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 Clustering is one of the well-known unsupervised learning methods that groups data into 
homogeneous clusters, and has been successfully used in various applications. Fuzzy C-
Means(FCM) is one of the representative methods in fuzzy clustering. In FCM, however, 
cluster centers tend leaning to high density area because the sum of Euclidean distances in 
FCM forces high density clusters to make more contribution to clustering result. In this 
paper, proposed is an enhanced clustering method that modified the FCM objective 
function with additional terms, which reduce clustering errors due to density difference 
among clusters. Introduced are two terms, one of which keeps the cluster centers as far 
away as possible and the other makes cluster centers to be located in high density regions. 
The proposed method converges more to real centers than FCM, which can be verified with 
experimental results. 
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1. Introduction  

Clustering, one of the representative unsupervised learning 
methods, is a method for partitioning data into groups of similar 
objects and is one of the major techniques in pattern recognition. 
Since Zadeh [1] proposed the fuzzy set that represents the idea of 
partial membership described by a membership function, fuzzy 
clustering has been widely studied and applied in various areas [2]. 
Clustering combined with deep learning also has attracted much 
attention in recent years [3]. 

 In clustering, Fuzzy C-Means (FCM), generalized by Bezdek 
[4], is one of the most well-known methods. Although FCM is a 
simple and effective method, one of the shortcomings is that low-
density cluster center moves towards high-density clusters because 
of the sum of Euclidean distances used in FCM. In real world data, 
it is more common that the data consist of clusters having different 
densities. Preventing the cluster distortion due to density 
difference is, therefore, one of the main problems to be solved in 
clustering especially in real world applications. 

If the centers of some clusters are distorted, test data may 
belong to wrong clusters, which affects, in particular, the data 
points placed near the cluster boundary, and may cause a decrease 
in overall performance even with a small number of mis-clustered 
points. 

There have been several variants of FCM that use cluster 
density, but most of the methods introduce an additional step to 
estimate cluster density and density estimation is performed 
independently from clustering, which has a disadvantage of 
additional computation [5, 6]. Even worse the estimation itself 
cannot be accurate as real world data do not follow any known 
distribution in general. 

In this paper, a new clustering method that can solve the bias 
of cluster centers due to density difference is proposed. The 
proposed method has little increase in computational complexity 
and density estimation proceeds simultaneously with clustering. 
The proposed clustering method adds two terms to the objective 
function of FCM to reduce the sensitivity to cluster density. The 
first term represents the sum of distances between two cluster 
centers. This reduces the phenomenon that a low-density cluster 
center is attracted to a high-density cluster center by keeping 
cluster centers as far away as possible. However, if the centers are 
simply scattered and placed on the feature space boundary, the first 
term may have a small value. Therefore, the second term that 
represents the sum of the distances between data points and cluster 
centers is added so that cluster centers are located in high density 
regions.  

Clustering error decreases with a large value in the first term, 
while it decreases with a small value in the second term. 
Experimental results show that FCM-CDI (FCM with Cluster 
Density Immunity), the enhanced FCM with two additional terms, 
is more likely to converge to real cluster center than FCM does. 
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In the next section, fuzzy clustering, especially FCM is 
summarized. Section 3 is devoted to develop an enhanced new 
clustering method through the introduction of new terms in the 
objective function of FCM. Experimental results are given in 
Section 4 and discussion in Section 5. 

2. Fuzzy C-Means 

Clustering is a method to make data belong to a specific cluster 
based on the concept of similarity. Fuzzy clustering is a way to 
extend this further, introducing the concept of incomplete 
membership in fuzzy so that data can be partly belonged to more 
than one clusters. Various methods for clustering has been 
proposed for a long time and one of the representative methods is 
FCM proposed by Bezdek [4]. FCM can be represented as a 
constrained optimization problem [7, 8]. Given N d-dimensional 
data points 𝑋𝑋 = {𝑥𝑥𝑖𝑖|1 ≤ 𝑖𝑖 ≤ 𝑁𝑁, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝐷𝐷}, the objective function 
of (1) should be minimized to divide data points into C clusters. 

