
Advances in Science, Technology and Engineering Systems Journal
Vol. 4, No. 4, 174-187 (2019)

www.astesj.com
Special Issue on Advancement in Engineering and Computer Science

ASTES Journal
ISSN: 2415-6698

Model-Driven Engineering Infrastructure and Tool Support for
Petrochemical Industry Automation

Thaise Poerschke Damo*,1, Leandro Buss Becker1, Fabio Paulo Basso2

1Federal University of Santa Catarina (UFSC), Automation and Control Systems Department, 88066-040, Brazil
2Federal University of Pampa (UNIPAMPA), Campus Alegrete, 97546-550, Brazil

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 03 June, 2019
Accepted: 16 July, 2019
Online: 30 July, 2019

Keywords:
Model-Driven Engineering
Object-Orientation
Industrial Automation

The definition of equipment and components of physical plants is a neces-
sary step towards the development of simulation, control, and supervisory
applications for the petrochemical industry. Often it happens that the same
plant/equipment is (re)modeled on each application, causing a waste-of-
time on repetitive (re)design, besides introducing potential inconsistencies
between the models. Moreover, even though each software platform nor-
mally offers a different view of the same plant, it is desirable to have some
kind of interoperability between them. This paper presents a solution for
such issues named M4PIA, which consists in a Model-Driven Engineering
(MDE) tool support developed mainly for petrochemical industry automa-
tion. M4PIA allows representing industrial plants by means of different
and interchangeable object-oriented models, providing means to perform
automatic code generation from a plant specification for different software
platforms. Currently, our work involves using M4PIA in high-level automa-
tion manouvers and plant simulations. Evaluations studies performed with
M4PIA shows that it covers most features expected from a MDE tool suite.
Besides, the use of M4PIA is expected to result in less development time
and costs, while it increases efficiency, maintainability, and reliability of
the developed applications.

1 Introduction
There is no doubt that todays industrial environments are
highly automated, at least in the first two layers of the ISA95
automation pyramid. The most basic layer, named Field
Level, includes devices, actuators, and sensors. The Control
level is immediate above, and accounts with PLCs and PIDs
to control such devices. Programming PLCs and PIDs is
typically done by means of integrated development environ-
ments (IDEs) that comply with international standards IEC
61131-3 [1] and IEC 61499 [2]. Rarely this kind of system
does not make use of SCADA (supervisory control and data
acquisition) in a third Supervisory layer.

The IEC 61131-3 standard [1] addresses PLC program-
ming, including four programming languages and sequential
function charts (SFC). It helps migrating software developed
for one PLC type to PLCs of other vendors. Targeting dis-
tributed systems, the IEC 61499 standard [2] replaces the
cyclic execution model of IEC 61131 by an event-driven
execution model, which allows an explicit specification of
the execution order of function blocks (FB). Both standards

do not address equipment specification semantics.

To cope with procedures for automating continuous pro-
cess operations there is the ISA 106 standard [3], which is
typically deployed at the Supervisory level. Examples of
commercial tools therefore are Exapilot from Yokogawa and
GenSym G2 from Ignite Technologies. The present work
stands at this layer, and makes use of a proprietary tool with
similar goals named MPA [4].

Another common need in automation systems, specially
when advanced control techniques come to play, is perform-
ing simulations. Examples of tools for such purposes are
Labview, Matlab/Simulink, and Modelica-based (like Dy-
mola and OpenModelica). These tools provide powerful
simulation cores, and also provide a vast library of compo-
nents that allow designers to build virtually every system or
system element they want to. It happens, however, that there
is no specific semantics for equipment specification.

Considering an automation plant, the lack of semantics
for equipment specification brings difficulties for represent-
ing this same automation plant in the different software de-

*Thaise Poerschke Damo, DAS/CTC/UFSC, +554837217606 & thaisedamo@gmail.com

www.astesj.com
https://dx.doi.org/10.25046/aj040422

174

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj040422


T. P. Damo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 174-187 (2019)

velopment tools used in all automation levels. Such repeated
representation is something quite common, for instance, to
implement different perspectives in the automation domain:
processes operation, monitoring, simulation, and control.

The work presented in this paper targets the integration
of different perspectives in petrochemical industry automa-
tion through a tool support built on the Model-Driven Engi-
neering (MDE) paradigm [5]. MDE is built on widespread
techniques in Systems and Software Engineering, present-
ing the following main characteristics: (1) uses models in
all the phases of software development to improve under-
standing; (2) raises the abstraction level of software system
specifications, hiding platform-specific details; (3) develops
Domain-Specific Languages (DSLs) [6] and frameworks to
suit a domain; and (4) applies transformations to automate
repetitive activities and improve product quality derived from
Software Engineering (e.g., source code, libraries, processes,
etc.) [7]. In other words, MDE proposes representation of
diverse artifacts through modeling and tool support.

This paper presents M4PIA (Model-Driven Engineering
for Petrochemical Industry Automation), which consists of
an infrastructure and tool support to help the design of ad-
vanced control applications for the Petrochemical Industry.
An evaluation of the proposal is also presented. Therefore,
the remainder parts of this paper are organized as follows:
Section 2 presents background information that motivates
this research, highlighting the application domain and related
works. Section 3 details the proposed M4PIA infrastructure
and tool support. Section 4 shows the evaluation method
employed for assessment. Section 5 details M4PIA assess-
ment and presented obtained results. Section 6 highlights
our conclusions and future works perspective.

2 Background

2.1 Advanced Control in the Petrochemical
Industry

This work targets the design of advanced control strategies
for the Petrochemical Industry. The advanced control does
not intend to control the automation plant devices (valves,
motors, etc) located in the Field Level of the automation
plant. This low-level control should be done by the regula-
tory control in the upper, Control level, that executes on the
PLCs. The advanced control stands at the Supervisory level.

For example, let us analyze the design cycle of an ad-
vanced control system for oil extraction platforms. Initially,
designers should create a software-in-the-loop (SIL) envi-
ronment, where the phenomena to be controlled (e.g. gas
compression) is “executed” within a simulation tool (Lab-
view, Simulink, Modelica) that communicates with the con-
trol software executing in the same hardware platform that
will be used in the final system. Here, the automation plant
elements are represented twice: (1) in the simulation model
and (2) in the control software.

Before deploying the control system under design in the
operational environment (the oil extraction platform), tests
are typically performed in a hardware-in-the-loop (HIL) envi-
ronment. At this point, instead of communicating the control
system directly with the simulation tool, it must interact with

the same hardware (PLCs) and software (drivers) that are
used in the operational environment - here the PLCs com-
municate with the simulator. The communication between
control software and PLCs is typically done by means of
some kind of bridge, for instance OPC drivers. Using this
kind of structure brings the need of creating a third plant
representation, which stands for the supervisory software. A
fourth plant representation could be used if an specific simu-
lator is adopted in the HIL environment, which is something
common in the oil industry. In theory, if the HIL imple-
mentation passes all tests, the control system is ready to be
implemented in the operational environment.

