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 This article is addressed to show the results of hybrid dynamical modeling in the form of 
PWA (piecewise-affine) and equivalent MLD (mixed-logical dynamical) model for multi-
restricted areas avoidance of an autonomous system. It is a problem of determining the 
optimal moving trajectory from plant’s initial position to some desired position while 
avoiding some restricted areas (obstacles) between them. In order to calculate the optimal 
input value capable of generating the optimal trajectory, the model predictive control 
(MPC) approach was utilized by minimizing an objective function of state/output prediction 
subject to the formulated hybrid dynamical model. To illustrate the formulated model and 
its responses, some computational simulations were performed in a three-dimensional state 
using two/three box-shape restricted areas. From the simulation results, the optimal 
trajectory was achieved, and the plant avoided the restricted area. 
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1. Introduction  

Dynamical equation models, which comprise of the linear, 
complex, and hybrid dynamical system, play an important role in 
engineering the control systems. There are thousands of published 
research articles developed to analyze the dynamical model of 
some new engineering systems such as the mobile robot [1, 2], 
autonomous vehicles, car-like robot, etc. This research deals with 
an independent system with some known initial state and its 
corresponding output value with plant’s initial position. The plant 
utilized moves to a decided state known as target position with 
minimal “effort” where some restricted states are not allowed to be 
passed through by the plant. The term “effort” in some cases is 
defined as the shortest path, while an obstacle is a restriction in 
space movement which should be avoided by the plant. The 
pioneer mathematical model utilized in this state was developed in 
[3] by formulating a piecewise affine model which corresponds to 
the restricted and normal sets. There are some published articles 
which described the restricted use of some systems, such as 
vehicles and mobile robots [4–9]. The more complicated problem 
comprises of several plants which are controlled by applying a 
multi-agent concept like flocking scheme, which was used in 
[10,11]. 

In some cases, the objectives of restricted area avoidance are 
not only avoiding the obstacle but also determining the optimal 
trajectory used to determine the final or target point. In this 
problem, an optimal control method based on mathematical 

optimization was implemented to solve the technique. For 
example, a particle swarm algorithm was applied in [12,13]. It is 
reasonable to utilize an optimization-based method because it will 
generate the ace result to the problem. Beside of optimal control 
problem, numerous inconsistencies were solved using the 
optimization approach which was also used to describe its 
profitability such as facility location optimization and the colony 
algorithm for knapsack. 

In the system theory, a newly developed strategy is the hybrid 
dynamical model which comprises of different types of Piecewise-
affine (PWA), discrete hybrid automata (DHA) and Mixed Logical 
Dynamic (MLD) models [14]. To analyze and control a hybrid 
model, in [15], a toolbox was developed which comprises of some 
MATLAB functions on model formulation and controlling. For 
example, the PWA model written in HYSDEL programming 
language can be converted into MLD using the MATLAB routine 
“mld” in the hybrid system toolbox. Furthermore, the MLD model 
which consists of trajectory tracking problems tends to be solved 
by applying a classic control method scheme MPC (model 
predictive control) and modifying the state prediction along with 
its corresponding objective function which was carried out in 
[16,17]. Many research articles applied this control method in 
agriculture field [18,19], as well as in controlling mechanical 
vehicles [20], boiler-turbine [21], and spacecrafts [22]. 

This research therefore aims at solving the problem associated 
with the restricted area inherent the three-dimensional states. First, 
the PWA model was formulated to determine whether the 
dynamical system of the plant is in a normal or restricted area. 
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Next, the PWA system is converted into equivalent MLD using 
HYSDEL and hybrid toolbox. Furthermore, by using predictive 
control method for the MLD model, the optimal input was 
generated to obtain the moving trajectory, which was initialized at 
the plant’s starting point to its target position. Some computational 
simulations are performed to illustrate and visualize the results. 

2. Dynamical System 

Let vector ( )1 2( ) ( ), ( ), , ( ) n
nx k x k x k x k ′= ∈ R denotes the 

state of a plant where k denotes the time instantly. Therefore, the 
dynamical model of the observed plant is a linear time-invariant 
system modeled as illustrated in the equation below 

 
( 1) ( ) ( )

( ) ( )
x k Ax k Bu k

y k Cx k
+ = + 

= 
   (1) 

where pu∈R  and my∈R  are input & output vectors 
respectively, and the notations A, B, C, and D are real constant 
matrices. The control method used in this paper is applicable, the 
controllable and observable assumptions are held by (1). 

2.1. Restricted Area Avoidance Scheme 

The position to the output vector y is defined without losing 
the generality property. Let the initial position of the plant is 
obtained by 0 0(0) (0)y y Cx Cx= = = . The value of the output, i.e., 
plant’s position y have to maneuver and reach some desired target 
position denoted by fy  which corresponds to target state fx , 

f fy Cx= , where in the output’s domain, some sets such as 

1 2, , , m
rR R R ⊂   are not allowed to be utilized by y. Let 

( )1 2
m

rR R R R= ∪ ∪ ∪ ⊂ R , y is restricted to be in R, then 
y R∉  should be held. To handle this condition, the dynamics of 

the system is formulated as a hybrid system.  

