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This work presents a theoretical analysis of the Signal-to-Quantization
Noise Ratio (SQNR) of the nonuniform Parallel Digital Ramp Pulse Position
Modulator Analog-to-Digital Converter (PDR-ADC) architecture. The
PDR-ADC partitions the amplitude axis into P non-overlapping partitions
that sample the analog input at input signal driven instances. Samples are
generated when the input signal crosses a digital ramp in a partition. The
parallel digital ramps operate from a single clock. For sinusoidal signals, it
is shown, for uniform partitions the SQNR can be increased be increasing
the number of bits in the counter or by increasing the number of partitions.
A geometric partitioning scheme is then proposed where, again for sinusoids,
it is shown that this quantization rule has the effect of attempting to maintain
the SQNR approximately constant. For geometric partitioning, it is shown
that the largest SQNR is achieved when the geometric parameter, common
ratio, equals two.

1 Introduction

Many alternatives to Nyquist rate sampling systems have
been proposed in the literature [1] - [8]. Of the various
methods described, the nonuniform Level Crossing (LC)
architectures appear to dominate the recent literature, [9]
-[14]. In [15], the PDR-ADC was introduced and circuits to
affect the desired response developed. A specific partitioning
scheme based upon partitioning the signal amplitude axis
as a geometric series was developed in terms of circuit
parameters. In this communication, alternative methods
to increase the SQNR of the PDR-ADC and a more
general discussion of the geometric partitioning in terms
of the geometric progression parameter, common ratio, are
presented.

All uniform quantizers begin to lose resolution as the
amplitude of the input signal decrease. To understand where
information is lost in uniform quantizers, a brief review
of uniform quantization is presented. Next, the SQNR
of the PDR-ADC is obtained under the conditions of a
uniform partitioning scheme. The SQNR for a geometric
partitioning scheme with common ratio two is developed
without regard to any specific circuit analysis. Lastly, the
SQNR for arbitrary common ratio is presented, where is is
shown that the maximum increase in SQNR for geometric
partitioning is obtained for a common ratio equal to two.

2 Uniform Quantization
Figure 1 is a block diagram of an ideal, uniform, analog to
digital converter. The switch represents an ideal sample and
hold (S&H) operation (aperture effects are ignored), such
that the output of the S&H is the ‘instantaneous’ analog
value of the input, f (t). The quantization rule is represented
by the Q block. Lastly, the encoder, E, converts the quantizer
output into the corresponding digital word.

Figure 1: Ideal ADC

Let the number of bits in the digital word be, N, and let,
Vre f , be the analog reference voltage for the ADC, then, as
is well known, that the quantization step size, ∆ is [15, 16]:

∆ =
Vre f

2N

=
VFS

2N − 1

(1)

where VFS is the full scale voltage: VFS = Vre f − ∆.
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In uniform quantizers, the quantization noise power, PNQ ,
is well approximated by, [17, 18]:

PNQ =
∆2

12
(2)

The signal-to-quantization noise ratio (SQNR) is the
ratio of the signal power, Psig, to the quantization noise
power, PNQ . For a full scale sinusoid of the form, y =
VFS

2
sin(ωt), the S QNR is found to be:

S QNR =
Psig

PNQ

=
(VFS /2)2

2
·

12
∆2

≈ 22N ·
3
2

(3)

or in decibels, the familiar “rule of thumb” for sinusoids is
obtained:

S QNRdB ≈ 6.02N + 1.76 dB (4)

Lastly, as is well known, when the amplitude of a
sinusoidal signal decreases by a factor of 2, the signal
power decreases by a factor of 4 and the ADC loses 1 bit of
resolution. The S QNRdB, from 4, may be written as:

S QNRdB ≈ 6.02(N − 1) + 1.76 dB (5)

3 PDR: Uniform Partitions
Conceptually, the PDR-ADC may initially be regarded as
a parallel arrangement of uniform quantizers as shown
in Figure 2. Each quantizer, in Figure 2, is referenced
independently and spans a different range of possible input
signal values, thus partitioning the input signal axis [19, 15].

Figure 2: Parallel Quantization

In such an arrangement, if P is the number of
partitions, and if each quantizer contains the same number of
quantization levels, L, where L = 2N , and if each quantizer

has a dynamic range,
Vre f

P
, so that together the P partitions

span Vre f , then the quantization step size is given by:

∆ =
Vre f

P · 2N (6)

Such a parallel uniform partitioning scheme is illustrated
in Figure 3 for a system with 4 partitions with 4 levels per
partition.

Figure 3: Parallel Uniform Partitioning

Equation (6) yields the same quantization step size as a
single ADC with L = P · 2N levels, operating from the same
Vre f .