 𝐽𝐽𝐹𝐹𝐹𝐹𝐹𝐹 = ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚�𝑣𝑣𝑗𝑗 − 𝑥𝑥𝑖𝑖�
2𝐶𝐶

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1 = ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑𝑖𝑖𝑖𝑖2𝐶𝐶

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1  (1) 

where uij is the membership of the ith data point xi to the jth cluster, 
vj is the center of the jth cluster, m is a fuzzifier constant, usually 2 
(1 < m). dij is the distance between the ith data point xi and the 
center of the jth cluster vj. In this paper, Euclidean distance is used 
to calculate the distance between a data point and a cluster center. 

One data point xi can be belonged to more than one cluster in 
FCM. However, the degree of belonging to each cluster, that is, the 
membership is different from each other, and the degree of 
belonging to C clusters should satisfy the constraint that the sum 
of total membership should be one, often called sum-to-one 
constraint. 

 ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝐶𝐶
𝑗𝑗=1 = 1 (2) 

The membership values and cluster centers that minimize the 
objective function of (1) while satisfying the constraint of (2) can 
be obtained by iterative optimization method using the update 
equations in (3) and (4) derived from a Lagrange equation. 

 𝑣𝑣𝑗𝑗 =
∑ 𝑢𝑢𝑖𝑖𝑖𝑖

2 𝑥𝑥𝑖𝑖
𝑁𝑁
𝑖𝑖=1
∑ 𝑢𝑢𝑖𝑖𝑖𝑖

𝑚𝑚𝑁𝑁
𝑖𝑖=1

 (3) 

 𝑢𝑢𝑖𝑖𝑖𝑖 =

1

�𝑣𝑣𝑗𝑗−𝑥𝑥𝑖𝑖�
2

∑ 1

�𝑣𝑣𝑘𝑘−𝑥𝑥𝑖𝑖�
2

𝐶𝐶
𝑘𝑘=1

 (4) 

FCM has been successfully used for many problems in its 
original or modified form for a given problem since it was firstly 
introduced, but the existence of numerous variants is a proof that 
FCM is not good for all problems. This paper also proposes a 
modified FCM to solve the problem of finding wrong cluster 
centers when FCM is applied to the data composed of clusters with 
different densities. 

3. FCM with Cluster Density Immunity 

In the presence of clusters with different densities in FCM, 
some cluster centers moves toward a high density cluster because 

FCM is based on the sum of Euclidean distances (or variations) 
between cluster centers and data points [9, 10]. That is, each data 
point 𝑥𝑥𝑖𝑖(1 ≤ 𝑖𝑖 ≤ 𝑁𝑁)  has the same effect on FCM objective 
function. There are methods of assigning different weight to each 
data point according to its density, but estimating densities of all 
data points require a lot of computation and it is not possible to 
estimate the density accurately. Therefore, in this paper, two terms 
are added to the objective function of FCM so that the density can 
be effectively reflected with small increase in computation 
compared to FCM. 

The first one is the term that makes the distance between two 
cluster centers as far away as possible. The objective function of 
adding the sum of distances between two cluster centers is shown 
in (5) [11]. 

 𝐽𝐽1 = ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖2 �𝑣𝑣𝑗𝑗 − 𝑥𝑥𝑖𝑖�
2𝐶𝐶

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1 − α∑ ∑ ‖𝑣𝑣𝑎𝑎 − 𝑣𝑣𝑏𝑏‖2𝐶𝐶

𝑏𝑏=1
𝐶𝐶
𝑎𝑎=1  (5) 

where α (> 0) is a constant indicating the rate at which the center 
sparsity is included in the objective function. The second term in 
(5) is the sum of the distances between two cluster centers. The 
larger the distance is, the smaller the objective value becomes. The 
cluster centers obtained by optimizing the objective function J1 are 
located as far away as possible, but there can be one problem. As 
the value of α increases, cluster centers may move away from the 
actual cluster centers, and in the extreme case, cluster centers may 
be located in data-independent regions. 