Given such scenario, the problem under consideration in
our work concerns providing a solution to optimize the long
time needed to model the equipment in different software
development tools (and languages). It also should reduce
possible inconsistencies generated when moving from one
model to the other. It is important to provide interoperability
among such plant representations.

The development starting point of the proposed infras-
tructure was the analysis of a system called MPA (acronym
for Automated Procedures Module). MPA software platform
is widely used by the development team of Petrobras in the
operation and control of several oil platforms and refineries.
It can be used for simulation purposes and also to control
the operation of real systems. In order to maximize the gains
from using a MDE approach, it was also analyzed the system
called EMSO (Environment for Modeling, Simulation and
Optimization), a platform used for modeling and simulating
chemical processes.

2.1.1 MPA Operation and Control Software

MPA [4] software was developed for oil platforms automa-
tion in order to support the development and execution of
industrial control and automation applications. This software
was developed by Tecgraf/PUC-Rio Institute under request
of Petrobras S.A.

Automation is performed through operation maneuvers
of plant equipment. Basically, MPA consists of an execu-
tion server and a configuration and management applica-
tion. In the latter, industrial plants are modeled using object-
orientation and diagrams are used to define the maneuvers in
the respective plant. The server is responsible for executing
the configured operation maneuvers in the diagrams and han-
dles the equipment interacting with the supervisory system
through OPC (OLE for Process Control) communication
bridges.

Currently, processes equipment are modeled directly in
LUA programming language as classes in the application’s
pre-configuration phase. In this phase, attributes and meth-
ods of each class are defined, i.e., of each type of equipment.
One equipment can be used to compose another, being mod-
eled as its attribute. Equipment classes are described in a
pre-configuration file and loaded at the MPA configuration
stage. The developer uses such info to define the plant equip-
ment instantiation and to model the execution diagrams, in
flow language, which describes the operating maneuvers of
plant equipment, i.e., the sequence of equipment functions
execution. Plant and flow files are saved separately in other
file formats.

www.astesj.com 175

http://www.astesj.com


T. P. Damo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 174-187 (2019)

The infrastructure proposed in this paper is able to sim-
plify the pre-configuration phase by generating code auto-
matically, reducing the time spent in conceptual modeling
for new plants or even guiding the development of similar su-
pervision and control applications, reusing existing models
by including, extending, or modifying them.

2.1.2 EMSO Simulation Software

EMSO [8] is a tool for modeling and simulating dynamic
processes based on equations. It is part of a project main-
tained by a consortium of Brazilian universities and national
petrochemical companies.

The EMSO platform is composed by a graphical inter-
face and its own object-oriented modeling/programming
language. Such language was created from the combination
of the best modeling characteristics found in existing lan-
guages, resulting in a simpler language with a better code
reusability.

EMSO modeling language is composed of three major
entities: models, devices, and flowsheets. Model is the math-
ematical description of a device. Device is an instance of the
model and represents a real process equipment. Flowsheet
represents the process to be analyzed, which is composed of
a set of devices. A model development in EMSO consists
of defining a class of a real equipment or a part of a process.
Model can be composed of parameters, variables, equations,
initial conditions, and sub-models and can be based on a
pre-existing one, only adding new functionalities.

The graphical user interface allows developers to create
models, build flowcharts, check project consistency, execute
simulations and visualize the results. The software has sev-
eral consistency analysis of the model and the whole process
to be simulated, including: initial conditions consistency,
measurement units, and system of equations solvability. The
platform is multithread, which allows real-time simulations
to run more than one simulation at the same time.

The proposed solution aims to support equipment mod-
els by generating automatic codes and to maintain a correct
correspondence between plants to be controlled by other ap-
plications and their simulated processes in EMSO for tuning
tests and validation of control proposals.

2.2 Challenges Related with MDE Usage
Using MDE in the present work comes from the fact that
it is a software development methodology with emphasis
on the domain specification models, allowing to improve
productivity, system understanding, and its maintenance and
evolution. MDE paradigm proposes applications described
through models at different levels of abstraction using stan-
dards such as the UML (Unified Modeling Language). More
than just conceptual design, the produced models can be
interpreted by automation tools that can generate schemas,
code skeletons, and tests for multiple platforms. Definitions
of more abstract layers provide formal basis for structuring
lower-layer models. Thus, it is possible to facilitate design
decisions and to build artifacts automatically from models,
reducing development times and costs.

Additionally, MDE has been used to support software
systems development in both academia [9]–[11] and indus-

try [12]–[19]. Among the benefits credited to MDE, Mo-
hagheghi et al. [20] highlight the following: shortened
development time and increased productivity; improved soft-
ware quality; automation through generation of code and
other artifacts; provision of a common framework for soft-
ware development across the company and lifecycle phases;
maintenance and evolution; improved communication and
information sharing among stakeholders. MDE is especially
interesting for scenarios involving systems that should be
made available on multiple platforms [21].

However, developing software systems with MDE is
not trivial. Besides the development of domain specific
languages, it requires an automated process, including trans-
formation scripts that connects MDE resources, such as re-
finement tools and model-based operations [22]. In special,
these works need specific assessment for their pieces, such
as for DSLs, as well as for their integration promoted by
model transformations. In this sense, Mohagheghi et al. [14]
go beyond and also expose the criteria that led companies
to adopt MDE. Such criteria involve the abstraction level
that hides details, communicating with non-technical staff,
as well as model-based simulation, execution, and test. In
other words, a feature analysis is required.

2.3 Related Works
The idea to use object-orientation towards developing in-
dustrial automation systems is not new. For instance, in
[23], the authors presented an environment that allowed to
make object-oriented modeling of plant equipment ir order
to further make automatic code generation. Even though
the proposal was conceptually very interesting, it did not
make use of standard modeling languages (at that time UML
was emerging), so that it could not be adapted to current
standards. More up-to-date standards were used by Thram-
boulidis in [24], but the foccus of that work was not on the
static-structure of the plants but on their their dinamic behav-
ior, specially targeting implementation on PLCs. In fact that
was an anticipation of the recent IEC-61131-3 standard [1],
which covers the use of object-oriented programming on
PLCs.

