

www.astesj.com 244

Automatic Service Orchestration for e-Health Application

Anatolii Petrenko, Bogdan Bulakh*

System Design Department, National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, 03056,
Ukraine

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 31 May, 2019
Accepted: 13 July, 2019
Online :30 July, 2019

 This paper describes an architectural approach to the development of dynamic service-
oriented systems for e-Health using the service orchestration mechanism and semantic
technologies. The main idea is the dynamic synthesis of the complex functionality required
by user or by software agent. This idea should help to build and easily extend the applied
loose-coupled systems without strict dependencies on concrete web services and their
invocation details. A sample scenario of such dynamic orchestration is covered and
analyzed, possible ways of further improvement of this approach are given.

Keywords:
Service orchestration
Semantic technologies
e-Health

1. Introduction

This paper is an extension of work originally presented at the
2018 IEEE First International Conference on System Analysis &
Intelligent Computing (SAIC) [1]. Since then the original research
has been continued in the direction of development of service-
oriented e-Health application. This paper covers more details of
dynamic service orchestration and how it can be applied to the e-
Health software design.

2. Problem Overview

Modern network applications widely use web service
interaction to retrieve or update data. There may be a lot of
interconnected services of different types (like SOAP or REST)
interacting with each other and external third-party services, thus
forming so called “service ecosystem”. The interaction of these
services may be implemented in different ways (see Figure 1):

• “Hard-coded” interaction: direct invocation of the service
at specific URL is fixed in source code with all the
invocation details. In this case even simple relocation of
services to another URLs requires changing (and
consequent recompiling, redeployment, retesting) of all
dependent software modules (other web services, for
instance).

• Services could use service discovery mechanism by means
of some registry (in its simplest case by using some “name
server” to translate service name to concrete URL. UDDI

registry is an advanced example). This makes it easier to
modify and scale the service ecosystem, but services are
still tightly coupled by data formats and interaction patterns.

• Service choreography approach (e.g. “publisher-subscriber”
model) could be implemented by means of some message
broker. This event-driven service architecture consists of
loosely coupled services that can be dynamically connected
to each other through a subscription to different message
types.

• Service orchestration approach: all interactions are
controlled by external orchestration software. In such
system services could be truly agnostic to their
environment while publishing only their interface
description.

It must be noted that in many real-life systems composed of
hundreds of services all of these approaches may be implemented
within a single service ecosystem (forming “heterogeneous”
service ecosystem).

In any case it is only skilled developer who is capable to
organize the inter-service communication to bring some
functionality to the system. It is almost never possible for the end
users to create new functionality without skills and knowledge in
programming. This problem is partly solved by so called
“workflow management systems” (like scientific workflow
systems [2] or engineering ones [3]). Most of service-oriented
workflow systems typically rely on the orchestration approach.

ASTESJ

ISSN: 2415-6698

* Bogdan Bulakh, Email: bogdan.bulakh@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 244-250 (2019)

www.astesj.com

Special Issue on Advancement in Engineering and Computer Science

https://dx.doi.org/10.25046/aj040430

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj040430

A. Petrenko et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 244-250 (2019)

www.astesj.com 245

Figure 1: Some existing service interaction patterns (client could be implemented

as another service as well)

2.1. Problem Definition

This paper focuses on a slightly different issue: how to make it
possible for both users and program agents to request and execute
the desired functionality without any service-level knowledge
(existence of specific services and their interfaces’ details)? In
other words, dependencies between the clients and web services
are forcing developers to update clients when service ecosystem
changes. This costs time and extra QA efforts. We propose an
approach that helps to avoid the update of the clients in case of
changes in service ecosystem and thus makes it easier to maintain
and improve the overall system.

