit experiments 
with equivalents of these novel elements and is also useful for 
demonstration and educational purposes [3]. 

The first emulators were proposed as analog circuits. Single-
purpose emulators such as [4–6] are simple and elegant, but their 
disadvantage is the inability to change easily their characteristics. 
Emulators of memristive, memcapacitive and meminductive 
devices based on mutators provide large universality because they 
transform a nonlinear resistor, which can be easily modified, to the 
respective constitution relation of the mem element [7–8]. 

Another problem is the emulation of blocks with floating ports, 
which is difficult for purely analog emulators. Several two-

terminal floating emulators were proposed [5, 9, 10]. However, all 
the emulators are based on grounded devices and are “floating” 
only in the case of neglecting parasitic parameters. In [11], a 
genuinely floating memcapacitor was proposed on the principle of 
switched capacitors. The first implementation of a floating 
resistive port using a mixed-mode system was proposed in [12] 
with the use of a digital potentiometer, whose resistance was 
controlled by a microcontroller by means of pre-programmed 
algorithms. 

On the other hand, there are dynamic systems that cannot be 
emulated via the above single-purpose emulators. For example, the 
well-known Hodgkin-Huxley model of the cell membranes in a 
neuron is represented by a set of nonlinear differential equations 
[13]. The equivalent electrical model is a two-terminal device, 
consisting of a linear capacitor, two nonlinear memristive devices, 
and biasing sources [14]. Usually, these models contain large-
value inductors and capacitors, which are not useful for practical 
laboratory experiments. 

The demand for emulating general dynamic systems resulted 
in developing mixed-mode analog-digital emulators [15, 16]. They 
consist of a central digital unit, which controls one or more floating 
analog ports of three possible types: controlled voltage source, 
controlled current source, and digital potentiometer [17]. The 
independent port currents and voltages are digitally processed 
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according to the mathematical model of the emulated device, and 
the computed dependent quantities are used for controlling the 
analog ports. A great advantage of such an approach is the ability 
to change easily the emulated system by means of changing the 
software and the possibility of designing truly floating ports with 
the use of digital isolators without compromising the precision. 

The paper summarizes our experience of the emulation of two 
complex nonlinear dynamic systems via the mixed-mode approach 
[15]. The problem of discretization analog system and its 
(in)stability, which occurs when connecting a digital emulator to 
an analog circuitry, is analyzed. The paper is an extension of our 
paper [1] presented at the NGCAS 2018 conference in Valletta, 
Malta. The extended version deals newly with the choice of the 
integration method and provides a deeper stability analysis and 
more examples of emulation of biological models. 

2. Emulation Principle 

2.1. Basic Setup 

In general, the emulator represents a mixed-mode analog-
digital system with m floating electrical ports. For the purpose of 
emulation, let us constrain ourselves to such systems where each 
port has an independent input quantity (voltage or current) and the 
other quantity (current or voltage) is computed as a response. 

Thus, the emulator consists of a digital core, implemented in a 
microcontroller (MCU) or FPGA, and ports in the form of 
controlled current or voltage sources, Figure 1. Using A/D 
converters with a supporting circuitry, the core measures 
independent quantities, computes the response, and sets the 
dependent quantities using D/A converters, followed by 
reconstruction filters and corresponding controlled sources. 

 

Figure 1: Multiport emulator shown with controlled current source at Port 1 and 
controlled voltage source at Port m. 

The emulated system is generally a nonlinear discrete-time 
system of the n-th order with m inputs and m outputs, whose 
mathematical representation can be written as 

 ))(),(()1( kkk uxfx =+ , (1) 
 ))(),(()( kkk uxgy = , (2) 

where x(k)∈Rn is the state vector, u(k)∈Rm are the samples of 
independent (input) quantities, and y(k)∈Rm are the dependent 
(output) quantities. The continuous functions f:(Rn,Rm)→Rn and 
g:(Rn,Rm)→Rm are generally nonlinear. 