Other related works only covered partially the issues
presented in this paper. In chemical engineering domain, for
instance, Becker [25] presented an UML-based framework
for building integration tools that help developers in change
propagation for maintaining inter-document consistency, fo-
cusing on relationships between flow sheets, that describe
chemical processes and its simulation models. MindCSP so-
lution [26] focuses on specifying the autonomic behavior of
cyber-physical systems by its sensor-actuator networks and
the autonomic control loops (monitor/analyze/plan/execute).
Another example of approach that supports development
of industrial control applications is the AUKOTON pro-
cess [27], based on the UML Automation Profile, uses pro-
file’s concepts to represent the requirements, functionality
and structure of the control applications, including require-
ments of stakeholders, alarm events, and control algorithms
such PID, fuzzy and MPC. Other relevant applications of
MDE are referenced in a state-of-the-art review of software
engineering in industrial automation [28]. However, so far
there is no other related work on MDE application with focus

www.astesj.com 176

http://www.astesj.com


T. P. Damo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 174-187 (2019)

on the generic definition of industrial plants equipment for
sharing between different software: control, operation, and
simulation platforms. This gap is fulfilled by the proposal
presented in this paper.

3 Proposed M4PIA Infrastructure
The proposed M4PIA infrastructure is composed by: 1) do-
main specific languages, which intents to abstract three levels
that hides details from implementation; 2) two sets of model
transformations supporting automated model integration be-
tween these three DSLs; and 3) two sets of code generators.
Everything is developed under the same Eclipse ecosystem,
including the Eclipse Modelling Framework (EMF) [29],
the Acceleo model transformation engine for code generator
[30], and QVTo as a mean to make transformations between
different metamodels [31].

A model in MDE represents part of a function, structure,
or behavior of a system. The domain knowledge necessary to
design M4PIA was acquired by the analysis of a significant
set of applications designed on different software platforms
from the petrochemical industry, seeking to identify typical
requirements and behaviors of these systems. Understand-
ing different applications provide the ability to differentiate
general structures, the invariant domain aspects, from the
specific structures, the variable aspects. Successive analysis
and synthesis steps converged to the generic domain design
model that was created.

In a model-driven engineering method, a high level of
abstraction is typically used in the application development.
The system development process in MDE starts with the
highest abstraction model and decreases through properly
defined transformations (model refinement). There are two
MDE abstraction levels used in the present work: a platform
independent viewpoint, the Platform Independent Model
(PIM) and specific platform viewpoints, the Platform Spe-
cific Model (PSM). The latter contains details and character-
istics of specific implementations platforms.

In a new application development its PIM model is
created according to the provided metamodel (constructed
based on domain conceptual analysis), then the PSM model
is automatically generated by a Model-to-Model transforma-
tion (M2M), based on the PIM model and according to the
PSM metamodel. Lastly, the platform-specific source code
is generated from the PSM through an automatic Model-
to-Text transformation (M2T). This process is illustrated in
Figure 1.

PIM

Model

M2M
Transformation 

Tool

PSM

Model

PIM

Metamodel

M4PIA

M2M

Transformation

PIMtoMPA/EMSO

M2T
Transformation 

Tool

PSM

Metamodel

MPA/EMSO

M2T

Transformation

MPAtoCodeMPAM

EMSOtoCodeMSO

Code

MPA/EMSO

Figure 1: Development cycle using M4PIA

M4PIA infrastructure is built as support for the MDE

of equipment class definition, so that applications for opera-
tion, control, and simulation platforms for the petrochemical
industry can be created. The proposed solution was imple-
mented in the EMF (Eclipse Modeling Framework) tool [29],
in Eclipse Oxygen environment. The first and fundamental
element built is the M4PIA metamodel, a PIM metamodel
that represents the entire domain of the desired applications
to be created, independently of its implementation platform.
Then the PSM metamodels were constructed, defining the
specificities of each supported platform. Based on meta-
models, it was defined the M2M transformations from PIM
model to PSM models and, at last, the M2T transformations
for the automatic source code generation from each PSM
model.

3.1 M4PIA Metamodel

The identification and analysis of petrochemical industry ap-
plications allowed the definition of a set of generic elements,
capable of being shared by a wide range of industrial automa-
tion systems. This set of elements are materialized by means
of a metamodel named M4PIA. Our aim is that M4PIA meta-
model can contribute substantially for the implementation
of new systems from such application domain, targeting
reusability and facilitating automatic code generation.

The developed M4PIA metamodel is presented here
through a class diagram designed using the Eclipse Modeling
Framework and its Ecore metamodel, similar to UML. The
proposed class diagram is shown in Figure 2. The represen-
tation shows a set of classes, interfaces, and collaborations,
with their respective relationships, expressing results of the
structure and requirements analysis of the problem domain
and its components. Model constraints were specified using
OCL (Object Constraint Language). The main metamodel
elements are detailed next.

An entity is defined as the most elementary unit of the
proposed model. The Entity class is considered abstract
and only provides a basic structure for the more special-
ized classes in the hierarchy. A Project is instantiated
and can be composed of several Files. These can be im-
ported as libraries, ImportedFile, or be an entity group
to have their source code generated by the infrastructure,
GeneratedFile.

An Equipment is a type of entity that can contain at-
tributes and methods, defined as specific classes to reflect
physical characteristics and functions performed by the
equipment in a plant.

The abstract class Variable represents a logical vari-
able and can be NonTyped or Typed. Typed variables can
be EquipmentType or BasicType, more specifically Real,
Integer, Boolean, or String.

The Method class is a Function specialization and has
exclusive connection to an Equipment. The Function class
represents a logical entity that can either represent a high-
level operation (in the physical domain of the plant) or a
low-level (in the application domain). A function can have
multiple Variable instances associated, acting as param-
eters or results, as well as may have a language and an
associated code, which textually describes the instruction
desired for the interpreter.

www.astesj.com 177

http://www.astesj.com


T. P. Damo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 174-187 (2019)

Figure 2: Elements of the proposed M4PIA metamodel

An equipment Attribute is a specific case of Variable
which is allowed, through the relationships hierarchy, to as-
sume a type that can be another Equipment. This aspect
guarantees to the metamodel the ability to reproduce sce-
narios where there are natural recursions in relationships
between equipment, i.e., an equipment or a machine that
has other equipment as an attribute. For example, a specific
type Compressor can be used as one of the attributes of a
Compression System, both devices being instantiated by the
Equipment class.

Furthermore in the Attribute context, there is a permis-
sion management for read or write operations, as highlighted
in the Access class. New data types can be defined through
the DeclaredType entity, based on basic types, and can be
used as the basis for variables and attributes as well. For
example, it is possible to declare a new type Positive Real
and set a real type attribute Position of an equipment Valve
based on the Positive Real type.

3.2 MPA and EMSO Metamodels

Given that the generic M4PIA metamodel was obtained
through the analysis of the specific software platforms, the
specific metamodels for each software are similar to the
generic one and the main differences between them are fur-
ther highlighted.