Instead of making calls to specific services, or even
“constructing workflows of services”, software clients can issue
“functionality requests” to some broker. While these requests can
be fulfilled, the clients need no updates. The fulfilment of these
requests could be organized using the orchestration approach, if
there is no single service capable to provide the requested
functionality. This is what we call here a “dynamic semantic-based
orchestration”: the automatic synthesis of a service workflows to
provide the requested functionality (including some goal and
output data). One of the main benefits of the dynamic orchestration
is that service clients and services themselves are not coupled in
any way except the functionality semantics. There is no need to
keep track of web service interface changes on each client, it’s only
a knowledge base about services (which binds functionality
semantics with service invocation details) that should be kept
updated instead.

3. Possible Application Scenarios

There are a lot of application fields for dynamic semantic-
based orchestration. Some of them are listed below.

Scientific and engineering workflows

There are a lot of existing ‘Scientific workflow systems’ and
many of them support invocation of the remote services (Taverna
workflows [4], Apache Airavata [5] etc.). The main problem there
is a high complexity of constructing the service workflows for non-
IT-domain specialists and scientists, because the workflow
elements are bound to concrete services, their operations, and data
formats. With the dynamic semantic-based orchestration the end
users could just set the goals of the orchestration and receive the
automatically built workflow. No need to deal with service-level
details for the end users.

Performance monitoring dashboards

This feature can be implemented in medical (see further),
scientific, engineering, industry production, financial and other
domains. Given the ecosystem of services to fetch different
parameters of the objects to monitor (patients’ health data, the
status of lab equipment or industrial equipment etc.). User needs a
tool that can be used to easily construct and customize the KPIs.
Possible solution: a user describes the functionality he needs in
terms of some knowledge base, and new dashboard indicator will
get its values from the dynamically orchestrated services providing
the functionality requested.

Business analytics and data mining

Same as previous kind of scenario but it also involves the
services for mining new knowledge from existing data helping to
improve existing business processes. These workflows are more
complex, compute intensive and provide valuable information
(insights). It is a service-oriented analytics solution for business
enterprises of different scale. In [6] a workflow management
system for ‘big data’ mining is described. But its workflows are
still composed manually by the end user.

Smart house and IoT

The dynamic semantic-based service orchestration can be used
in controlling IoT devices, e.g. as a part of smart house. For
example, anyone in the smart house environment can easily add
new automation scenario, e.g. to control lighting, climate or
heating or water supply in a smart way, just by describing the
desired functionality. In a similar way this approach can be applied,
say, to control production processes on factories or for stock
management. The PROtEUS++ [7] is a promising example of a
specialized workflow engine for IoT tasks, and by the way it
supports dynamic service discovery using the semantic service
description.

Workflows for e-Health

Workflows for patient’s diagnostics and treatment (DTWf)
could also be implemented with the help of automatic semantic-
based service orchestration. The DTWf typically can contain
invocation of basic services for diagnostics (like service to check
blood pressure, controlling blood pressure data received from
devices or manually entered by the patient), services of patient’s
health status prediction (based on the data provided by other
services) and so on [8]. This application field will be mainly
referred further as it is studied by authors in scope of
implementation of the project of the mobile e-Health platform
development.

http://www.astesj.com/

A. Petrenko et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 244-250 (2019)

www.astesj.com 246

4. Implementation

The main idea of the proposed solution is to hide as much low-
level service interface specifics as possible from the client
(functionality consumer), allowing the client to operate only with
its goals and data. It is similar to how declarative programming
languages (like SQL or SPARQL) differ from imperative ones:
when working in a declarative style you need to specify what goal
to reach but not how it should be reached. You actually don’t worry
about implementation details. Ideally the client just declares the
new computational goal (e.g. “to get specific output results from
specific input data” etc.) without referencing particular services.
He only operates with terms and facts from the knowledge base
that can help him to express his goal. The rest process is automated
by means of automatic service discovery and automated
orchestration.

The solution proposed is based on the following three main
components (also implemented as services), as shown on Figure 2:

• Service for execution (SE) of functionality requests, which
serves as a kind of broker and the single point of access for
clients. It does not only find some concrete web services
able to fulfil the client’s request, but also is responsible for
execution of any service operations and results provision.
In other words, clients don’t ask SE to find some services,
they ask to do some actions, provide input data and wait for
output. In order to fulfill client’s request SE communicates
with other two components.