Figure 2 shows the time characteristics of a discrete-time 
system (1), (2) implemented in a real logical device and connected 
to a continuous-time circuit. The inputs u(k) are sampled with a 
period T and the outputs y(k) are available after the computation 
and transfer delay tc < T. The analog circuit the emulator is 
connected to, which formally includes the anti-aliasing and 
reconstruction filters, responds to the new outputs y(k), and the 
response is sampled as the next input u(k+1). 

 

Figure 2: Timing of the emulation process (DT – discrete-time emulator, CT – 
continuous-time analog circuit). 

2.2. Stability of Emulation 

As shown in Figure 2, connecting the emulator to an 
application circuit creates a feedback system, which combines 
discrete-time and continuous-time parts. Let us consider the one-
port case (m = 1). The stability of some fixed point of the system 
(1), (2) can be examined by linearizing the state description 

 )()()1( kukk BAxx +=+ , (3) 
 )()()( kDukky +=Cx , (4) 

where A∈Rn×n, B∈Rn×1, C∈R1×n, and D∈R are real matrices. 

Equations (3), (4) represent a single-input single-output linear 
system, which can be characterized by the z-domain input-output 
transfer function [18] 
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where “adj” denotes the adjoint matrix, I is the unity matrix, and 
U(z) and Y(z) are the z-transforms of the sequences u(k) and y(k). 

The D/A converter generates a continuous-time signal 
y(k)→y(t), which stimulates the analog circuit, and the circuit 
response is sampled by the D/A converter as u(t)→u(k). The 
continuous-time circuit, which also includes the anti-aliasing and 
reconstruction filters, can be linearized around an operating point, 
which corresponds to the fixed point of the discrete system. The 
input-output small-signal transfer function will be 
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where U(s) and Y(s) are the Laplace transforms of the continuous-
time signals u(t) and y(t). 

Considering the signal conversion y(k)→y(t)→Gc→u(t)→u(k), 
the properties of the analog circuit can also be characterized in the 
discrete domain by means of the pulse transfer function [18]. For 
the zero-order hold (ZOH) D/A converter the transfer function will 
be 
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where Z{•} denotes the z-transform of the sampled impulse 
response of the continuous-time transfer function, (1-e-Ts)/s is the 
transfer function of ZOH, and stce−  represents the processing 
delay tc, which was formally added to the response of the analog 
circuitry. Note that (7) neglects the quantization introduced by real 
D/A and A/D converters. 

Then the characteristic closed-loop equation will be 

 1)()( =zGzH . (8) 

The roots of (8) determine the stability of the emulation process. 

The existence of two types of port (controlled current or 
voltage source, see Figure 1) is also dictated by the requirement of 
emulation stability. Let us consider a simple emulation of the 
resistor RE by a controlled current source. Then the independent 
quantity will be the voltage (u ≔ v) and the dependent quantity 
will be the current (y ≔ i). The emulator transfer function (5) will 
be simply 
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i.e. i(k) = v(k)/RE. 

Let the emulator port be loaded with a physical resistor R. 
Considering a first-order reconstruction filter, but no anti-aliasing 
filter and no processing delay the small-signal transfer function (6) 
will be 
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where τr is the time constant of the reconstruction filter. The 
positive current i flows into the positive terminal of the emulator 
port, i.e. (10) has the negative sign. 

The pulse transfer function (7) will be 
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where c = exp(-T/τr). 

Substituting (9) and (11) into the characteristic equation (8) 
leads to 
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=

−
−

−
cz
c

R
R

E
. (12) 

Considering the stability condition |z| < 1 for the root of (12) 
and with respect to the typical choice τr ≈ T, which gives 0 < c < 1, 
we obtain the condition 
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for stable operation of the emulating process. Thus, if the 
Thévenin-equivalent resistance of the analog circuitry connected 
to the emulator port is higher than the limit (13), the system will 
oscillate, although the emulated device is a positive-value resistor. 
A more detailed analysis for other types of devices can be found in 
[19]. 