The PDR-ADC, however, operates from a single N bit
digital counter, that generates 2N counts, that are scaled and
shifted to generate the required number of partitions [15].
Consequently, if a single digital ramp ADC, operating with
clock rate, TCLK , were required to span the same dynamic
range, Vre f , this single digital ramp would take P · 2N · TCLK

seconds. The PDR-ADC however, spans the same dynamic

range in 2N · TCLK seconds, a
1
P

times improvement.

For a PDR-ADC, governed by (6), excited by a full scale

sinusoid of the form, y =
VFS

2
sin(ωt), the S QNR is found

to be:

S QNR ≈ P · 2N ·
3
2

(7)

or in decibels:

S QNRdB ≈ 6.02N + 1.76 + 20log10 (P) (8)

Equation (8) states, in the PDR-ADC, with each partition
operating with the identical, uniform, step size, ∆, the
signal-to-quantization noise may be increased in the usual
way by increasing the number of bits used in the counter, N,
and/or by increasing the number of partitions, P.

For example, the identical S QNR performance of a
single, 16 bit ADC can be achieved with a PDR-ADC
designed with, P = 8 partitions, operating with a 13 bit
counter. Additionally, in this case, the PDR only counts to
8192, whereas a single digital ramp ADC would be required
to count the full 65536 counts.

Additionally, in the PDR-ADC, the counter is not
required to count, to a count value that is a power of
2. The same performance as described can be matched,
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approximately, from a PDR-ADC designed with P = 10
partitions and a counter that counts to 6554, thereby further
decreasing the total time required to span the full dynamic
range. A practical design constraint is that the number
of partitions be even, so that the dynamic range of the
PDR-DAC is symmetric about zero Volts.

4 PDR: Geometric Partitioning
In this section, the general behavior of the PDR-ADC with
a geometric partitioning scheme of the amplitude axis, as
illustrated in Figure 4, is presented without reference to
circuit analysis1. For clarity, Figure 4 shows the essence of
the geometric partitioning with a system of 4 partitions with
4 levels per partition. In the figure, the reference voltage of
the entire system is equated to the maximum of the geometric
sum, which is designated, 15Vx, for the yet to be determined
voltage, Vx.

Figure 4: Parallel Geometric Partitioning

The mth reference voltage, VPm for each partition is
related as a geometric series, and is obtained from:

VPm = Vx

k=m−1∑
k=0

2k (9)

LetM to be the maximum partition number, then, from
the system reference voltage, Vre f , the voltage Vx may be
found from:

Vre f = Vx

k=M−1∑
k=0

2k = Vx

(
2M − 1

)
(10)

from which:

Vx =
Vre f

2M − 1
(11)

The ratio of the nth term of a geometric progression to

the nth + 1 term is,
1
r

, where r is the common ratio, as is
well known. If the common ratio is, r = 2, then as the

number of partitions increases, the second to last partition is
referenced to a value that approaches Vre f

2 . In the case under
consideration, theM− 1 partition is referenced from:

VPM−1 =
Vre f

2

(
1 −

1
2M − 1

)
≈

Vre f

2

(12)

4.1 Geometric SQNR
In the PDR-ADC, for any adjacent partitions, the ratio of the
quantization step sizes is the common ratio, which may be
written as:

∆m

∆m+1
=

1
2

(13)

where this behavior can be seen in Figure 4.
From (2) and (13), it is seen, in the PDR-ADC, with

common ratio, r = 2, the quantization noise power of
adjacent partitions may be written as:

PNQm =
PNQm+1

4
(14)

In a PDR-ADC, with geometric partitioning, the
quantization noise power decreases by a factor of 4 when
transitioning from a higher partition to a lower partition.

Let a full scale sinusoid of the for, y = Aosin(ωt), be
input to the PDR-ADC, the SQNR is of the form:

S QNR =
Psig

PNQM

=
A2

o

2
·

1
PNQM

(15)

Now, suppose the input signal amplitude decreases by a

factor of 2 and let y =
Ao

2
sin(ωt) be input to the PDR-ADC,

the SQNR is given by:

S QNR =
1
4
·

A2
o

2
·

1
PNQM−1

(16)

substituting (14) into (16) the SQNR is:

S QNR =
1
4
·

A2

2
·

1
PNQM/4

=
A2

o

2
·

1
PNQM

(17)

Equation (17) states, in the PDR-ADC, with a geometric
partitioning, the signal-to-quantization noise attempts to
remain approximately constant.

4.2 Constant SQNR
The constant value that the SQNR attempts to maintain can
be obtained in terms of uniform ADC parameters with the
aid of Figure 5. Figure 5 shows, on the left hand side, the
uniform levels and the quantization step size for an 4 bit
(16 Levels) uniform ADC with dynamic range, VFS . The
right hand side of Figure 5 shows the geometric partitioning
for the same dynamic range. In the detail of Figure 5, the
quantization step size of the largest partition is shown for a
4 bit counter that produces the same number of quatization

1A circuit realization of the geometric behavior can be found in [15].
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levels (16 Levels) as the uniform quantizer shown on the
left.