In order to reduce the side effect of the second term in (5), there 
is a need for a method defines candidate regions where cluster 
centers can come in addition to making cluster centers far away. In 
this paper, it is assumed that the candidate regions’ densities are 
high. However, as mentioned before, the computational 
complexity is high and the accuracy is low in direct density 
estimation, sum of distances between a data point and a cluster 
center is used to estimate the density indirectly. As cluster center 
moves to a high density region, the sum of distances between a 
cluster center and a data point becomes small. The new objective 
function where the sum of distances between a cluster center and 
a data point is added to the objective function of FCM can be 
written as (6) [12]. 

 𝐽𝐽2 = ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖2 �𝑣𝑣𝑗𝑗 − 𝑥𝑥𝑖𝑖�
2𝐶𝐶

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1 + β∑ ∑ �𝑣𝑣𝑗𝑗 − 𝑥𝑥𝑖𝑖�

2𝐶𝐶
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  (6) 

where β (> 0) represents the ratio of reflecting the degree to which 
cluster centers are located in high density regions to the objective 
function. The second term, added to the objective function of 
FCM, is the sum of distances between a cluster center and a data 
point. The smaller the distance is, the smaller the objective 
function becomes. The cluster centers obtained by optimizing the 
objective function J2 are located in high density regions, but there 
is one problem. In the extreme case, if all the cluster centers are 
located at one position with the highest density, (6) can be 
minimized. 

As explained above, it is difficult to effectively remove the 
influence of cluster density difference by using only one of the two 
proposed terms. Therefore, this paper proposes FCM-CDI (FCM 
with Cluster Density Immunity) using two terms together. The 
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objective function of FCM-CDI is shown in (7), which allows 
cluster centers to be located in high density regions while keeping 
cluster centers as far away as possible. 

𝐽𝐽𝐹𝐹𝐹𝐹𝐹𝐹−𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖2 �𝑣𝑣𝑗𝑗 − 𝑥𝑥𝑖𝑖�
2𝐶𝐶

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1   

(7) 
 −α∑ ∑ ‖𝑣𝑣𝑎𝑎 − 𝑣𝑣𝑏𝑏‖2𝐶𝐶

𝑏𝑏=1
𝐶𝐶
𝑎𝑎=1   

 +β∑ ∑ �𝑣𝑣𝑗𝑗 − 𝑥𝑥𝑖𝑖�
2𝐶𝐶

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1   

=  ∑ ∑ (𝑢𝑢𝑖𝑖𝑖𝑖2 + 𝛽𝛽)�𝑣𝑣𝑗𝑗 − 𝑥𝑥𝑖𝑖�
2𝐶𝐶

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1   

 −α∑ ∑ ‖𝑣𝑣𝑎𝑎 − 𝑣𝑣𝑏𝑏‖2𝐶𝐶
𝑏𝑏=1

𝐶𝐶
𝑎𝑎=1   

The Lagrange equation [13] can be obtained from (7) and the 
sum-to-on constraint in (2). 

𝐿𝐿 = ∑ ∑ (𝑢𝑢𝑖𝑖𝑖𝑖2 + 𝛽𝛽)�𝑣𝑣𝑗𝑗 − 𝑥𝑥𝑖𝑖�
2𝐶𝐶

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1   

(8)  −α∑ ∑ ‖𝑣𝑣𝑎𝑎 − 𝑣𝑣𝑏𝑏‖2𝐶𝐶
𝑏𝑏=1

𝐶𝐶
𝑎𝑎=1   

 −∑ 𝜆𝜆𝑖𝑖�∑ 𝑢𝑢𝑖𝑖𝑖𝑖 − 1𝐶𝐶
𝑗𝑗=1 �𝑁𝑁

𝑖𝑖=1   

where λ = [λ1, λ2, … , λ𝑁𝑁]  is a Lagrange multiplier vector. By 
taking a partial derivative with respect to uij, one can obtain 

 𝜕𝜕𝐿𝐿
𝜕𝜕𝑢𝑢𝑖𝑖𝑖𝑖

= 2𝑢𝑢𝑖𝑖𝑖𝑖�𝑣𝑣𝑗𝑗 − 𝑥𝑥𝑖𝑖�
2 − 𝜆𝜆𝑖𝑖 (9) 

One can obtain (10) by equating (9) to zero and solving it for 
uij. 