The example underlines the necessity for an emulation-
stability analysis. A circuit that would be perfectly stable if 
realized from physical components may become unstable if some 
parts are emulated by a discrete-time system. 

3. Demonstrations 

3.1. Emulator Hardware 

The emulator used for demonstrations is a two-port 
modification [17] of our emulator [15]. The system consists of the 
main board STM NUCLEO-F722ZE with a 32-bit MCU ARM 
Cortex-M7 with a single-precision floating-point unit connected to 
PC via USB. An add-on card implements two isolated ports, each 
with 16-bit A/D and D/A converters. The ports are fully floating, 
which is achieved by the use of integrated DC-DC converters and 
digital SPI isolators for converter control. The total parasitic 
capacitance of the floating part to the ground is about 11 pF. 

A pluggable controlled voltage or current source can be 
connected to the ports as shown in Figure 3. The operating area of 
the four-quadrant voltage and current modules is ±3 V and ±3 mA. 
The emulator can easily achieve a sampling rate of 100 kHz. 
Depending on the software, it can emulate one or two independent 
floating devices or a general two-port network. 

 

Figure 3: Emulator with pluggable IO modules. 

3.2. FitzHugh-Nagumo Model 

The FitzHugh-Nagumo (FHN) model of neuronal excitability 
[20] is a simplification of the well-known Hodgkin-Huxley model 
[13]. The model represents the prototype of an excitable system. 
When the input quantity exceeds some certain threshold, the 
system will generate a pulse. The two-dimensional FHN model is 
given in its normalized form as 
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where υ represents the normalized membrane potential, w is an 
auxiliary variable, j is a stimulus current, and τ is the model time. 
The model dynamics is determined by a set of three parameters 
with the usual values a = 0.7, b = 0.8, and σ = 12.5 [21]. 

 

Figure 4: Equivalent circuit to (14) and (15) proposed by Nagumo [20]. 

The system (14), (15) can be represented by an equivalent 
electrical circuit shown in Figure 4 with a nonlinearity similar to 
that of the tunnel diode, which was proposed by Nagumo [20]. Let 
us consider the following mapping of FHN model quantities to the 
physical circuit in Figure 4: 

 υκvv = , ji iκ= , wi wL κ= , τκ tt = . (16) 

The transformation coefficients were chosen such that the variable 
υ will represent voltage in volts (κv = 1 V), j and w will be currents 
in milliamps (κi = κw = 1 mA), and one unit of model time τ will 
correspond to one millisecond of the physical time (κt = 1 ms), i.e. 
the dynamics will be speeded up a thousand times to get a 
convenient duration of generated pulses. 

Considering (16), the parameters of the circuit elements will be 
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For the chosen transformation coefficients we have C = 1 μF, 
L = 12.5 H, R = 800 Ω, and VE = 0.7 V. The i-v characteristic iT(v) 
of the “tunnel diode” will be 
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which corresponds to the first two terms of RHS of (9). 

1) Direct Digital Emulation 

Equations (14), (15) represent a dynamical system with the 
input current j and output potential υ. In accordance with the 
electrical model in Figure 4 the system can be emulated by a 
controlled voltage source. The output voltage υ(k) will be 
computed from the samples j(k) of the measured current. 

The real-time operation of the emulator requires the use of 
explicit integration methods with low numerical complexity [22]. 
Let us consider an ordinary differential equation of the n-th order 
in the form 

 ),( u
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d xfx

= , (19) 

where x∈Rn and u is a scalar input. Then the explicit multistep 
linear integration scheme can be formulated as 
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where r is the order of the method, h is the integration step, and γi 
are coefficients. For r = 1 we get the classical forward Euler 
method with γ1 = 1, and for r = 2 the Adams-Bashforth method of 
the 2nd order (AB2) with γ = {3/2, -1/2} [22]. 

The practical implementation of the multistep scheme (20) has 
a relative low numerical complexity as it requires just storing r-1 
past values f(k-i) := f(x(k-i), u(k-i)). 