The PSM for MPA, or simply MPA metamodel, is de-
picted in Figure 3. The Component element corresponds to
Entities in M4PIA. In addition to Equipment, the Class
component can also be specified as PointClass, considered
on the platform as a data type. Variable and Attribute
classes are not abstract and must have an associated Type.
Possible types are BasicType, point classes, and equipment.

MPA basic types instances are imported automatically at the
beginning of each project, they are: Real, Integer, Logical,
and Textual. Four instances of native MPA point classes are
also imported: Real Point, Integer Point, Logical Point, and
Textual Point, each with its attributes.

In the MPA platform, codes are not exclusive related with
functions, classes and files can also be composed by Codes.
File codes are used to import components of the DLL, declar-
ing the available DLLFunctions and their DLLParameters.

The second PSM developed is the EMSO metamodel,
which is presented in Figure 4. Since EMSO is a simula-
tion platform, mathematical models of the equipment, or
Devices, are instantiated through the Model class. Func-
tions are always related to a model as Equations. In this
specific domain, Variable is an Attribute specializa-
tion and represents the variable attributes of the models
and Parameter the constant ones. Variables cannot as-
sume a textual type, but textual parameters can be instan-
tiated through a Switcher. Flowsheet entities with their
Devices and Connections, parameter Estimation and
process Optimization were not considered primordial for
the equipment description domain and are not specified at
this stage of the project.

3.3 M2M and M2T Transformations

For each PSM supported by M4PIA infrastructure it is nec-
essary to define the respective transformations. Transfor-
mations can be either model-to-model (M2M) or model-to-
text (M2T). In M2M transformations the elements spec-
ified in the PIM model are mapped to elements from a
specific PSM. M2M are implemented in our work using
the Eclipse QVTo tool, an implementation of the standard

www.astesj.com 178

http://www.astesj.com


T. P. Damo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 174-187 (2019)

Figure 3: Elements of MPA metamodel

Figure 4: Elements of EMSO metamodel

www.astesj.com 179

http://www.astesj.com


T. P. Damo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 174-187 (2019)

OMG model transformation language QVTo (Operational
Query/View/Transformation). The M2T transformations are
developed specifically for each target platform. They are
target in this work by using the Eclipse Acceleo tool for tem-
plates definitions and have as output the application source
code ready to be used.

The explanation regarding each PSM metamodel pro-
vided in the previous section provide readers a good
overview about the adopted M2M transformation rules, i.e.,
how the elements of the M4PIA metamodel (Fig. 2) map to
the MPA metamodel (Fig. 3) and to the EMSO metamodel
(Fig. 4). The M2T transformations are target in this work by
using the Eclipse Acceleo tool for templates definitions and
have as output the application source code ready to be used.

4 Evaluation Method
This section describes the evaluation method used to allow
analyzing the completeness and applicability of the pro-
posed infrastructure. Our goal is to capture the perception of
M4PIA users in performing a characterization of the features
associated with this MDE-based approach. By achieving this
goal, it would allow us to understand whether the concepts
introduced in M4PIA infrastructure really have potential
in terms of technology, thus providing evidence of quality
attributes associated with all the developed tools.

This evaluation, therefore, attempts an empirical study
of type “feature analysis-experiment” [32], in a quantitative
and qualitative experiment format. It allows providing evi-
dences of suitability, very common for assessing tool support
in computer science.

4.1 Context Selection
The context of this study is the academy, a first trial of in-
vitro approach, with half of participants working in industry.
The experiment captures the perceptions of individuals to
measure the value of a technology in a real problem. It is
applied with nine master students and two undergrad stu-
dents from the Federal University of Pampa (Unipampa), all
them with good knowledge on tool selection and software
acquisition. This context configures a good sample, since
students were introduced in the MDE theme, with desirable
features from these tools. Therefore, it characterizes a good
scenario to evaluate two main quality attributes for suitabil-
ity that could be associated with the proposed tool support:
completeness and applicability.

4.2 Experiment Design
No randomization and balancing: The subjects are not
randomly placed into groups (not a randomized block de-
sign), so that only one design approach is performed by the
same number of subjects. Thus, the goal is not to compare
DSLs or code generators.

Blocking: The selected subjects for this quasi-
experiment had different backgrounds in modeling systems,
but no background in modeling petrochemical systems.
Thus, to minimize the effect of eventual differences in ex-
periences, the subjects received the same training. We also

defined whether a subject is inexperienced or experienced,
applying a survey, prior to the experiment, to qualify the
subject background on the problem domain.

Instrumentation: It was provided a configured version
of the Eclipse IDE with M4PIA plugins. The subjects in-
stalled this version in their notebooks in Windows or Linux.
Then, we provided video tutorials in mp4 format, composed
by: 1) A long duration video (75 minutes) depicting the pro-
posed infrastructure, the needs and the proposed solution; 2)
A second video (15 minutes) demonstrating how to use the
Eclipse IDE, and 3) A third Video (25 minutes) demonstrat-
ing how to design a model using the proposed approach. Six
other video-tutorials complement the other quantitative part
of this experiment, focusing in evaluating specific design
and codification tasks. However, they are irrelevant for the
present evaluation, which focuses in presenting the feature
analysis experiment.

4.3 Variables

Two sets of independent variables are used: (1) EMSO,
MPA, and M4PIA; (2) Academic Experience and Industrial
Experience. Besides, two dependent variables are used:
Completeness and Applicability.

4.4 Data Analysis

Applicability: a survey to measure the quality attributes
from the experience along design and transformation tasks.
Completeness: a coverage analysis of the main features
considered important in MDE including the following.

4.4.1 Desirable Features from MDE Tools

Feature 1: Platform independence: Also known as PIM
support [33], it evaluates the capacity to model the PIM
application at a high abstract level.

Feature 2: Multiview representation: Also known as
PSM support [33], it evaluates the capacity to automatically
generate a PSM model for a chosen target platform.

Feature 3: Platform adherence: Also defined in [33],
it states whether multiple target platforms are supported.

Feature 4: Evolution: Also known as Application evo-
lution (Changeability) [33] [34], observes if model changes
should be done in PIM level and implies new execution of
transformations.

Feature 5: Interoperability: Relates to model im-
port/export (tool interoperability) [33], observes the support
for exporting models in XMI format.

Feature 6: Flexibility: From [33], accounts for the flex-
ibility to change the transformation process and model re-
finements.

Feature 7: Correctness: From [33], accounts for model
validation in order to check consistency with its metamodel.

Feature 8: Expressiveness: Also called complete-
ness [33] [35], observe if all domain concepts are needed.

Feature 9: Traceability: From [33], accounts for mod-
els traceability.

