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In this paper, an optimal discrete-time sliding mode control is proposed for
single-input single-output nonlinear systems with input constraints. The
sliding surface is designed on the basis of particle swarm optimization
algorithm in order to optimize the system response characteristics while
ensuring the follow-up of reference model in presence of constraints. More-
over, the controller is developed such that the elimination of chattering
phenomenon, the finite-time convergence and the stability of the closed-
loop system are guaranteed. Performed on an inverted pendulum system,
simulation results demonstrate the effectiveness of the proposed approach
over the discrete-time sliding mode controller using the saturation function
and the discrete-time second order sliding mode controller in terms of fast
response.

1 Introduction
This paper is an extension of work originally presented
in 2018 15th International Multi-Conference on Systems,
Signals and Devices (SSD) [1]. Due to the increasing use
of computers in control applications, discrete-time sliding
mode control (DSMC) has been extensively developed since
its appearance with Milosavljevic in 1985 [2]; see, for ex-
ample, [3–9]. However, the finite sampling time negatively
impacts the robustness of continuous-time sliding mode con-
trol to external disturbances, parametric uncertainties and
modeling errors [10–12]. In fact, the control input remains
constant during the sampling period so that it can not be
changed when the trajectory of system state crosses the slid-
ing surface. This is at the origin of chattering phenomenon
that may badly affect control devices and system perfor-
mances [13].

Introduced by Gao in 1995 [14], the quasi-sliding mode
concept consists to drive the state trajectory to cross the slid-
ing hyperplane in finite-time, to move with a non-increasing
zigzag motion and to remain within a specified layer. Thus,
the above-mentioned drawback can be reduced but not elim-
inated. Several approaches was proposed in the literature
to overcome it. In [15–17], the saturation function is used
as smooth one instead of the sign function which is the ori-
gin of discontinuity. In [18–20], discrete-time second order
sliding mode control (DSOSMC) was proposed for linear
and nonlinear systems. In [21, 22], a piecewise-constant

control is used to generate the discrete-time sliding mode.
It ensures that the chatter effect is avoided and the system
state trajectory convergences to the sliding surface after a
finite-time interval.

In the following, an optimal discrete-time sliding mode
control (ODSMC) is proposed for single-input single-output
(SISO) nonlinear systems with input constraints. Particle
swarm optimization (PSO) algorithm is employed to search
the sliding vector to which corresponds the optimal response
characteristics of the closed-loop system and its behavior
follows the reference model. Developed by Eberhart and
Kennedy in 1995 [23], PSO algorithm is based on food
searching behavior of animals societies having no leaders in
their swarm such as bird flocks and fish schools. Its main
advantages are the easiness of implementation, the robust-
ness in controlling parameters and the good efficiency in
solving nonlinear, nondifferentiable and large search space
problems [24, 25]. Regarding the control law, it is designed
in such a way that chattering phenomenon is eliminated,
the convergence to the sliding manifold is ensured in finite-
time and the system dynamics are stable while respecting
constraints.

The efficiency of the proposed controller will be demon-
strated by applying it to an inverted pendulum system and
by comparing it to DSMC controller using the saturation
function and to DSOSMC controller with an arbitrary choice
of control parameters and without taking into account the
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input constraints.
This paper is organized as follows. The DSMC and

DSOSMC controllers are developed for SISO nonlinear sys-
tems in sections 2 and 3. Section 4 is devoted for the design
of the proposed ODSMC controller. The inverted pendulum
system is represented in section 5. Section 6 illustrates nu-
merical simulation results. Concluding remarks are given in
section 7.

2 Discrete-time Sliding Mode Con-
trol

Consider a class of discrete-time SISO nonlinear system
described byx (k + 1) = F (x (k)) + H (x (k)) u (k)

y (k) = Cx (k)
(1)

where x(k) ∈ IRn×1 is the state vector, u(k) ∈ IR is the control
input, and y(k) ∈ IR is the system output. F (x (k)) ∈ IRn×1

and H (x (k)) ∈ IRn×1 are vectors of nonlinear functions and
C is the output matrix. Let’s admit that H and its pseudo-
inverse H+ are both bounded.

The sliding function is defined as follows

s (k) = cT e (k) (2)

where e (k) = x (k) − xd (k) is the tracking error and cT ∈

IR1×n is the sliding vector chosen such that the sliding dy-
namic s (k) ≡ 0 is asymptotically stable.