• Service registry (SR). This service searches for available
services that could provide the requested functionality
(according to registered service’s semantic annotations). In
fact, it is an interface to the knowledge base containing
facts about services and their functions. The second
mission of SR is to find the possible service orchestration
scenario if no single service matches the requested
functionality. Then this scenario is passed to the Service
orchestrator.

• Service orchestrator (SO). This service is responsible for
execution of service workflows, created by SR. Workflows
actually can consist either of a single service, or describe
the orchestration scenario involving multiple services. This
service complies with a SaaS model: new workflows can
be deployed in a cloud infrastructure and can be interacted
via the REST interface (invoked, queried about status and
results, canceled, disposed etc.). It should be noted that
today there are a lot of orchestration tools available. The
orchestrator engine is a core part of SO and it can be
implemented on top of many of existing tools, for example:
BPEL engine, Taverna Workflows, Netflix Conductor (a
microservices orchestration engine).

4.1. Service Registry and Knowledge Base

The SR has an extended functionality compared to UDDI
registries. Instead of binding to standard fields and database
schema, it is based on flexible knowledge base. Administrator-
level users can add new facts or modify existing facts about
services registered and extend the ontology with new classes. The
SR can be queried about services in a similar way like Triple stores
are queried with SPARQL queries. But the functionality of SR is

not limited by simple querying the triple store. It includes the
matchmaking logic helping to construct the complex service
workflow according to the goals set and inputs provided. To do
this the SR should contain the formalized knowledge on web
service interaction details (protocols, procedures, interfaces), and
the knowledge on basic data formats used and how to extract and
transform the data from them (xml, JSON, CSV etc.). That’s why
the knowledge base should consist of domain ontology (to set
goals, to describe services functionality and operations, inputs and
outputs), service ontology (to allow automatic invocation, see
Figure 3), and data formats ontology (to allow automatic data flow
building).

Figure 2: Main components of the proposed solution

Figure 3: Service ontology (fragment)

4.2. Service Matchmaking

Existing standard solutions in service registration like UDDI
are not enough for advanced semantic search. Instead it is proposed
to rely on service ontologies, similar to OWL-S ontology [9],
which will give more relevant results. Service matching can be
done using the semantic proximity of the service ontology
elements (from registry knowledge base and those from the
“request for functionality” query) [10]. In order to compare these
ontology elements, the following elementary proximity
estimations are needed to be computed: proximity of classes,
proximity of classes and instances, proximity of instances,
proximity of predicates. Some service A can be called ‘relevant’ to
some search query R only in case the proximity estimate is higher
than some threshold value MT (see further).

Another aspect is to choose what information should be
included into comparison. It is proposed to use the following
information categories: C (context), IOPE (inputs, outputs,
preconditions, effects) and QoS.

The context C form search query can be formally defined as
any information that could implicitly and explicitly impact the
query generation by user (it can be profile-oriented, history-
oriented, process-oriented, other context). An explicit context is

http://www.astesj.com/

A. Petrenko et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 244-250 (2019)

www.astesj.com 247

directly provided by user, while implicit one is that being gathered
by any automated tool.

The service functionality can be matched by use of IOPE
attributes. The hasInput, hasOutput, hasPrecondition and
hasEffects query attributes (R) are matched against the
corresponding ones from each service’s description (A). Matching
can be estimated as a one of following outcomes: “exact match”,
“plug-in” match when R is a subclass of A, “subsume” when R and
A have common partial match, “failure” is A and R have nothing
common.