Feature 10: Reverse engineering: From [33], accounts
for Code-to-model and PSM-to-PIM transformations.

www.astesj.com 180

http://www.astesj.com


T. P. Damo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 174-187 (2019)

Feature 11: Built on standards: From [33], accounts
for the use of standarized technologies.

Feature 12: Well defined concepts: Adopted from [34],
observes if there are no contradictions between concepts of
the models.

Feature 13: Code generation: Feature from [35], ac-
counts for how complete is the generated application code.

4.4.2 Metrics

Metrics for estimating the completeness of the features:

CFx = 1 − ((44 −Cov)/44)

Where CFx is the completeness for a feature x, 44 is
the maximum value rank for each feature, and Cov is the
computed by:

Cov = (T D + PD + NA + PA + T A)

Where Cov is the coverage for a feature, as the sum of
the following values posted by each respondent: TD is 0
(zero) and replaces the survey value for “Totally disagree”;
PD is 1 (one) and replaces the survey value for “Partially
disagree”; NA is 2 (two) and replaces the survey value for
“Not agree or disagree”; PA is 3 (three) and replaces the
survey value for “Partially agree”, and; TA is 4 (four) and
replaces the survey value for “Totally agree”;

Thus, at the end of the quasi-experiment, a question-
naire was filled out in a Google Forms, were the participants
should rate different criteria, where those for feature analysis
are built on a five point Likert scale (0=worst, 4=best) for
the analysis of the proposed infrastructure.

5 M4PIA Assessment

In order to evaluate the applicability of the proposed solution,
this section presents the impressions noticed by the 11 users
previously mentioned. Such impressions were collected af-
ter the users modeled a simplified Gas Compression System
(GCS). The model was further used to generate the control
software in the MPA tool and the simulation software in the
EMSO tool. All related development, including the PIM
model design and the transformation executions, was done
within the Eclipse environment.

The simplified GCS consists of one surge tank (a knock-
out drum with a flaring valve), one output header, and two
one-stage compressors. A stage of a compressor has one
heat exchanger, one suction drum, one compression element,
and one recycle valve. The output header has one expor-
tation valve and two gas-lift output valves. Such system
is illustrated in Figure 5. The present case study has 11
equipment, with a total of 36 attributes and 2 methods.

Pexp

Output Header

Compression
Element

Surge Tank
(Knockout Drum)

Flaring Valve
(Pressure Relief)

Heat Exchanger

Recycle Valve
(Control)

Suction Drum

Exportation Valve
(Control)

Gas-lift Valves
(Control)

Compressor Stage

One-Stage Compressor

Exportation Line

Figure 5: Simplified Gas Compression System

The work in the Eclipse tool can be summarized
as follows. After creating a new project, the designer
must create a PIM using the Eclipse tree structure. To
illustrate how the designer interacts with Eclipse, Fig-
ure 6 shows the instantiation of three equipments from
the GCS: Compression Element, Compressor, and
Compression System. The former contains the follow-
ing attributes: Flow, Suction/Discharge Pressures,
and Suction/Discharge Temperatures. The latter
has as attributes: Power, Surge Tank, Output Header,
and a List of Compressors. It also has the method
Calculate Power of the Compression System.

Figure 6: Illustration of the EMF tree structure

To model an equipment on both MPA and EMSO soft-
ware platforms, the developers should seek out for general-
ization. For example, a compression system may have one or
more compressors and a compressor may have one or more
stages. Hierarchy is also highly desired, for example, a valve
can be specialized in pressure relief or control valve, just
as a tank can be specialized in surge tank or just a knockout
drum. Given that in EMF the PIM is developed using a tree
structure, as shown in Figure 6, the UML class diagram from
Figure 7 was created to better illustrate the designed PIM.

Figure 7: Class Diagram of the Simplified Gas Compression System PIM
Model

www.astesj.com 181

http://www.astesj.com


T. P. Damo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 174-187 (2019)

After the PIM model development, the M2M transforma-
tions for MPA and EMSO platforms were performed. The
PSM models were refined according to the specificity of each
platform and it was possible to automatically generate the
necessary source code to implement the compression system
on the target platforms by applying the M2T transformations.
In total, 245 effective lines of code were automatically gen-
erated for MPA and 117 for EMSO. One should recall that
effective LOC means that comments and blank lines are not
counted.

5.1 Preliminary Analysis

The system developed on this study can be considered small
if compared to other existing applications, which can be
five times bigger. In order to better illustrate the impact
that the use of M4PIA can have on the development of the
applications of this domain it is shown some data from a
native MPA application example, which aims the detection
and treatment of hydrate plug formation in gas pipelines of
a floating production storage and offloading (FPSO). The
numbers presented in Table 1 allow us to observe that an
application with 50% more equipment classes (right on the
table) can have twice the total amount of attributes and more
than 12 times the number of methods. Observing the num-
bers regarding LOCs, the FPSO application is above 1K
LOC. So it is not difficult to conclude that generating such
code automatically – like M4PIA infrastructure does – can
potentially save many working hours.

Table 1: Comparison of Domain Applications

GCS FPSO
Class of Equipment 11 17

Total Amount of Attributes 36 74
Total Amount of Methods 2 25

Effective Lines of Code (LOC) - MPA 245 1297
Instantiated Equipment 19 621

Instantiated Control Points 73 2428

5.2 Feature Analysis

In the following it is present data collected through a feature
analysis, which allowed us to understand participants per-
ceptions about the overall M4PIA infrastructure. The goal
is to understand initial expectations of the overall approach
introduced in the first video, so that their perception could
help on the execution of the controlled experiment.

Figure 8 provides the answers to the analysis of Feature 1
- The approach allows to: model the application at platform
independent level (PIM), at a high level of abstraction of
the target problem used in the implementation (simulation,
supervision, operation and control of industrial plants of
the petrochemical industry. In this sense, nine from eleven
students agree that this is an important feature provided in
M4PIA infrastructure.

Figure 9 provides the answers to the analysis of Fea-
ture 2 - The approach allows: automatic generation of the
platform-specific model (PSM) for the chosen target problem
(simulation, supervision, operation and control of industrial
plants in the petrochemical industry). Thus, nine from eleven

students agree that this is an important feature provided by
the infrastructure.

Figure 8: Analysis of Feature 1: Platform independence

Figure 9: Analysis of Feature 2: Multiview representation

Figure 10 provides the answers to the analysis of Feature
3 - The approach allows: automatic generation of code for
multiple target platforms. Seven participants agree that this
is an important feature provided by the infrastructure, where
five of them only partially agree. Thus, feature 3 should be
planned for improvement.