The reaching law is given by

s (k + 1) = (1 − qTs) s (k) − εTs sat (s (k) , ϕ) (3)

where 0 < 1 − qTs < 1, ε > 0, Ts is the sampling period and
sat is the saturation function defined as follows

sat(s, ϕ) =

 s
ϕ

if
∣∣∣∣ s
ϕ

∣∣∣∣ ≤ 1

sign(s) else
(4)

with ϕ > 0 is the boundary layer width of s and sign is the
sign function.

Using the reaching law (3) and the forward expression
of the sliding function (2), the control law u (k) is given by

u (k) =
(
cT H (x (k))

)−1 (
(1 − qTs) s (k)

− εTs sat (s (k) , ϕ) − cT F (x (k)) + cT xd (k + 1)
) (5)

3 Discrete-time Second Order Slid-
ing Mode Control

The sliding function defined in [19, 20] is given by

σ(k) = s(k) + βs(k − 1) (6)

with β ∈ [0, 1[ in order to ensure the stability of σ(k).
The control law is given by

u(k) = ueq(k) + ud(k) (7)

where ueq(k) is the equivalent control used to force the sys-
tem state to evolve on the sliding manifold and ud(k) is the
discontinuous control used to ensure the robustness.

Setting σ(k +1) = σ(k) = 0, the equivalent control ueq(k)
is determined from the following relation

s(k + 1) + βs(k) = 0 (8)

Hence, It is given by

ueq (k) =
(
cT H (x (k))

)−1 (
− cT F (x (k))

+ cT xd (k + 1) − βs (k)
) (9)

The discontinuous control ud(k) is expressed as follows

ud(k) = ud(k − 1) − εTssign(σ(k)) (10)

4 Optimal Discrete-time Sliding
Mode Control

4.1 Design of Sliding Surface

The sliding vector cT is determined using the PSO algorithm
in order to ensure the optimization of the closed-loop system
response characteristics and the follow-up of the reference
model in the presence of constraints on control input.

PSO algorithm starts with population of np n-
dimensional particles. The ith particle of the swarm
has a position xi =

[
xi,1, . . . , xi,n

]
and a velocity vi =[

vi,1, . . . , vi,n
]
. Its previously best visited position and the

global best particle in the swarm are denoted by pbesti =[
pbesti,1, . . . , pbesti,n

]
and gbest respectively. The velocity

and the position of each particle are updated as follows

vi, j = w vi, j+α1r1

(
pbesti, j − xi, j

)
+α2r2

(
gbest j − xi, j

)
(11)

xi, j = xi, j + vi, j (12)

with i = 1, . . . , np and j = 1, . . . , n. w is the inertia weight,
α1,2 are positive constant so-called the acceleration coeffi-
cients and r1,2 are random parameters uniformly distributed
within [0, 1] at each generation.

PSO is used to generate the sliding vector that minimizes
the following cost function

cost = λ1tr + λ2ts + λ3Mp + λ4Ess (13)

where tr is the rise-time, ts is the settling-time, Mp is the
overshoot, Ess is the steady-state error and λq , q = 1, . . . , 4,
are their corresponding weights.

As illustrated in Table 1, the iterative process is repeated
until stopping criterion is met.
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Table 1: Description of PSO algorithm

Step 1 Parameter settings
Set the population size np, the minimum and
maximum bounds xmin =

[
xmin,1, . . . , xmin,n

]
and xmax =

[
xmax,1, . . . , xmax,n

]
, and the accel-

eration coefficients α1,2.
Step 2 Initialization

Initialize the particle’s position x0
i , i = 1 . . . np,

randomly and uniformly within bounds.
Initialize the particle’s velocity v0

i and the par-
ticle’s best position to its initial position, i.e.
pbest0

i = x0
i .

Set gbest equal to the global best particle.
Step 3 PSO algorithm

WHILE stopping criterion is not met DO
Update the particle’s velocity and position
FOR i = 1 to np

FOR j = 1 to n
vi, j = w vi, j + α1r1

(
pbesti, j − xi, j

)
+

α2r2

(
gbest j − xi, j

)
END FOR
xi = xi + vi

END FOR
Update the particle’s best position
FOR i = 1 to np

IF f (xi) ≺ f (pbesti)
pbesti = xi

END IF
END FOR
Update the global best position
FOR i = 1 to np

IF f (pbesti) ≺ f (gbest)
gbest = pbesti

END IF
END FOR

END WHILE

4.2 Design of Control Law
The control law is designed such that the chatter effect is
avoided, the state trajectory convergences to the sliding sur-
face after a finite-time interval and the closed-loop system is
stable while respecting control constraints.

