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 Improving the hand motor skills in post-stroke patients through rehabilitation based on 
movement intention derived signals from the brain in conjunction with robot-assistive 
technologies are explored. The experimental work is conducted using 
Electroencephalogram based Brain-Computer Interface (EEG-BCI) system and the 
AMADEO hand rehabilitation robotic device. Two protocols using visual-cues and then 
using a 2-Dimensional (2D) interactive game is presented on a computer screen to healthy 
subjects as well as post-stroke patients performing the hand movements. The movement 
intention signals during hand movement are detected through the Support Vector Machine 
(SVM) classifier.  The intent signals produced at six distinct electrodes are investigated to 
determine electrodes contributing most to the SVM classifier’s performance. Overall, the 
game protocol shows better classification results for both healthy and stroke patients 
compared to the visual-cues protocol. FC3 is found to be the most consistent electrode site 
for the detection of the motor intention of the hand for both protocols. In the experimental 
work, average classification accuracy for the visual-cues protocol of 67.56% for healthy 
subjects and 56.24% for stroke patients were obtained. For the game protocol, the classifier 
accuracy produced for healthy participants was 79.7% and for the post-stroke patients was 
66.64%. The results confirm that the intention signal is more pronounced during more 
engaging activities, such as playing games, for both healthy and stroke subjects. Therefore, 
the effectiveness of rehabilitation therapy for post-stroke patients could be significantly 
enhanced using interactive and engaging exercise protocols.  
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1. Introduction  

This paper is an extension of work presented in 18th  IEEE 
International Conference on Bioinformatics and Bioengineering 
(BIBE) [1]. Stroke is the main cause of prolonged disability among 
adults [2]. The most common impairment occurs when a stroke 
victim has a motor loss of limb(s) on one side of the body causing 
difficulty with walking and ability to perform activities of daily 
living. There are many types of rehabilitation therapies currently 
being practiced, and others being investigated. One of the therapies 
types being investigated and coming into clinical practice is Robot-
Assisted therapy. Advancement in robotic technology over the last 
decade has led to increasing interest in this type of therapy. For 
example, Ang et al. [3] used the MIT-Manus robot for a 
randomized control study with 26 stroke patients to restore their 
arm movement. Similarly, a haptic knob robot is being used for 

arm rehabilitation of stroke survivors with positive outcomes [4]. 
A state-of-the-art robotic device called AMADEO, designed for 
fine finger motor skill improvement was tested on eight cortical 
stroke patients and resulted in a 35% increase in their hand 
movement after multi-session training [5]. All these strategies of 
post-stroke rehabilitation depend on some neurological adaption 
that occurs in the patient’s brain to restore the impaired function of 
the limb. The brain’s ability to adapt to new neural changes, even 
in adulthood, is called the neuroplasticity or brain plasticity [6]. 

Brain-Computer Interface (BCI) has an ability to utilize 
neuroplasticity mechanisms to improve motor function of post-
stroke patients during their rehabilitation process [7]. Enhanced 
motor intention improves motor execution which in turn is fed 
back to the rehabilitation process. The mechanism of 
neuroplasticity reinforces the neural pathways which control the 
movement, leading to functional and motor recovery of the 
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patients [8]. Brain signals that have been used in BCI systems 
include Electroencephalogram (EEG), Magnetoencephalography 
(MEG), ElectroCorticoGraphy (ECoG), as well as functional 
Near-InfraRed Spectroscopy (fNIRS). Amongst these modalities, 
EEG is the most common modality employed to drive various BCI 
systems [9]. It is popular because it is not an invasive approach to 
record the brain’s electrical activities, and because EEG signals 
have the highest resolution in time-domain [10]. 

Many studies demonstrate applications of EEG-BCI systems to 
detect movement intention for various upper-limbs, such as 
movements of the arm [11-15], elbow [16], [17] and wrist [18] and 
hand [19-23] for post-stroke rehabilitation.   

A self-paced reaching arm movement with the help of a haptic 
device has been studied in [11] and [12]. In a single-trial EEG 
protocol, the intention of reaching movement was detected about 
500 ms before the actual limb movement [11]. In the follow-up 
study, the movement directions were decoded up to 76% accuracy 
for healthy subjects and up to 47% accuracy for stroke patients 
performed with their impaired arm [12]. Ibanez et al. [13] recruited 
six healthy subjects and six stroke patients to detect the movement 
onset of voluntary arm reaching action. The results showed that the 
True Positive Rate (TPR) of the classifier for healthy participants 
was 74.5±13.8% while for stroke patients, TPR was 82.2±10.4%. 
In another study, four chronic post-stroke patients participated in 
eight training sessions based on arm reaching actions [14]. The 
intention for the movement was decoded using an EEG-BCI 
system which then triggered Functional Electrical Stimulation 
(FES) for further assistance to perform the task. The authors stated 
that their protocol correctly classified about 66% of movements 
with an average detection latency of 112±278 ms. Moreover, 
clinical tests and kinematics results proved the feasibility of the 
designed intervention for post-stroke recovery. 

Among many classifiers, Support Vector Machine (SVM) 
classifier is commonly used in intent detection of limb movement. 
For example, Frisoli et al. [15] proposed a gaze-based robot-
assisted arm movement protocol in which the real-time movement 
of a robotic device was controlled by the intended signal of 
subjects. A Motor Imagery (MI) based EEG-BCI system was used 
to detect the intention signal through SVM. The authors reported a 
classification accuracy rate of 89.4±5% for robot-based movement 
mode. Similarly, Hortal et al. [16] measured the classification 
performance of SVM by designing a hybrid EEG-BCI system 
composed of an exoskeleton device and FES for elbow movement. 
The hybrid BCI system was tested using two training protocols 
which were MI-based training protocol and a training protocol 
based on motor intention detection. In the first training protocol, 
the authors achieved a classification accuracy of about 83% for 
healthy subjects and 65.3% for stroke patients, while in the second 
training protocol, the accuracy achieved was approximately 77% 
and 71.6% for healthy and patient groups, respectively.  