The formula is illustrated as follows, w.l.o.g., let 3( )y k ∈  
with two restricted sets, R1 and R2 illustrated in Figure 1. The 
problem is how to determine the optimal trajectory used by the 
plant to maneuver (or move) from its initial state to the target 
position. The term "optimal" is interpreted as minimal effort (or 
energy or work or other similar things) used by the plant. The 
optimal trajectory shown in Figure 1 illustrates a moving 
trajectory from the initial to the target point. 

 The non-restricted sets are known as the normal area where 
the dynamics of the plant corresponds to (1). Alternatively, the 
dynamics which corresponds to the restricted set is defined as 

 
( 1) ( )

( ) ( )
x k x k

y k Cx k
+ = 

= 
    (2) 

which means that the dynamical model is used to prevent the plant 
from being located in the restricted area.  The formulation of the 
hybrid dynamical model where the plant is prevented from 
entering the restricted area is illustrated by Figure 2 by assuming

3( )x k ∈  and ( ) ( )y k x k= .  

 

 

Let the restricted sets (area) Ri, i = 1, 2, …, k, and the normal set 
(area) denoted by N, then these sets are written as 

    { }1 2 3 1 2 3 : ( , , ) : , ,
  : otherwise.

i i i i i i iR x x x a x b c x d e x f
N

 ≤ ≤ ≤ ≤ ≤ ≤



 

2.2. PWA to MLD Hybrid Model 

The hybrid model in the PWA model of the plant for restricted 
area avoidance purposes is formulated as 

( ),                 restricted area
( 1)

( ) ( ),   normal area
( ) ( )

Ix k x
x k

Ax k Bu k x
y k Cx k

∈ 
+ =  + ∈ 

= 

 (3) 

with I denotes an identity matrix with the appropriate dimension. 
To apply the predictive control method to this system, the MLD 
model is, first of all, converted into the form of 

1 2 3

1 2 3

2 3 1 4 5

( 1) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x k Ax k B u k B k B z k
y k Cx k D u k D k D z k
E k E z k E u k E x k E

δ
δ

δ

+ = + + + 
= + + + 
+ ≤ + + 

  (4) 

 

Figure 1: Two box-shape restricted areas illustration 
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Figure 2: Restricted area labeling 
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with some initial state 0 (0)x x= where ( )z k  is an auxiliary state. 
The notation ( )kδ  is a binary valued state describing the mode of 
the system (mode 0 assuming it is on the normal area and 1 when 
restricted). The matrices , , ,i iA B C D  and iE  for all i are real 
constant generated by the conversion process, which is conducted 
using mld MATLAB function embedded in hybrid system toolbox 
given in [23] by writing the PWA system in HYSDEL, then 
generating the matrices for the equivalent MLD model. 

2.3. Predictive Control Approach 

The equation used to determine the optimal input to enable the 
output vector (position) reach the target point using minimal effort 
is represented as a terminal state optimal control problem. 
Furthermore, the predictive control approach is used to obtain the 
optimal input by letting ( )x k t  as the state value predicted at time 
instant ( )k t+  which is resulted by applying input value ( )u k t+  
into equation (4) where the corresponding output value is 
predicted at time instant ( )k t+ , ( )y k t . The optimal input will be 
calculated by solving the minimal value “cost” function of output 
prediction as follows: 

[ ], ,

1

0

min ( )

( ) ( )

T y f wu z

T

u y fw w
k

J Q y T t y

Q u k Q y k t y

δ

−

=

= −

 + + − ∑
 (5) 

subject to:  

1 2 3

2 3 1 4 5

min max

min max

min max

(0 ) ( ); (0 ) ( );

( 1 ) ( ) ( ) ( ) ( );

( ) ( ) ( ) ( ) ;
( ) , 0,1, 2,3,..., 1;
( ) , 0,1, 2,3,..., ;

( ) , 0,1, 2,3,..., 1;

x t x t y t y t

y k t Cx k t D u k D k t D z k t

E k t E z k t E u k E x k t E
u u k t u k T
x x k t t x k T

y y k t t y k T

δ

δ

 = =

+ = + + +

+ ≤ + +

≤ + ≤ = −

≤ + ≤ =

≤ + ≤ = −











 

where T is called the horizon control period, Qu and Qy are 
symmetric and positive definite matrices used to weight the input 
u and output y respectively. These symmetric and positive definite 
properties are applied to guarantee the objective function J is 
convex. This is expressed in the notation 2

T
wQy y Qy= =  where 

wQy Qy=∞ ∞= . This predictive control scheme resulting in a 
mixed integer quadratic optimization problem and in our 
simulation, miqp MATLAB function, which is also embedded in 
hybrid system toolbox, is utilized to solve. Finally, the optimal 
values of u(k) for all k are used by the system. For restricted area 
purposes, the term yf in (5) is the final/target position where the 
dynamics of x is (4) which equivalents to (3). 