The forward expression of the sliding function (2) can
be rewritten as follows

s(k + 1) = s(k) + cT (xd(k) − xd(k + 1))

+ cT (F(x(k)) − x(k)) + cT H(x(k))u(k)
(14)

Setting s(k + 1) = 0, the equivalent control ueq is expressed
by

ueq(k) = −
(
cT H(x(k))

)−1 (
s(k) + cT (xd(k) − xd(k + 1))

+ cT (F(x(k)) − x(k))
)

(15)

Consider that ‖u (k)‖ ≤ umax, the constrained control is
given by

u(k) =

ueq(k) if
∥∥∥ueq (k)

∥∥∥ ≤ umax
ueq(k)

‖ueq(k)‖
umax else

(16)

Suppose that∥∥∥cT (xd(k) − xd(k + 1)) + cT (F(x(k)) − x(k))
∥∥∥ ≤ δ,∥∥∥∥(cT H(x(k))

)−1∥∥∥∥ ≤ η
and

umax > δη (17)

with δ > 0 and η > 0.
It follows that∥∥∥ueq(k)

∥∥∥ ≤ ∥∥∥∥(cT H(x(k))
)−1∥∥∥∥∥∥∥s(k) + cT (xd(k) − xd(k + 1)) + cT (F(x(k)) − x(k))

∥∥∥
≤ η (‖s(k)‖ + δ)

(18)

For ‖u (k)‖ > umax, the forward expression of the sliding
function (14) is expressed by

s(k + 1) = s(k) + cT (xd(k) − xd(k + 1))

+ cT (F(x(k)) − x(k)) + cT H(x(k))
ueq(k)∥∥∥ueq(k)

∥∥∥umax

=
(
s(k) + cT (xd(k) − xd(k + 1))

+ cT (F(x(k)) − x(k))
) 1 − umax∥∥∥ueq(k)

∥∥∥


(19)

For stability analysis, the Lyapunov function is chosen
as follows

V(k) = ‖s(k)‖ (20)

Thus, the Lyapunov difference is given by

∆V(k) = ‖s(k + 1)‖ − ‖s(k)‖ (21)

Using (17)

‖s(k + 1)‖

=
∥∥∥s(k) + cT (xd(k) − xd(k + 1)) + cT (F(x(k)) − x(k))

∥∥∥1 − umax∥∥∥ueq(k)
∥∥∥


≤ ‖s(k)‖ +
∥∥∥cT (xd(k) − xd(k + 1)) + cT (F(x(k)) − x(k))

∥∥∥
−

umax∥∥∥(cT H(x(k))
)−1

∥∥∥
≤ ‖s(k)‖ + δ −

umax∥∥∥(cT H(x(k))
)−1

∥∥∥
< ‖s(k)‖

(22)

Hence, s(k) decreases monotonically. From (18), the
equivalent control ueq (k) will belong to the constrained do-
main, i.e.

∥∥∥ueq (k)
∥∥∥ ≤ umax, in finite time and therefore it will

bring the system trajectory to the sliding manifold s(k) = 0
on which the dynamics of the closed-loop system are stable.
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5 Inverted Pendulum System
As shown in Figure 1, the inverted pendulum system consists
of a pendulum amounted on a cart at a frictionless pivot point.
The pendulum is of mass m = 0.1kg and length 2l = 1m and
the cart is of mass M = 1kg [26]. u is the force applied to
the cart that lies within the range of ±10N and g = 9.81m/s2

is the gravity acceleration. The generalized coordinates are
x and θ which represents the horizontal movement of cart
and the rotation of pendulum respectively [27].

Figure 1: Schematic of the inverted pendulum system

Let x =
[
x1 x2

]T
=

[
θ θ̇

]T
be the state vector. The

dynamic equations are given by
ẋ1 = x2

ẋ2 = f (x1, x2) + h (x1, x2) u
y = x1

(23)

with

f (x1, x2) =
(M + m) g sin x1 − mlx2

2 sin x1 cos x1
4
3 (M + m) l − mlcos 2x1

and
h (x1, x2) =

cos x1
4
3 (M + m) l − mlcos 2x1

Using for discretization the Euler forward method de-
fined by

ẋ �
x (k + 1) − x (k)

Ts
,

the discrete-time model of the inverted pendulum system is
expressed as follows

x1 (k + 1) = x1 (k) + Tsx2 (k)
x2 (k + 1) = x2 (k) + Ts f (x1 (k) , x2 (k))

+Tsh (x1 (k) , x2 (k)) u (k)
y (k) = x1 (k)

(24)