QoS attributes include service price, performance, reliability,
stability, scalability, security etc. The total match level estimation
combines those estimations mentioned above:

M(R, A) = KC MC + KI MI + KO MO + KP MP + KE ME +

+ KQoS MQoS > MT

If we group IOPE and C requirements as functional
requirements (FR) and QoS we refer to as non-functional
requirements (NFR), and if we use mismatch-level (or level of
matching error) as an indicator of matching failure (for practical
reasons: to be able to use mismatch penalties instead of proximity
estimations), then we’ll have the following general matching error
function:

E(R, A) = KFR EFR + KNFR ENFR < ET

Both measures M and E could be used combined. First, we look
for the single service with the highest M(R,A). If M(R,A) > MT
then we accept it as a service providing requested functionality. If
M(R,A) < MT then we need to compose a workflow of services
with less possible E(R,A) < ET. In order to estimate E for a
workflow of services {A} we can use this general approach:

E(R, {A}) = KFR EFR* + KNFR ENFR*,

where * marks summary values for a workflow, for instance,
internal inputs and outputs that are connecting services are
excluded from error estimation.

During the practical implementation of a e-Health product with
less than hundreds of service operations and without third-party
services we found it sufficient to consider only IOE requirements
(E for effects in form of functionality requested), without NFR. So,
we used the following brief construct for the functionality request:

R = (F, {I}, {O}),

where F (function) – action to perform, I (input) – available
inputs specification, O (output) – requested outputs specification.
In a practical implementation we used JSON format, flexible
enough to express complex I and O descriptions (see Figure 4).
Here is a simple example of request to SE to get user name by ID:

{
 "operation":"get",
 "input":[
 {
 "name":"user",
 "properties":[
 {
 "name":"id",
 "value":"user001"

 }
]
 }
],
 "output":[
 {
 "name":"user",
 "properties":[
 {
 "name":"firstname"
 },
 {
 "name":"lastname"
 }
]
 }
]
}

Figure 4: Inputs and outputs specification format

4.3. e-Health Application

The are many research papers studying the use of service-
oriented architecture for medical software [11,12], and some of
them mention service orchestration as a part of medical software,
but this paper focuses on slightly different things, related to
orchestration mechanism itself.

Workflow composition or, in other words, automatic semantic-
based orchestration scenario synthesis, makes is easier to extend
existing functionality of the system. It could be possible to get this
new functionality even without development of new services:
when the new functionality request could be satisfied with an
orchestration scenario involving existing services. Before
describing an example of such scenario, let us briefly describe the
e-Health application that uses the proposed approach.

The e-Health application we develop is a system providing a
virtual office for doctors and patients as an online point of their
communication. It is useful in conditions when the nearest medical
center is far from patient’s home. In this situation the initial
diagnostics can start online, and in many cases, it could be enough
to help patient without real-life visit to the hospital. Also, the
virtual doctor’s office remembers all the patient treatment history
and can provide some intelligent tool helpful for doctors and
patients, like prediction of the crisis state of patients’ health based
on ordinary indicators like blood pressure, glucose level or
complains about pain. This is an example of extended functionality
that can be built by re-using the existing functions. The general

http://www.astesj.com/

A. Petrenko et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 244-250 (2019)

www.astesj.com 248

architecture blocks of this e-Heath application are presented on
Figure 5.

Figure 5: Virtual doctor’s office using the dynamic semantic-based

orchestration

Most of the office’s functionality is not implemented just by
back-end logic querying the database. There is a separate layer
called “applied services” which is actually an API to do everything
on patient’s record. Conversations with doctors, diagnoses,
treatment prescriptions, health indicators, reports – all of this is
implemented with atomic REST services (we can call them
microservices). The back-end logic’s responsibility is to serve
front-ends’ requests and gather all necessary data for displaying to
the user. Any call to operate patient’s data is made as a
“functionality request” with function, inputs and outputs provided
to SE. This way we can truly separate back-end development and
microservice API development, and only need to reflect important
changes in a knowledge base of SR.