The computation of each step starts with the evaluation of RHS 
of (14), (15) for current values of the quantities 
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In the case of the Euler method the next step is 
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and for AB2 we have 
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where h = T/κt. The coefficient κt = 1 ms scales the time axis so 
that the time unit in the original system (14), (15) corresponds to 
one millisecond in (22) and (23). 

The emulator was configured as a current-controlled voltage 
source using the module “V”, where the output quantity is the 
transformed state variable v(k) = υ(k) κv and the control quantity is 
j(k) = i(k)/κi. The sampling rate was set to 100 kHz. 

Figure 5 shows the results of an experiment where the digital 
FHN model was “excited” by short pulses with an amplitude of 
3 V, a width of 8 ms, and a period of 100 ms applied through a 
10 kΩ resistor Rd. It can be seen that each pulse triggers a 
characteristic excursion, after which the system relaxes back to the 
equilibrium state. 

The discretization and emulation of the continuous-time 
system bring two problems with the stability: the stability of the 
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integration method itself and the stability of the feedback 
emulation process as introduced in Section 2.2. 

 

Figure 5: Response (channel 1 - orange) to excitation pulses (channel 4 - red). 

In particular, it is known for explicit methods that an 
inappropriate choice of the integration step can lead to instability 
and an excessive truncation error [22]. Figure 6 shows a qualitative 
study comparing the performance of the methods (22) and (23) for 
the same setup as in Figure 5. For the 10 μs sampling period used, 
the results are indistinguishable from the nominal solution within 
the uncertainty introduced by the quantization by A/D and D/A 
converters. When the sampling period was increased to 500 μs, the 
waveform computed by AB2 showed numerical oscillations. 
Therefore, the first-order method was preferred in the experiments. 

 

Figure 6: Comparison of forward Euler and 2nd–order Adams-Bashforth methods 
for large integration steps. 

The stability of emulation as introduced in Section 2.2 can be 
qualitatively assessed based on the equilibrium stability analysis 
for v = 0, which corresponds to the OFF period of the signal 
source. The equilibrium of the FHN model can be obtained via 
solving the system (14), (15) for dυ/dτ = 0 and dw/dτ = 0, and also 
by considering the relation v = -Rd i determined by the driving 
circuit in Figure 5 during the OFF periods. After the transformation 
(16) the relation becomes υ κv = -Rd j κi and we obtain the system 
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whose solution is 

 υ~  = -1.129, w~  = -0.536 . (26) 

Let us start with the forward Euler method. The equilibrium 
corresponds to a fixed point of the discretized system (22), because 
fk = 0 and thus υ(k+1) = υ(k), w(k+1) = w(k). The structure of the 
system (22) corresponds to (1), (2) and its linearization at the fixed 
point (υ~ , w~ ) leads to the following matrices (3) and (4): 
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Using (5), the emulator transfer function is 
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The simulator uses a 1st-order reconstruction filter with the 
time constant τr and no anti-aliasing filter. The Laplace-domain 
transfer function between the output of the D/A converter and the 
input of the A/D converter corresponding to the application 
schematics in Figure 5 will be 
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where the negative sign stems from the chosen orientation of v and 
i. 

Using the standard s- and z-transforms, the pulse transfer 
function can be easily obtained as [23] 
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where c = exp(-T/τr) and d = exp(tc/τr). 

The time constant of the reconstruction filter was 
τr = T = 10 μs, which smoothed reasonably its staircase output, and 
the processing delay was tc = 3 μs. Then the roots of the 
characteristic equation (8) are as follows: 

λ1,2 = 0.9978 ± j 0.002289, λ3 = 0.3692, λ4 = -3.4988 ×10-4, 

which indicates a stable operation. It can be shown that the doublet 
λ1,2 corresponds to the poles of (28) because the FHN model is 
driven by a high-resistance source, which behaves like a 
stimulation by a current source (see Figure 5). The doublet is close 
to the unity circle, reflecting the fact that the sampling rate is orders 
of magnitudes faster than the modeled dynamics, i.e. the update in 
each step is relatively low (v(k+1) ≈ v(k)). The roots λ3 and λ4 are 
predominantly influenced by the chosen time constant of the 
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reconstruction filter and MCU processing delay, and represent 
fast-decaying artifacts of the emulation process. 