Figure 10: Analysis of Feature 3: Platform adherence

Figure 11 provides the answers to the analysis of Fea-
ture 4 - The approach supports the evolution of applications
through model to model and model to code transformations.
In this sense, nine from eleven students agree that this is
an important feature provided by the M4PIA infrastructure.
In fact, evolution is one of the greatest benefits promoted
by MDE approaches for automated integration [14], and
M4PIA is on a solid ground to allow this feature for their
future users.

www.astesj.com 182

http://www.astesj.com


T. P. Damo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 174-187 (2019)

Figure 11: Analysis of Feature 4: Evolution

Figure 12 provides the answers to the analysis of Feature
5 - The approach supports model interoperability. That is, it
is evaluated whether these are exported and imported in a
standard way, such as those provided by OMG. Seven agree
that this is an important feature provided by the infrastruc-
ture, where five of them only partially agree. Three answers
were uncertain, and this is because OMG supports lots of
other standards not handled in M4PIA.

Figure 12: Analysis of Feature 5: Interoperability

Figure 13 provides the answers to the analysis of Feature
6 - The approach supports flexibility to change the transfor-
mation process and model refinements. Eight respondents
agree that this is an important feature that should be provided
by the infrastructure. Three answers were also uncertain,
and this is because they did not scaled the problem through
the demonstration.

Figure 13: Analysis of Feature 6: Flexibility

Figure 14 provides the answers to the analysis of Fea-
ture 7 - The approach supports the validation of the mod-
els to verify consistency with their respective metamodels.
Eight respondents agree with that statement, concluding that
M4PIA provides this as an important feature for designers.
Consistency in design is an essential feature in a MDE-based
process that needs the correct code generation. It can only
be ensured with a rich set of OCL rules [36].

Figure 14: Analysis of Feature 7: Correctness

Figure 15 provides the answers to the analysis of Fea-
ture 8 - The approach is expressive and allows to express
all the concepts of the represented problem domain. Nine
from eleven respondents agree that this is a design feature
associated with M4PIA. Thus, since the ability of express
domain concepts is a requirement for DSL development, we
conclude that the provided metamodels satisfy the modeling
needs of the presented context.

Figure 15: Analysis of Feature 8: Expressiveness

Figure 16 provides the answers to the analysis of Fea-
ture 9 - The approach supports the traceability of models.
Nine from eleven respondents agree that this is a design
feature associated with M4PIA. Trace is promoted through
model-to-model transformations and are used for configura-
tion management issues [37].

Figure 16: Analysis of Feature 9: Traceability

Figure 17 provides the answers to the analysis of Fea-
ture 10 - The approach supports reverse engineering from
code to model. This statement was detected as an issue
from the current version of M4PIA. first experimental trial.
This feature is only implemented as a preliminary version of
the infrastructure developed in ANTLr parser, not include
in the provided Eclipse experimental package. In order to
configure a reverse engineering into the Eclipse package, we
are starting the development of reverse engineering using

www.astesj.com 183

http://www.astesj.com


T. P. Damo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 174-187 (2019)

MODISCO. So the answers for this feature analysis were
also confused.

Figure 17: Analysis of Feature 10: Reverse engineering support.

Figure 18 provides the answers to the analysis of Feature
11 - The approach is heavily based on standards for build-
ing DSLs and model transformations. Nine from eleven
respondents agree that this is an important feature associated
with M4PIA. One of the answers reasoned that the adopted
technologies is not a benefit.

Figure 18: Analysis of Feature 11: Built on standards

Figure 19 provides the answers to the analysis of Feature
12 - There are no contradictions between the concepts of
models in the M4PIA infrastructure. Here only five agree
that the metamodels are well characterized, while five are
still confused and suggested that they would have a stronger
position with a better characterization of the context from
the Petrochemical industry.

Figure 19: Analysis of Feature 12: Focused domain specific entities

Figure 20 provides the answers to the analysis of Feature
13 - The complete application code can be generated. six
from eleven respondents agree that this is an important fea-
ture associated with M4PIA. Almost half the respondents or
disagree or did not have sufficient information to conclude
about that.

Figure 20: Analysis of Feature 13: Code generation

5.3 Final Remarks
Figure 21 presents the coverage analysis of the features after
applying the metric. The highest possible score for each
feature is 44. Figure 23 shows the dispersion bloxplot graph.
Therefore, these graph demonstrates that M4PIA infrastruc-
ture is considered relevant for the stated problem.

Figure 21: Coverage analysis of all the features

Finally, Table 2 presents the analysis of completeness of
each analyzed feature. This data is also shown in Figure 22.
The average of results from coverage is 72.73%, a good in-
dex suggesting the relevance to the MDE context. Thus, this
suggests that we are on the way to achieve benefits reported
by other MDE studies as well [14].

Figure 22: Completeness analysis of all the features.

5.4 Threats to Validity
As discussed by [32], studies of applicability using fea-
ture analysis experiment are usually target of the following

www.astesj.com 184

http://www.astesj.com


T. P. Damo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 174-187 (2019)

Table 2: Analysis of completeness after the feature analysis

Feat 1 Feat 2 Feat 3 Feat 4 Feat 5 Feat 6 Feat 7 Feat 8 Feat 9 Feat 10 Feat 11 Feat 12 Feat 13
Uncovered 22.73% 20.45% 34.09% 22.73% 31.82% 27.27% 27.27% 22.73% 18.18% 43.18% 20.45% 34.09% 38.64%
Covered 77.27% 79.55% 65.91% 77.27% 68.18% 72.73% 72.73% 77.27% 81.82% 56.82% 79.55% 65.91% 61.36%

Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

0 1 2 3 4

Feature 1
Feature 2
Feature 3
Feature 4
Feature 5
Feature 6
Feature 7
Feature 8
Feature 9

Feature 10
Feature 11
Feature 12
Feature 13

Figure 23: Boxplot of the analyzed features

threats to validity: 1) Benefits are difficult to quantify, 2) Ben-
efits directly observable from the task output, 3) Relatively
small learning time, and 4) Tool/method user population very
varied. In the following, we present other threats conforming
to [38].

5.4.1 Construct Validity

Feature analysis presents social threats to construct valid-
ity. In order to mitigate the Hypothesis guessing, before
executing the experiment we: 1) presented the context of
the problem; 2) presented the context of MDE tools; and
3) presented our goals, where we would evaluate their intu-
itiveness in using the M4PIA approach for each planned task
along three different phases. These experimental tools were
also important to mitigate the other two threats: Evaluation
apprehension and Experimenter expectations. In order to
mitigate the apprehension threat, an external executor for this
quasi-experiment was used (the third author). This makes
the study less biased, avoiding the interest in positive results,
which could occur when the study is executed by the tool
creators. The experiment executor also ensured the selection
of subjects without any expectation about the evaluated tool,
making clear their responsibility in feature analysis to rank
M4PIA accordingly to the thirteen best MDE practices.