6 Numerical Simulation Results
For Ts = 0.05s, the reference model is chosen as follows

xd (k) =
[
π
30 sin (kTs) π

30 cos (kTs)
]T

(25)

The initial conditions are given by

x (0) =
[
0.2 0

]T
, xd (0) =

[
0 π

30

]T
(26)

The sliding vector and the reaching law parameters for
DSMC controller are respectively

cT =
[
5 1

]
,

q = 2, ε = 10, ϕ = 0.5
(27)

The parameters of DSOSMC controller are chosen as
follows

ε = 0.02, β = 0.5 (28)

Using the PSO algorithm, the cost function to minimize
is the following

cost = 0.9ts + 0.1tr (29)

The population size, the acceleration coefficients, and
the minimum and maximum bounds of particle’s position
are given respectively by

np = 100, α1,2 = 2,

cT
min =

[
0.5 0.5

]
, cT

max =
[
10 10

] (30)

The following linear decreasing inertia weight is used
[28, 29]

w = wmax − (wmax − wmin)
iter

itermax
(31)

where wmax = 0.9 and wmin = 0.4 are the initial and final
values of the inertia weight respectively, iter is the current
iteration, and itermax is the maximum number of iterations.

Figure 2 illustrates the evolution of the cost function (29)
corresponding to ODSMC controller. It shows that PSO
algorithm ensures a rapid convergence of the cost function to
its minimum value of 0.236s corresponding to the following
sliding vector

cT =
[
7.085 0.5

]
(32)

Figure 2: Evolution of the cost function for ODSMC

Figure 3 shows numerical simulation results of ODSMC
controller using the sliding vector (32). Figures 3a-3b
present the state variables x1,2(k) and their corresponding
references xd1,2(k). They show that the developed controller
ensures the follow-up of the reference model and the sta-
bility of the closed-loop system in the presence of control
input constraints. Figure 3c depicts the constrained control
input u(k). It shows that chatter effect is avoided. Figure 3d
illustrates the sliding function s(k). It shows that the state
trajectory converges to the sliding surface in finite time.
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(a) State variable x1(k) and its reference xd1(k)

(b) State variable x2(k) and its reference xd2(k)

(c) Control input u(k)

(d) Sliding function s(k)

Figure 3: Simulation results for ODSMC controller.

Figure 4 illustrates a comparison between DSMC with
saturation function, DSOSMC and ODSMC controllers. Fig-
ure 4a presents a comparison of system responses y(k). It
shows that all controllers ensure the follow-up of the refer-
ence model. Yet, the ODSMC controller ensures the fastest
response time while respecting input constraints. Figure
4b depicts a comparison of control inputs u(k). It shows
the effectiveness of the applied controllers in avoiding the
chattering phenomenon. Moreover, the developed algorithm
has lower values of control input in the initial phase than
DSOSMC controller.

The results are summarized in Table 2. Actually, It shows
that the developed ODSMC ensures the best results with the
least rise and settling times of 0.14s and 0.24s respectively,
and with lower values of control input than DSOSMC con-
troller whose corresponding minimum and maximum input
values are −20.6N and 12.18N respectively. Figure 4 and
Table 2 demonstrate that ODSMC controller outperforms
DSMC and DSOSMC controllers.

(a) Comparison of system responses

(b) Comparison of control inputs

Figure 4: Comparison between DSMC with saturation function, DSOSMC
and ODSMC controllers.

Table 2: Summary table of numerical results

Settling
time (s)

Rise
time (s)

umin umax

DSMC 1.07 0.39 -10.07 1.5
DSOSMC 1.03 0.37 -20.6 12.18
ODSMC 0.24 0.14 -10 10

In this study, Matlab 2016a was used for the implemen-
tation of all algorithms.

7 Conclusion
This work presents an optimal discrete-time sliding mode
controller for nonlinear SISO systems subject to input con-
straints. The particle swarm optimization algorithm is em-
ployed to determine the sliding vector for which the response
characteristics are optimal and the closed-loop system model
follows the reference model. Furthermore, the control law
which is designed based on the equivalent control concept
guarantees the avoidance of chattering phenomenon and the
finite-time convergence of system trajectory to the sliding
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manifold on which the system dynamics are stable while
respecting constraints. Simulation results demonstrate the
efficiency of the developed controller in ensuring the fastest
response comparing to discrete-time sliding mode controller
using the saturation function and to discrete-time second or-
der sliding mode controller. Future work will be to develop
the proposed controller to multi-input multi-output nonlinear
systems and to verify its effectiveness by experiments.
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