 𝑢𝑢𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑖𝑖
2�𝑣𝑣𝑗𝑗−𝑥𝑥𝑖𝑖�

2 (10) 

(10) must satisfy the constraint in (2). Substituting (10) into (2) 
and solving it for λ𝑖𝑖  gives (11). 

 𝜆𝜆𝑖𝑖
2

= 1
∑ 1

�𝑣𝑣𝑗𝑗−𝑥𝑥𝑖𝑖�
2

𝐶𝐶
𝑗𝑗=1

 (11) 

Using (10) and (11), one can obtain (12), which is the update 
equation for uij in FCM-CDI. 

 𝑢𝑢𝑖𝑖𝑖𝑖 =

1

�𝑣𝑣𝑗𝑗−𝑥𝑥𝑖𝑖�
2

∑ 1

�𝑣𝑣𝑘𝑘−𝑥𝑥𝑖𝑖�
2

𝐶𝐶
𝑘𝑘=1

 (12) 

The update equation in (12) is the same as the one in FCM. In 
FCM-CDI, the membership is determined based on the Euclidean 
distance between a cluster center and a data point, as in FCM. 

The Lagrange equation can be partially differentiated with 
respect to vj to obtain the update equation for a cluster center. 

 𝜕𝜕𝐿𝐿
𝜕𝜕𝑣𝑣𝑗𝑗

= 2∑ (𝑢𝑢𝑖𝑖𝑖𝑖2 + 𝛽𝛽)�𝑣𝑣𝑗𝑗 − 𝑥𝑥𝑖𝑖�𝑁𝑁
𝑖𝑖=1 − 2𝛼𝛼∑ �𝑣𝑣𝑗𝑗 − 𝑣𝑣𝑏𝑏�𝐶𝐶

𝑏𝑏=1
𝑏𝑏≠𝑗𝑗

 (13) 

(13) can be converted into (14) with the introduction of 
2𝛼𝛼�𝑣𝑣𝑗𝑗 − 𝑣𝑣𝑏𝑏� which values zero. 

 𝜕𝜕𝐿𝐿
𝜕𝜕𝑣𝑣𝑗𝑗

= 2∑ (𝑢𝑢𝑖𝑖𝑖𝑖2 + 𝛽𝛽)�𝑣𝑣𝑗𝑗 − 𝑥𝑥𝑖𝑖�𝑁𝑁
𝑖𝑖=1 − 2𝛼𝛼∑ �𝑣𝑣𝑗𝑗 − 𝑣𝑣𝑏𝑏�𝐶𝐶

𝑏𝑏=1  (14) 

 (14) is more simple to use than (13) as a condition 𝑏𝑏 ≠ 𝑗𝑗 is 
removed. One can obtain (15) by equating (14) to zero and solving 
it for vj. 

 𝑣𝑣𝑗𝑗 =
∑ (𝑢𝑢𝑖𝑖𝑖𝑖

2 +𝛽𝛽)𝑥𝑥𝑖𝑖
𝑁𝑁
𝑖𝑖=1 −𝛼𝛼 ∑ 𝑣𝑣𝑏𝑏

𝐶𝐶
𝑏𝑏=1

∑ (𝑢𝑢𝑖𝑖𝑖𝑖
2 +𝛽𝛽)𝑁𝑁

𝑖𝑖=1 −𝛼𝛼 ∑ 1𝐶𝐶
𝑏𝑏=1

=
∑ (𝑢𝑢𝑖𝑖𝑖𝑖

2 +𝛽𝛽)𝑥𝑥𝑖𝑖
𝑁𝑁
𝑖𝑖=1 −𝛼𝛼 ∑ 𝑣𝑣𝑏𝑏

𝐶𝐶
𝑏𝑏=1

∑ (𝑢𝑢𝑖𝑖𝑗𝑗
2 +𝛽𝛽)𝑁𝑁

𝑖𝑖=1 −𝛼𝛼𝛼𝛼
 (15) 

When compared (15) with (3), cluster center update equation 
in FCM, it can be seen that the two new terms are applied in 
denominator and numerator respectively. The update equation 
obtained when β = 0 in (15) corresponds to the update equation for 
the objective function J1 in (5). In addition, the update equation 
obtained when α = 0 in (15) corresponds to the update equation for 
the objective function J2 in (6). That is, the objective functions in 
(5) and (6) correspond to special cases of FCM-CDI. 