5.4.2 Internal Validity

This study was planned as a controlled experiment to be
executed in three distinct phases: 1) the first one is to test
the applicability of M4PIA; 2) the second one is the manual
execution of the overall process, scoping design and codifi-
cation tasks, performed without M4PIA; and 3) the last is
the execution of the process with M4PIA. Along the exe-
cution of the first phase in the first trial, we observed that
the internal validity threat called “mortality” would happen
for the next phases due to the scarce available time from

subjects. In order to mitigate this threat, and thus ensuring
we would not loose subjects, we decided that participants
could execute the experiment at home along three weeks. In
this sense, they followed the video tutorials for execution of
each requested task in a quasi-experiment rather than a fully
controlled experiment, as initially planned. Therefore, in
order to ensure the internal validity, the independent variable
“time to accomplish each task” was not used.

5.4.3 External Validity

The results observed for feature analysis of M4PIA infras-
tructure are not generalized yet. For a such, we would need
to repeat this study with, at least, three other subject profiles:
1) experts in physical plants presented on the development
of simulation, control, and supervisory applications for the
petrochemical industry; 2) experts both in physical plants
and MDE; and 3) experts both in physical plants, MDE and
software acquisition. Likewise, the threat “interaction of
selection and treatment” was not mitigated, and will not
gonna be while this experiment is not repeated with different
subject profiles. Since our subjects are not experts in the
problem domain, i.e. they are trainees in physical plants
adopted by petrochemical industry, but they are experts in
Software Engineering tool selection and software acquisition
discipline, this study is also target of the threat “interaction
of setting and treatment”. We mitigated this threat through
nine video-tutorials, shared in the experimental package,
which by the way are considered of high instructive quality.

5.4.4 Conclusion Validity

This study presents an associated threat, which is its low
statistical power, as the evaluation presented was applied to
only eleven participants. It happens that, for a feature analy-
sis, the random heterogeneity of the subjects compensates
the low statistical power, as it provides different perspectives

www.astesj.com 185

http://www.astesj.com


T. P. Damo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 174-187 (2019)

when evaluating the tool. Likewise, the subjects present two
distinct evaluators profiles: half working on companies as
professional software engineers and half characterized as
students, where two of them are finishing the undergraduate
school in Software Engineering. Thus, our conclusions are
moderated and drawn accordingly to the statistical power
provided.

6 Conclusions and Future Works
The current paper presented M4PIA, an MDE solution that
facilitates the design and development of equipment classes
for simulation, control, and operation of applications devoted
for the petrochemical industry. It contains three metamod-
els, which is a rich material in respect to formalizing the
representation of the elements that constitute petrochemical
plants and the related control structure. These metamodels,
together with the developed model transformation engines,
serve to provide automatic code generation.

The conducted evaluation showed that the majority of
the 13 features considered important in the scope of MDE
are properly covered by the proposed M4PIA. Solutions to
improve those features that were not highly ranked, like
reverse engineering, are already under development. More-
over, as future work it is possible to state that M4PIA should
evolve towards allowing even non-programmers (like plant
engineers/designers) to describe plant structures and thereby
providing additional help to develop the required applica-
tions. Therefore, a graphical modeling language might be
adopted.

Conflict of Interest The authors declare no conflict of
interest.

Acknowledgment Firstly we thank Cenpes/ Petrobras for
the finance support that made this work possible. Thanks
are also given to: (i) Tecgraf/PUC-Rio Institute team for the
outstanding support in respect to MPA-related issues; (ii)
Prof. Rafael de Pelegrini Soares (UFRGS) for his support in
respect to the EMSO platform; (iii) the students from UNI-
PAMPA/Alegrete that did not measured efforts to perform
the proposed evaluation protocol.

References
[1] International Electrotechnical Commission, “Iec 61131: Pro-

grammable controllers – part 3: Programming languages,” standard,
2003.

[2] International Electrotechnical Commission, “Iec 61499: Function
blocks standard,” standard, 2005.

[3] The International Society of Automation, “Isa 106: Procedure au-
tomation for continuous process operations,” standard, 2013.

[4] E. Satuf, S. F. Pinto, and B. Q. Dias, “Sistema automático de alin-
hamento para a plataforma de rebombeio autônomo PRA-1,” in V
Congresso Rio Automação, (Rio de Janeiro, RJ, Brasil), Inst. Brasil.
de Petroleo, Gás e Biocombustı́veis - IBP, 2009.

[5] R. B. France and J. M. Bieman, “Multi-view software evolution: A
UML-based framework for evolving object-oriented software,” in
ICSM, pp. 386–395, 2001. https://10.1109/ICSM.2001.972751.

[6] M. Vöelter and I. Groher, “Handling variability in model transfor-
mations and generators,” in Companion to OOPSLA 2007, pp. 1–8,
ACM, 2007.

[7] P. Mohagheghi, Evaluating Software Development Methodologies
Based on their Practices and Promises, pp. 14–35. Frontiers in Artifi-
cial Intelligence and Applications, 2008. https://doi.org/10.3233/978-
1-58603-916-5-14.

[8] R. P. Soares and A. R. Secchi, “EMSO: A new environment for mod-
elling, simulation and optimization,” in 13th European Symposium on
Computer Aided Process Engineering, pp. 947–952, Elsevier Science
Publishers, 2003. https://doi.org/10.1016/S1570-7946(03)80239-0.

[9] D. Batory, E. Latimer, and M. Azanza, “Teaching model driven engi-
neering from a relational database perspective,” pp. 121–137, 2013.
https://doi.org/10.1007/978-3-642-41533-3 8.

[10] V. Aranega, A. Etien, and S. Mosser, “Using feature model
to build model transformation chains,” pp. 562–578, 2012.
https://doi.org/10.1007/978-3-642-33666-9 36.

[11] R. S. P. Maciel, R. A. Gomes, A. P. F. Magalhães, B. C.
da Silva, and J. P. B. Queiroz, “Supporting model-driven devel-
opment using a process-centered software engineering environ-
ment,” Autom. Softw. Eng., vol. 20, no. 3, pp. 427–461, 2013.
https://doi.org/10.1007/s10515-013-0124-0.

[12] P. Mohagheghi, M. A. Fernandez, J. A. Martell, M. Fritzsche, and
W. Gilani, “Mde adoption in industry: Challenges and success criteria,”
vol. 5421, pp. 54–59, 2009. https://doi.org/10.1007/978-3-642-01648-
6 6.

[13] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Em-
pirical assessment of mde in industry,” in 33rd International Con-
ference on Software Engineering, ICSE ’11, pp. 471–480, 2011.
https://doi.org/10.1145/1985793.1985858.