3. Simulation Results 

Given a plant with three-dimensional state 

 [ ]1 2 3
3( ) ( ), ( ), ( ) Tx k x x x k x k= ∈R  

and output vector ( ) ( )y k x k=  which can be described as the 
position in a three-dimensional Cartesian coordinate system. Let 

the initial state be [ ]0 (0) 1,1,1 Tx x= = , which corresponds to the 

initial position [ ](0) 1,1,1 Ty = .  

 
SYSTEM pwa_obs_3d_robot { 
INTERFACE { STATE { REAL x1 [-20,20]; 
                 REAL x2 [-20,20]; 
                  REAL x3 [-20,20]; } 

    INPUT { REAL u [-10,10]; } 
     OUTPUT{ REAL y1,y2,y3; } 
     PARAMETER { REAL a1;         REAL a2; 

         REAL b1;         REAL b2; 
         REAL c1;         REAL c2; 
         REAL d1;  REAL d2; 

          REAL e1;  REAL e2; 
            REAL f1;  REAL f2; } } 
IMPLEMENTATION { AUX { REAL z1,z2,z3;  
   BOOL da1,da2,db1,db2,dc1,dc2, 

      dd1,dd2,de1,de2,df1,df2; } 
   AD  {da1 = x1>=a1;    da2 = x1>=a2; 

              db1 = x1>=b1; db2 = x1>=b2; 
                    dc1 = x2>=c1; dc2 = x2>=c2; 
                    dd1 = x2>=d1; d2 = x2>=d2; 
                    de1 = x3>=e1; de2 = x3>=e2; 
                    df1 = x3>=f1; df2 = x3>=f2; } 

DA  {z1 = {IF  
    (da1&~db1)&(dc1&~dd1)&(de1&~df1) 
    THEN x1 ELSE x1+u }; z2 = {IF  
    (da2&~db2)&(dc2&~dd2)&(de2&~df2) 

       THEN x2 ELSE x2+u }; z3 = {IF  
    (da3&~db3)&(dc3&~dd3)&(de3&~df3)  
    THEN x3 ELSE x3+u }; } 

      CONTINUOUS {x1 = z1; 
                  x2 = z2; 
                                x3 = z3; } 
      OUTPUT { y1 = x1; 
                       y2 = x2; 
                       y3 = x3; } } } 
 

Listing Code 1: PWA model (7) with two restricted areas in HYSDEL 
 

Then the dynamic of the plant in the normal area is 

 

1 0 0 1
( 1) 0 1 0 ( ) 1 ( )

0 0 1 1
( ) ( ) .

1
(0) 1

1

x k x k u k

y k x k

x

   
   + = +    
       = 
    =       

   (6) 

Suppose there are two restricted sets R1 and R2 defined visually as 
two boxes 

 { }1 1 2 3 1 2 3 : ( , , ) : 3 5,3 4,3 5R x x x x x x≤ ≤ ≤ ≤ ≤ ≤ , and  

 { }2 1 2 3 1 2 3 : ( , , ) : 0 3,7 9,5 7R x x x x x x≤ ≤ ≤ ≤ ≤ ≤  

where the rest of state space is normal, then the PWA model of 
this system is stated as 

http://www.astesj.com/
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1 2( )                               , 
1 0 0 1

( 1)     
0 1 0 ( ) 1 ( ),  otherwise
0 0 1 1

( ) ( ).

x k x R R

x k
x k u k

y k Cx k

∈ ∪ 


    + =     +    
       
= 

 (7) 

The PWA model in HYSDEL has already been written (See 
Listing Code 1) and converted it into MLD model (4) resulting in 
the following matrices 2 2 (3,15),B D zeros= = 3 3,B C I= =

1 2 3 (3,3),A B D D zeros= = = = and E1, E2, E3, E4, and E5 because 
their dimension is sufficiently large. 

  

 
By solving (5) with w=2, the optimal input values are 

obtained, and by applying them into (7), the optimal moving 
trajectory from its initial position to its target/final position as 
show in Figure 3 of the output values are obtained. From Figure 
3, it is observed that two restricted areas were restricted and 
avoided by the system's moving trajectory, as illustrated in the two 
boxes. For further simulation, another box was added. The result 
is shown in Figure 4 and is similar to the optimal moving 
trajectory, which was generated by the controller to prevent the 
restricted areas. 

4. Conclusions 

The multi-restricted area which avoids the problem associated 
with the autonomous linear system was considered dynamic with 
the region formulated as a hybrid model and the optimal trajectory 
calculated. From the computational simulation, the obtained 
system's moving trajectory was generated by the controller, and the 
given restricted areas were avoided. Further research works will 
develop the shape of the restricted area into other shapes like 
polytope to control the inconsistencies associated with irregular 
shapes. Other control methods will be considered and compared to 
determine the best in performance. 
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Figure 3: Optimal moving trajectory generated by the controller 
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Figure 4: Optimal moving trajectory with three box-shape restricted area 
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