FCM-CDI can be expressed as shown in Figure 1 using the 
update equations in (12) and (15). The convergence condition in 
Figure 1 is that the maximum difference of two center positions 
between two successive iterations is smaller than or equal to 𝜖𝜖1(=
10−3) and the maximum difference of two membership values 
between two successive iterations is smaller than 𝜖𝜖2(= 10−4). 

U : membership (𝑢𝑢𝑖𝑖𝑗𝑗 , 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁, 1 ≤ 𝑗𝑗 ≤ 𝐶𝐶) 
V : cluster center (𝑣𝑣𝑗𝑗 , 1 ≤ 𝑗𝑗 ≤ 𝐶𝐶) 

1: initialize V and U with random values 
2: initialize t = 0 
3: do 
4: t ← t + 1 
5: calculate U using (12) 
6: calculate V using (15)  
7: while ∃�𝑢𝑢𝑖𝑖𝑖𝑖,𝑡𝑡−1 − 𝑢𝑢𝑖𝑖𝑖𝑖,𝑡𝑡� > 𝜖𝜖1 or ∃�𝑣𝑣𝑗𝑗,𝑡𝑡−1 − 𝑣𝑣𝑗𝑗,𝑡𝑡� > 𝜖𝜖2 
8: return U and V 

Figure 1: FCM-CDI Algorithm 

4. Experimental Results 

Although there are various FCM variants, there is no way to 
reduce the clustering error due to density difference through the 
modification of FCM itself. Therefore, in this paper, FCM and 
FCM-CDI are compared, and three different objective functions in 
(5), (6) and (7) are used to demonstrate the effect of each term on 
clustering result. 

Figure 2 shows the typical results of FCM and FCM-CDI. The 
data were randomly generated with Gaussian distributions with the 
centers provided in advance. The cluster on the upper right has 500 
data points and the other 2 clusters have 100 data points to make 
density difference. 

As shown in Figure 2-(a), the cluster center is shifted toward a 
high density cluster in FCM, but the cluster center is approaching 
to the actual cluster center in FCM-CDI. Since clustering is an 
unsupervised learning method, it is difficult to quantitatively 
compare the results. Therefore, in this paper, an error function is 
defined as the sum of distances between the actual cluster center 
used for data generation 𝑉𝑉𝑅𝑅 = {𝑣𝑣𝑅𝑅,𝑗𝑗|1 ≤ 𝑗𝑗 ≤ 𝐶𝐶}  and the cluster 
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center obtained through clustering 𝑉𝑉𝐶𝐶 = {𝑣𝑣𝐶𝐶 ,𝑗𝑗|1 ≤ 𝑗𝑗 ≤ 𝐶𝐶}  as in 
(15). 

 
(a) FCM 

 
(b) FCM-CDI 

Figure 2: Clustering results with data having 3 clusters 

 𝐸𝐸 = ∑ �𝑣𝑣𝑅𝑅,𝑗𝑗 − 𝑣𝑣𝐶𝐶 ,𝑗𝑗�
2𝐶𝐶

𝑗𝑗=1  (15) 

The objective function in (7) requires two constants α and β to 
be determined. In order to determine these constants, ① the α value 
with the smallest average error was experimentally determined 
with the objective function J1 in (5) first. After that ② the β value 
with the smallest average error was experimentally determined 
with the objective function JFCM-CDI. In the second step, the α value 
was fixed to the value obtained in the first step. ③ When J2 is used 
as the objective function, the value obtained in the second step is 
used as the β value. 