[14] P. Mohagheghi, W. Gilani, A. Stefanescu, M. A. Fernandez, B. Nord-
moen, and M. Fritzsche, “Where does model-driven engineering help?
experiences from three industrial cases.,” Software & Systems Model-
ing, vol. 12, pp. 619–639, july 2013. https://doi.org/10.1007/s10270-
011-0219-7.

[15] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortés, and M. Hinchey,
“An overview of dynamic software product line architectures
and techniques: Observations from research and industry,” Jour-
nal of Systems and Software, vol. 91, no. 0, pp. 3–23, 2014.
https://doi.org/10.1016/j.jss.2013.12.038.

[16] R. Monteiro, G. Zimbrao, and J. Moreira de Souza, “Col-
laborative evolution process in mdarte: Exchanging solutions
for information systems development among projects,” in Com-
puter Supported Cooperative Work in Design (CSCWD), 2014
IEEE 18th International Conference on, pp. 569–574, May 2014.
https://doi.org/10.1109/CSCWD.2014.6846907.

[17] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G. Reg-
gio, “Relevance, benefits, and problems of software mod-
elling and model driven techniques-a survey in the italian in-
dustry,” J. Syst. Softw., vol. 86, pp. 2110–2126, aug 2013.
http://dx.doi.org/10.1016/j.jss.2013.03.084.

[18] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Assess-
ing the state-of-practice of model-based engineering in the embedded
systems domain,” pp. 166–182, 2014. https://doi.org/10.1007/978-3-
319-11653-2 11.

[19] J. Whittle, J. Hutchinson, M. Rouncefield, B. Håkan, and H. Rogardt,
“A taxonomy of tool-related issues affecting the adoption of model-
driven engineering,” Software & Systems Modeling, pp. 1–19, 2015.
http://dx.doi.org/10.1016/10.1007/s10270-015-0487-8.

[20] P. Mohagheghi and V. Dehlen, Where Is the Proof? - A Review of Expe-
riences from Applying MDE in Industry, pp. 432–443. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2008. https://doi.org/10.1007/978-
3-540-69100-6 31.

[21] B. Selic, “On software platforms, their modelling with uml 2, and
platform-independent design,” in 8th IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, ISORC’05,
pp. 15–21, 2005. https://doi.org/10.1109/ISORC.2005.40.

[22] L. Rose, E. Guerra, J. Lara, A. Etien, D. Kolovos, and R. Kolovos,
“Genericity for model management operations,” Software & Systems
Modeling, vol. 12, no. 1, pp. 201–219, 2013.

[23] L. B. Becker and C. E. Pereira, “SIMOO-RT-an object-oriented frame-
work for the development of real-time industrial automation systems,”
IEEE Transactions on Robotics and Automation, vol. 18, pp. 421–430,
Aug 2002. https://doi.org/10.1109/TRA.2002.802933.

www.astesj.com 186

http://www.astesj.com


T. P. Damo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 174-187 (2019)

[24] K. C. Thramboulidis, “Using UML in control and automation: a
model driven approach,” in Industrial Informatics, 2004. INDIN ’04.
2004 2nd IEEE International Conference on, pp. 587–593, June 2004.
https://10.1109/INDIN.2004.1417414.

[25] S. M. Becker, T. Haase, B. Westfechtel, and J. Wilhelms, “Integra-
tion tools supporting cooperative development processes in chemical
engineering,” in Proc. of Integrated Design and Process Technology
(IDPT-2002), Pasadena, California, Citeseer, 2002.

[26] C. Vidal, C. Fernández-Sánchez, J. Dı́az, and J. Pérez, “A model-
driven engineering process for autonomic sensor-actuator networks,”
International Journal of Distributed Sensor Networks, vol. 11, no. 3,
p. 684892, 2015. https://doi.org/10.1155/2015/684892.

[27] D. Hästbacka, T. Vepsäläinen, and S. Kuikka, “Model-driven
development of industrial process control applications,” Journal
of Systems and Software, vol. 84, no. 7, pp. 1100–1113, 2011.
https://doi.org/10.1016/j.jss.2011.01.063.

[28] V. Vyatkin, “Software engineering in industrial automa-
tion: State-of-the-art review,” IEEE Transactions on In-
dustrial Informatics, vol. 9, no. 3, pp. 1234–1249, 2013.
https://doi.org/10.1109/TII.2013.2258165.

[29] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF:
Eclipse Modeling Framework. Pearson Education, Inc., 2 ed., 2008.

[30] “Acceleo mda generator,” 2013. Av. at http://www.acceleo.org.

[31] OMG, “Meta object facility version 2.0 query/view/transformation
specification,” tech. rep., OMG, 2005.

[32] B. Kitchenham, S. Linkman, and D. Law, “Desmet: a methodology
for evaluating software engineering methods and tools,” Computing
Control Engineering Journal, vol. 8, pp. 120–126, June 1997.

[33] “An Evaluation of Compuware OptimalJ Professional Edition as an
MDA Tool,” tech. rep., Department of Computer Science - The Uni-
versity of York and King’s College London, 2003.

[34] P. Mohagheghi, V. Dehlen, and T. Neple, “Definitions and approaches
to model quality in model-based software development – A review
of literature,” Information and Software Technology, vol. 51, no. 12,
pp. 1646–1669, 2009. https://doi.org/10.1016/j.infsof.2009.04.004.

[35] C. F. Lange and M. R. Chaudron, “Managing model quality in UML-
based software development,” in Software Technology and Engineer-
ing Practice, 2005. 13th IEEE International Workshop on, pp. 7–16,
IEEE, 2005. https://doi.org/10.1109/STEP.2005.16.

[36] P. Andersson and M. Höst, “Uml and systemc - a comparison and
mapping rules for automatic code generation,” vol. 10, pp. 199–209,
2008. https://doi.org/10.1007/978-1-4020-8297-9 14.

[37] J. Vara, V. Bollati, A. Jiménez, and E. Marcos, “Dealing with
traceability in the mdd of model transformations,” Transactions
on Software Engineering, vol. 40, no. 6, pp. 555–583, 2014.
http://dx.doi.org/10.1109/TSE.2014.2316132.

[38] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer,
2012.

www.astesj.com 187

http://www.acceleo.org
http://www.astesj.com

	Introduction
	Background
	Advanced Control in the Petrochemical Industry
	MPA Operation and Control Software
	EMSO Simulation Software

	Challenges Related with MDE Usage
	Related Works

	Proposed M4PIA Infrastructure
	M4PIA Metamodel
	MPA and EMSO Metamodels
	M2M and M2T Transformations

	Evaluation Method
	Context Selection
	Experiment Design
	Variables
	Data Analysis
	Desirable Features from MDE Tools
	Metrics


	M4PIA Assessment
	Preliminary Analysis
	Feature Analysis
	Final Remarks
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity


	Conclusions and Future Works