4.4. Service Workflow Composition Example

One of the examples where the dynamic orchestration takes
place is the prediction of diabetes, heart problems and so on based
on the last entered health indicators. This prediction is just a hint
for the doctor and should only attract his attention to some possible
problems (by displaying a warning), so there was no need to
achieve very high accuracy of prediction. To develop such
“intelligent” hint test datasets were analyzed, prepared and used
for neural network training. This ended up as a separate service
with one single output (binary warning flag) and a number of
inputs (like weight, insulin and glucose level and much more)
developed by separate team with machine learning background. In
order to get the diabetes warning flag, the back-end developers just
made a simple request: “given patient’s ID and current date, run
diabetes prediction and return warning flag”. At the same time the
SR’s knowledge base contains information about inputs and
outputs of all services, including the diabetes predictor.

Let’s take a look at the process of execution of that request
mentioned above. After JSON describing this request is accepted
and parsed by SR, the SR itself starts to search for single service
capable to satisfy the request. It founds the service operation with
function briefly described like “Diabetes prediction”. But this
service operation has a lot of inputs, despite it has the output and
function matching the request. So, no single service is found, and
SR tries to build the workflow. It finds a lot of combinations of
atomic services, but the best one (according to matching error
penalties) is presented on Figure 6. It is executed, and the result is
returned to the back-end caller (the client).

The Figures 7 and 8 shows two screens of a mobile client
developed using the described diabetes prediction workflow to
display a warning icon (the application’s language is Ukrainian).
The first screen is a menu screen for a doctor with a following
action on a selected patient: indicators, chat, log, complains,
diagnosis, treatment. The second screen shows some sample
conversation between a doctor and his patient in a chat mode.

When a doctor selects someone of his patients, the diabetes
prediction workflow is called, and the client displays or hides the
warning icon (a circle with Ukrainian letter “D” inside) at the top
of the screen related to that patient (seen on both screens on Figures
7 and 8). In a similar way any other predictor (e.g. for heart
problems) is called via the dynamic semantic-based orchestration.

4.5. Evaluation of Results

The performance penalties for this sophisticated process of
services invocation (compared with direct REST services calls)
could be estimated through the workflow execution time Texec :

Texec = TM + TV + TWF + TS

 where TM is a matchmaking time, TWF is a workflow execution
related overhead (depends on workflow execution engine speed),
TS is a total time for the execution of the longest sequence of
service invocations in a flow (web services execution time). There
is also TV which is a validation time of the composed workflow.
Currently we don’t use any validation technique, and fully rely on
the consistency of the knowledge base during the automated
workflow synthesis (TV = 0). But there is a risk of the incorrect
behavior of the composed workflows (like infinite loops) even if
they were constructed without any inconsistency with the
knowledge base, so we need formal modeling techniques. Petri
nets [13] and process calculus [14] could be successfully used to
model web service workflows and related tools will be further
integrated to the system to improve its reliability.

Figure 6: Diabetes prediction workflow (inputs and output are marked bold)

http://www.astesj.com/

A. Petrenko et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 244-250 (2019)

www.astesj.com 249

When comparing hard-coded scenario execution (Texec’ = TS)
with dynamic orchestration Texec, the dynamic and flexible
approach lasts longer by Texec - Texec’ = TM + TWF, which was 3 to
5 seconds in case of small service registry (about 30 service
operations) we used for diabetes prediction scenario. It should be
noted that this time is seriously affected by the knowledge base
facts quantity and quality (seriously impacts TM).

 In order to avoid same process of workflow synthesis each time
a doctor needs a hint, the resulting workflow is cached in SR’s
knowledge base. The overhead is minimal and almost equal to
(TWF + TS) because in this case Texec’’ = TC + TWF + TS, where TC is
a cache search time and TC << TM). But in case of any changes in
the knowledge base the cache should be cleared. This is a trade-off
we get instead of updating the clients: the knowledge base update
leads to reasoning on the updated facts and repeating the service
matchmaking again from scratch. But found these knowledge base
related activities less time-consuming then updating, redeploying
and QA of all client applications.

Figure 7: A ‘patient menu’ sample screen of the mobile e-Health application
with diabetes warning icon at the top.