Figure 5: Constant Quantization Step Size

From (12), the dynamic range of the largest partition

always approaches
1
2

of the maximum voltage value,
assuming a sufficient number of partitions. In the present
case under consideration, as seen in Figure 5, this dynamic

range is,
VFS

4
. Consequently, when this range is divided by

2N levels, the largest quantization step size of a PDR-ADC
with geometric partitioning is:

∆max =
1
4

VFS

2N − 1

=
VFS

2(N+2) − 4

(18)

Substituting (18) into (3), again assuming a full scale

sinusoid of the form, y =
VFS

2
sin(ωt), the SQNR is:

S QNR =
Psig

PNQ

=
(VFS /2)2

2
·

12
∆2

max

=
12
8
· (VFS )2 ·

(2N+2 − 4)2

(VFS )2

≈
3
2
· 22(N+2)

(19)

or in decibels:

S QNR ≈ 6.02 (N + 2) + 1.76 dB (20)

Equation (20) states, for a full scale sinusoidal input, a
PDR-ADC with geometric partitioning, operating from an
N bit counter, gains 2 bits or resolution.

When the results of (20), (14) and (5) are taken together,
for a PDR-ADC with geometric partitioning, operating from
an N bit counter, the following behavior is deduced:

• From (20): The PDR-ADC behaves as a system with N +2
bits.

• From (5): When the signal amplitude drops by a factor
of 2, the signal power drops by a factor of 4 and the
system loses 1 bit of resolution.

• From (14): When the signal amplitude drops by a factor
of 2, the quantization noise power drops by a factor
of 4, and the system gains 1 bit of resolution, and the
system continues to behave as a system with N + 2
bits of resolution.

With geometric partitioning, the PDR data converter
attempts to maintain the signal-to-quantization noise ratio
approximately constant.

Figure 6: Approximately Constant SQNR from Geometric Partitioning

In Figure 6, the SQNR for the geometric partitioning,
with common ratio r = 2, is shown as a function of input
signal amplitude. The full scale voltage was, VFS = 2.4
Volts and the system was driven with a sinusoid of the
form, y = Aosin(ωt), where Ao was varied from 1.2 Volts
to approximately 1mV . The PDR was modeled with P = 8
partitions with an N = 8 bit counter.

For reference comparison, the SQNR for several uniform
quantizers are also plotted in Figure 6. It is seen that the
system performance is approximately equivalent to a system
with N = 10 bits of resolution and that the system attempts
to maintain this performance against variations in the peak
signal amplitude. The peaking in the non-uniform quantizer
are the locations where input signal voltage amplitude
transitions from one partition to the adjacent partition.

5 Common Ratio and SQNR

Let the maximum voltage of the data converter be,
VFS

2
, then,

for any value of the common ratio, r, the maximum value

of the next lower partition always approaches,
VFS

2r
, using a

geometric partitioning scheme. Consequently, the dynamic
range of the largest (outer) partition,M, is approximately:

∆VM ≈
VFS

2
−

VFS

2r

=
VFS

2
·

(
r − 1

r

) (21)
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Assuming that this voltage is spanned by an N bit
counter, and if driven by a sinusoid, the SQNR becomes:

S QNR = =
(VFS /2)2

2
·

12
∆2

=
12
8
· (VFS )2 ·

(
2r

r − 1

)2

·
(2N − 1)2

(Vre f )2

=
3
2
·

(
2r

r − 1

)2

(2N − 1)2

≈
3
2
·
(
2N+b

)2

(22)

where b =
ln( 2r

r−1 )
ln(2)

. Or in decibels:

S QNR ≈ 6.02 (N + b) + 1.76 dB (23)

In 23, as the common ratio, r → ∞, b → 1, and the
system only gains 1 bit of resolution. Alternatively, as r → 2,
its minimum possible value, b → 2, and the system gains
2 bits of resolution. It is seen, in the PDR with geometric
partitioning, the largest increase in the effective number of
bits occurs with the common ratio, r = 2.

6 Conclusion
The signal-to-quantization noise (SQNR) of the parallel
digital ramp analog to digital (PDR-ADC) has been
formulated using a more general analysis using the common
ratio of a geometric series. It was shown that for all values
of the common ratio, using a geometric partitioning scheme,
the maximum possible increase in the SQNR is achieved
when the common ratio, r = 2, and the effective increase
in the number of bits of resolution provided by an N bit
counter is accordingly, 2. It was shown that with geometric
partitioning, the PDR-ADC attempts to maintain the SQNR
approximately constant. Additionally, it was shown, using a
uniform partitioning scheme provides more flexibility in the
effective increase in the counters effective resolution with a
trade off in the number of partitions, though in this case, the
SQNR does not remain approximately constant.
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