To compute the z-domain transfer function (5) for higher-order 
integration methods, the difference equation (20) should be 
transformed to an equation of the 1st order. 

In the case of the Adams-Bashforth method of the 2nd order the 
scheme (23) can be transformed to 
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where )(~ kf  is the vector of RHS of (14) and (15) delayed by one 
period. Then the linearization of (31) and (32) leads to 
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Repeating the same procedure as for the Euler method, we 
obtain the roots: 

λ1,2 = 0.9978 ± j 0.003594, 

λ3 = 0.3681, λ4 = -0.0136, λ5 = 0.0130, λ4 = -3.0454 ×10-4. 

The doublet characterizes the emulated system dynamics and the 
other roots represent the artifacts of the discretization. Also in this 
case, the emulation is stable. 

 

 

Figure 7: Hybrid circuit setup and response (orange) to excitation pulses (red). 

2) Hybrid Circuit 

In the hybrid approach the emulator is used to implement some 
parts of the model, while the rest of the model can be realized using 
standard electronic components as in Figure 4. In the case of the 
FHN equivalent circuit the emulator implements just the “tunnel 
diode”. The cubic nonlinearity (18) was emulated as a voltage-
controlled current source using the module “I”. 

Figure 7 shows the experiment setup on a breadboard and the 
response of the model for the same conditions as in Figure 5. The 
parameter L was changed to 16.2 H in this experiment to match the 
inductance of the available off-the-shelf choke. 

Figure 8 compares the measured pulses with a PSpice 
simulation, the latter being regarded as a reference solution. All 
three waveforms overlap. 

 

Figure 8: Comparison of the measured and simulated responses for L = 16.2 H 
(all waveforms overlap). 

3.3. Model of Amoeba Adaptation 

The amoeba can adapt to periodic environmental changes. An 
electrical model of the process was presented in [24], see Figure 9. 
The environmental conditions (temperature and humidity) are 
represented by a single quantity – the voltage v(t), which is applied 
to the circuit. The response is the change in amoeba movement 
velocity represented by the voltage vc(t). 

The memristor in Figure 9 is a voltage-controlled memristor 
with a threshold whose memristance RM is governed by the 
following state equation [24] 
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where vM is the voltage across memristor (vM = vC here). The 
memristor activation function 
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is shown in Figure 9(b). The parameter α is the slope of the inner 
segment and β is the slope of outer segments. 

The window function 

)()()()(),( 21 MMMMMMW RRvRRvvRf −−+−= θθθθ  (36) 

-10 0 10 20 30 40

t  (ms)

-2

-1

0

1

2

v
 (V

)

PSpice simulation

direct emulation

hybrid circuit

stimulus 

response 

http://www.astesj.com/


Z. Kolka et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 21-28 (2019) 

www.astesj.com     27 

confines the memristance between the boundary values R1 and R2, 
and θ is the Heaviside step function. 

 

Figure 9: (a) Equivalent electrical model of amoeba’s adaptation; (b) Activation 
function of memristor. 

The model leads to a system of the 3rd order [25] 
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where the parameters were identified as [24]: RA = 0.1 Ω, LA = 2 H, 
CA = 1 F, R1 =3 Ω, R2 =20 Ω, α = 0.1 Ω/Vs, β = 100 Ω/Vs, 
VT = 2.5 V. The amoeba adaptation occurs on the time scale of 
≈100 s, which is rather slow for laboratory experiments even with 
a digital memory oscilloscope. Therefore the time-axis scaling 
κt = 10-3 was added to the equations. Now, one second of the model 
time corresponds to one millisecond of the real time. 