Figure 8: Chat screen of the mobile e-Health application, with diabetes
warning icon at the top.

5. Conclusions and Future Work

 This paper presented a description of a software architectural
approach that aims to bring more flexibility to service-oriented
systems and make service dependencies weaker. The main idea is
to provide additional “abstract request layer” to the well-known
service orchestration mechanism. The abstract request for
functionality is being matched with the knowledge base of
available web services to perform actual calculations.

 The approach described has been successfully applied to the e-
Health system, and it gives promising results for this application
field, since e-Health applications typically have a lot of functions
and data sources that could be accesses with the web service
interfaces.

 In our opinion this approach has the following benefits not only
for e-Health domain but for other application fields as well:

• Service clients and web services are fully separated and
could be developed independently by the teams of
different development tools and background. The only
dependency is the knowledge base (and service registry
that uses it). Service ecosystem can be easily updated
without changes to its clients. Only the knowledge base
needs to be updated.

• It is possible to develop the UI for users to allow them
easily construct the functionality requests and thus extend
the functionality without help from software developers.
This is one direction for our future work. It includes the
development of workbench where users can test their
requests and development of UI editor to control the
displaying of requested results.

• In case of small service registries, the matchmaking
process and workflow synthesis will not harm
performance. This is true in case of avoiding usage of some
existing heavyweight tools for orchestration like BPEL
engines as the core for service orchestrator. The problem
is that these tools like BPEL engines were basically
designed for static workflows, not dynamic ones.

 Of course, this vision has its drawbacks:

• The e-Health software must be very robust. But it has to be
noted that the absence of hard-coded reference to concrete
services there is a non-zero probability that SR will find
wrong services or does not find anything thus producing
wrong results returned by SE. From this point of view the
only way in assuring the correct behavior is continuous
testing of functions used by clients. When client gets
updated with new functionality request call, this call
should be added to the test plan. The improvements in QA
of the solution presented are planned for our further work.
At the same time formal models like Petri nets or process
calculus can help to test the behavior of the dynamically
generated workflows automatically.

• Another option to make sure correct services are matched
to a request is to make only strict logical assertions by SR.
No partial matching possible, service or workflow is either
matching the request or not. In this case the clients will

Diabetes warning icon is on

http://www.astesj.com/

A. Petrenko et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 244-250 (2019)

www.astesj.com 250

need to use only strict request constructs and only correct
ontology terms it their requests, thus making the new
programming language to express the functionality
requests. This will make it harder to add the new requests
and make them work by end users and even programmers.

• In case of large registries of services, the matchmaking
process could be time-consuming, since a lot of services
could be “paired” according to their inputs and outputs and
their functionality. So this solution will not work as
expected in a system with hundreds of service operations
and third-party services. And there will be problems if
there are too many fine-grained microservices in the
ecosystem even if it does not include external third-party
services. In this case the matchmaking process should be
restricted of simplified since e-Health software should
operate without lags.

• Another problematic issue is the correct management of
the knowledge base. Each time a new service is developed
and should be registered in the system, there are a lot of
work to do in the knowledge base. In fact, the knowledge
base is the most important component of such system and
requires very accurate updates, permanent logging of
changes and intensive QA. Together with service registry
it forms the fragile bottleneck of the system.

• Such complex interaction patterns could bring additional
problems in security and data privacy. This is very
important for e-Health applications working with personal
medical data. But this aspect is out of scope of this paper.

Other possible directions for the future work are: research on
the specifics of orchestrating services that control IoT devices and
moving orchestrator service to the cloud infrastructure.

Acknowledgment

This paper describes partial results of the ongoing fulfillment
of the project “The development of the modern service systems
by the example of mobile medical system for a front-line
settlements in the military conflict zone” by the National
Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic
Institute”.