Figure 3 shows the average error obtained by varying α value 
for the data in Figure 2. The values shown in Figure 3 are obtained 
by averaging 50 experimental results with the same value of α. 

 

Figure 3: Clustering error with respect to α  on the data having 3 clusters 

As shown in Figure 3, the error decreases as the value of α 
increases. However, if the value of α becomes larger than some 
value, the cluster centers pushed to the place where no real cluster 
centers as well as data points exist and the error increases. The α 
value with the smallest error for the data in Figure 2 was 5.8. 

Figure 4 shows the average error obtained by varying the β 
value. The values shown in Figure 4 are also averages over 50 
experiments. 

 

Figure 4: Clustering error with respect to β on the data having 3 clusters 

Figure 4 also looks similar to Figure 3. As the β value 
increases, the error decreases, but when the β value becomes 
larger, the cluster center shifts to the higher density region. 
Although the candidate region where the cluster center can be 
located is a high density one, high density only is not enough to be 
a candidate for center. The β value with the smallest error for the 
data in Figure 2 was 0.0016. 

Table 1 summarizes the results of applying four objective 
functions to the data in Figure 2. The average error is the error 
averaged over 500 experiments using randomly generated data. 
For α and β, the values obtained in the previous experiments were 
used. 

Table 1: Clustering results with data having 3 clusters 

Method Objective Function Average Error 
FCM JFCM 3.3142 

FCM-CDI 
J1 2.8012 
J2 3.4021 

JFCM-CDI 2.6934 

In FCM-CDI, the first term to make the cluster centers far away 
and the second term to place the cluster center in a high density 
region are introduced. As can be seen from Table 1, FCM-CDI 
showed better results than FCM in data consisting of clusters with 
large difference in density. However, FCM-CDI showed a larger 
error than FCM when only the second term (α = 0) was used. This 
is because cluster centers were randomly initialized [14, 15]. When 
one randomly initialized cluster center is close to another, the two 
cluster centers tends to move to the same position due to the second 
term. Therefore, a larger average error was obtained when only the 
second term was used. However, when both terms were used, the 
best results were obtained among the four methods. In addition, as 
the comparison with respect to initialization methods is completely 
different from the topic covered in this paper, only random 
initialization is considered. 
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Figure 5 shows clustering results applying FCM and FCM-CDI 
to the data composed of four clusters. In the data, the upper right 
cluster has 400 data points and the remaining 3 clusters have 100 
data points. 

 
(c) FCM 

 
(d) FCM-CDI 

Figure 5: Clustering results with data having 4 clusters 

Table 2 summarizes the results of applying four objective 
functions to the data having four clusters as in Figure 5. As before, 
the average error is the error averaged over 500 experiments using 
randomly generated data. 

When there are four clusters, the randomly initialized cluster 
centers are more likely to be close to each other. Therefore, 
compared to FCM, the result with the second term only was much 
worse than that of the previous one. 

Table 2: Clustering results with data having 4 clusters 

Method Objective Function Average Error 
FCM JFCM 1.5130 

FCM-CDI 
J1 1.3012 
J2 1.7218 

JFCM-CDI 1.1026 

5. Conclusion 

In this paper, proposed is a new clustering method to reduce 
the deviation of a cluster center from the actual center due to the 
density difference. The proposed clustering method is based on the 
fact that the centers should be as far away as possible and that the 
cluster center should be located in a high density region. Two new 
terms reflecting these considerations are added to the objective 
function of FCM, which results in more convergence to real 
centers. 

It is true that the proposed method is robust against cluster 
density compared to FCM, but the existence of two constants α and 
β can be an obstacle to its application. Since the ground truth is 
known in this paper, the optimal value was found experimentally. 
However, since clustering is a kind of unsupervised learning, it is 
difficult to evaluate the performance by clustering itself and it 
should be indirectly evaluated by the performance of the whole 
system. Therefore, a method that can determine the optimal α and 
β according to the data given is needed and this is under study. In 
addition, cluster center initialization affects the performance as 
shown in the result, initialization method for the proposed method 
should be examined carefully, which is left as a future study. 
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