The emulator was configured as a two-port network. The 
excitation voltage v(t) is applied to Port 1 with the “I” module 
(controlled current source). Although the current i(t) is just an 
internal variable of the system (37)-(39), it can be generated at 
Port 1 to emulate fully the circuit from Figure 9(a). One ampere in 
the model corresponds to one milliampere in the emulated circuit. 
The model response based on vc(t) is generated at Port 2 with the 
“V” module. Alternatively, the output can be set as the 
memristance RM to monitor the internal state of the model. 

Equations (37)-(39) were discretized using the forward Euler 
method, similar to (22). The window function fW was realized in 
the algorithm as a correction of the state variable RM after each 
integration step. Whenever RM > R2, it is set back to R2 and vice 
versa for the lower limit R1. 

The excitation voltage v(t) represents environmental conditions 
of the amoeba. Favorable conditions correspond to a positive 
voltage and unfavorable conditions to a negative voltage. Long-
term exposure to favorable conditions (v > 0) leads to dRM/dt < 0 
and after a sufficiently long interval the memristance RM will be at 
its lower limit, i.e. RM = R1. 

It has been observed that periodic intervals of unfavorable 
conditions make the amoeba adapt so that the organism can 
anticipate the intervals and decrease its velocity. The process can 
be demonstrated on an experiment from [24]. The “training” 
voltage waveform consists of three negative cosine pulses 
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where )()()( tWttttw pii −+−= θθ  is a window function for 
masking the individual periods of the cosine function. The 
parameters used were VF = 0.1 V, Vp = 2 V, and Wp = 5 ms. With 
respect to the time-axis scaling, the times of pulse starts for the 
irregular sequence were ti

(irregular) = {10 ms, 19 ms, 34.5 ms} and 
for the regular sequence ti

(regular) = {10 ms, 19 ms, 28 ms}. The 
excitation signal was generated using the arbitrary waveform 
generator Keysight 33521B. 

The output voltage on Port 2 was generated as [24] 

 )),(min()( FCout Vtvtv = . (41) 

 

 

Figure 10: Excitation voltage (channel 4 – red) and amoeba response (channel 1 
– orange) for (a) regular and (b) irregular training sequence. 

Figure 10 shows the excitation voltage v(t) and the response 
vout(t) generated by the emulator. The amoeba adaptation is 
represented in the model by the change of memristance RM. The 
application of the irregular sequence of training pulses after a long 
period of favorable conditions (VF) does not change the 
memristance significantly. On the other hand, the regular training 
sequence makes RM increase to R2 and the amoeba becomes 
“adapted”. Both states can be tested by a single pulse at 800 ms 
after the training sequence start. The adapted response consists of 
several pulses of motion slowdown where the organism anticipates 
other unfavorable intervals. The response of the untrained 
organism is visibly smaller. Both results are in agreement with 
computer simulations in [24]. 

4. Conclusions 

The results presented in the paper can be summarized as 
follows: 
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(1) Emulation provides the possibility of substituting an m-port 
network with a mixed-mode analog-digital system. The 
network modeled via multi-dimensional differential 
equations, which link terminal voltages and currents and 
internal state variables, can be emulated via digitally 
controlled current or voltage sources. The sources are 
controlled based on the port voltages or currents and the state 
variables via discrete-time equations of motion of the system 
being emulated. 

(2) In some cases, it can be useful to emulate digitally only some 
key parts of the circuit, while the rest can be made up of 
(preferably passive) analog components. 

(3) The combination of continuous-time and discrete-time 
blocks can bring stability problems, even in very simple 
circuits. The paper presents a methodology that can be used 
to assess the emulated system stability. 

(4) Stability problems can be alleviated by an appropriate 
selection of the type of controlled source (voltage or current) 
which is used to realize each port. Details are given in our 
previous work [17]. 

(5) The paper presents a mixed-mode emulator with pluggable 
IO ports that has proven itself to emulate unconventional 
circuit elements (memristors, memcapacitors, meminductors, 
etc.) and also bio-inspired circuits. Especially in the case of 
models of biological systems it can avoid using bulky 
inductors and capacitors, which are common there. 
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