References

[1] A.I. Petrenko, B.V.Bulakh, “Intelligent service orchestration as a service”,
Proc. of 2018 IEEE First International Conference on System Analysis and
Intelligent Computing (SAIC), 8-12 October, 2018, Kyiv. - pp 201-205.
https://doi.org/10.1109/saic.2018.8516723

[2] B. Ludäscher, M. Weske, T. McPhillips, S. Bowers, “Scientific Workflows:
Business as Usual?”, Lecture Notes in Computer Science. (2009) 31-47.
https://doi.org/10.1007/978-3-642-03848-8_4.

[3] V. Ladogubets, B. Bulakh, V. Chekaliuk, O. Kramar, “Employing BPEL
Engines for Engineering Calculations”, The Experience of Designing and
Application of CAD Systems in Microelectronics: 12-th Intern. Conf.
«CADSM’2013», 19-23 February 2013, Polyana-Svalyava (Zakarpattya),
Ukraine: proc. – Lviv, 2013. – P. 427–430. – ISBN 978-617- 607-393- 2

[4] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers et al. "The
Taverna workflow suite: Designing and executing workflows of Web
Services on the desktop, web or in the cloud". Nucleic Acids Research. 41
(Web Server issue): W557–W561. doi:10.1093/nar/gkt328. PMC 3692062.
PMID 23640334.

[5] M. Pierce, S. Marru, L. Gunathilake, T. A. Kanewala et al., "Apache Airavata:
Design and Directions of a Science Gateway Framework," 2014 6th

International Workshop on Science Gateways, Dublin, 2014, pp. 48-54. doi:
10.1109/IWSG.2014.15

[6] J. Kranjc, R. Orač, V. Podpečan, N. Lavrac, M. Robnik-Sikonja..
“ClowdFlows: Online workflows for distributed big data mining”. Future
Generation Computer Systems 68, 2017. pp. 38-58.
doi:10.1016/j.future.2016.07.018.

[7] R. Seiger, S. Huber, P. Heisig. “PROtEUS++: A Self-managed IoT Workflow
Engine with Dynamic Service Discovery”. 9th Central European Workshop
on Services and their Composition (ZEUS). 2017. pp 90-92.

[8] O.O. Petrenko, A.I. Petrenko. “Cyber-Physical Medical Platform for Personal
Health Monitoring”, Journal of Scientific Achievements (JSA), Australia, vol.
2, issue 8, 2017, pp. 24-28. ISSN: 2207-4236

[9] OWL-S: Semantic Markup for Web Services. [online] Available
https://www.w3.org/Submission/OWL-S/.

[10] Петренко І.А., Петренко О.О. “Автоматизовані методи пошуку і
відкриття необхідних сервісів”, Вісник Університету «Україна», Серія
«Інформатика, обчислювальна техніка та кібернетика», №1(17), 2015, С.
55-64

[11] S. Rodriguez Loya, K. Kawamoto, C. Chatwin, and V. Huser, “Service
Oriented Architecture for Clinical Decision Support: A Systematic Review
and Future Directions”. Journal of Medical Systems, December 2014, 38(12):
140. https://doi.org/10.1007/s10916-014-0140-z

[12] A. Celesti, M. Fazio, F. Galán Márquez, A. Glikson, H. Mauwa, A. Bagula,
F. Celesti, and M. Villari. How to Develop IoT Cloud e-Health Systems Based
on FIWARE: A Lesson Learnt. Journal of Sensor and Actuator Networks.
2019, 8(1), 7; https://doi.org/10.3390/jsan8010007

[13] W. van der Aalst, K.M. van Hee. Workflow management: models, methods,
and systems. MIT press, 2004. 368 p.

[14] M. Weidlich, G. Decker, M. Weske. “Efficient Analysis of BPEL 2.0
Processes using pi-Calculus”. Proceedings of the IEEE Asia-Pacific Services
Computing Conference (APSCC’07). – Japan, 2007. – P. 266-274.

http://www.astesj.com/

	3. Possible Application Scenarios
	4. Implementation
	5. Conclusions and Future Work
	Acknowledgment
	References