Asynchronous EEG-BCI systems are also being deployed for 
motor intent detection of upper limbs. The triggering of a robotic 
device through intention signal was studied by Bhagat et al. [17] 
for elbow joint movement using an asynchronous EEG-BCI robot-
assisted system. The motor intent signal of four chronic stroke 
patients was detected which then triggered an exoskeleton device 
called MAHI-EXO-II to encourage and guide the active 

participation of subjects. The intention signal was detected on 
average −367±328 ms before the actual motor execution. Bai et al. 
[18] also developed an asynchronous BCI protocol for real-time 
and online prediction of the self-paced movement of the wrist. 
Seven healthy subjects were recruited in the study to perform an 
extension of their wrist whenever they wanted. The authors 
successfully predicted the voluntary movement at approximately 
0.6 s before the real execution of the movement.  

The latest applications of EEG-BCI systems have been in 
detecting intention for movement of the hand, which has a greater 
complexity of movement than other upper limbs. The hand 
occupies the largest cortical representation in the motor cortex of 
the brain [24] as well as playing the most vital role in our daily life 
activities. Muralidharan et al. [19] distinguished resting state from 
the extension of fingers by using an open-loop EEG-BCI system. 
They detected attempted finger extension by post-stroke patients 
at about 200 to 600 ms before the actual movement onset. Only 
one EEG channel has been used by Jochumsen et al. [20] to detect 
motor intent signal during palmar grasp action using handgrip 
dynamometer. The signal was then decoded into speed and force. 
They showed that approximately 75% of the movements were 
detected 100 ms before movement onset, and approximately 60% 
of task-related movements were accurately decoded into the force 
and speed levels according to the performed task movements. In a 
separate study, Jochumsen et al. [21] also distinguish between the 
intention for three types of grasp tasks (palmar, pinch and lateral) 
achieving accuracy of 79%, 76%, and 63% respectively during 1-
class, 2-class and 3-class classification problems. Ofner et al. [22] 
classified several arm movements which include hand-opening, 
hand-closing, forearm supination, forearm pronation, elbow 
extension as well as elbow flexion. The authors state that one 
movement can be classified from another with 55% classification 
accuracy. This research group achieved the classification accuracy 
of 93% while classifying grasping actions of hand from its rest 
state compared to the classification results stated by Jochumsen et 
al. in [21] [23]. 

In this study, we combine detection of motor intention signals 
using EEG-BCI system with robot assistive technologies to 
improve the effectiveness of the hand motor skills in post-stroke 
patients. Our first stage of research based on an EEG-BCI system 
and the AMADEO finger-hand rehabilitation robotic device 
(Tyromotion GmbH, Graz, Austria) is reported. The experimental 
setup is designed for classification of movement intention of hand-
closing versus rest state. It consists of two distinct protocols, which 
we refer to as protocol A and protocol B. Protocol A, termed as 
visual-cues protocol, consists of hand-opening and hand-closing 
pictures which are presented to subjects. In protocol B subjects 
played an AMADEO game called Shoot-out. We utilize SVM, 
which is the most common supervised learning algorithm used for 
these classification problems. Intention signal produced at 
different single electrodes’ positions during hand movement is 
analyzed to determine the electrode that is most consistent for the 
accuracy of SVM classifier.  

The rest of the paper is organized as follows. In section 2, the 
experimental platform and experimental set up are introduced.  In 
section 3, the pre-processing of the signals produced in the 
experimental work and the classifications method, the 
classification performance metrics are described. In section 4, the 
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results of the validation of the approach on stroke patients and 
benchmarking against the healthy subjects are presented. Some 
conclusions are finally drawn in section 5.     

2. Experimental Design and Platform 

2.1. Participants 

The participants in the experimental work consisted of healthy 
subjects and post-stroke patients. The healthy subjects consist of 
four male participants with a mean age of 28 years and no history 
of any neurological disorder. Two post-stroke patients both right 
hand dominant were initially assessed through two commonly 
used clinical tests, namely the Motor Assessment Scale (MAS) 
and Fugl-Meyer Assessment (FMA) scale. Table I shows each 
patient’s demographic details as well as their clinical tests scores. 
The Ethics committee at the University of Wollongong approved 
all methods and procedures performed in this experiment (Ethics 
application number: 2014/400). All participants provided written 
informed consent before this study commenced. 

2.2. AMADEO Finger-Hand Rehabilitation Device 

The AMADEO finger-hand rehabilitation device is an end-
effector robot-assistive system specifically developed for hand 
movement recovery of post-stroke patients as shown in Figure 1 
[25]. It has five Degrees-of-Freedom (DoF) allowing both passive 
and active movements of fingers as well as the thumb. The robot 
can generate various patterns of fingers and thumb movements as 
well as subjects can interact with the robotic device through 2D 
games.   

 
(A)                                                          (B) 

Figure 1: (A) AMADEO Finger-Hand Rehabilitation Unit (B) Hand-Arm 
Adjustment Support 

2.3. Acquisition of EEG Signal  

The EEG signals were acquired by deploying a 32 electrodes 
Ag/AgCl Quick-Cap (Compumedics-Neuroscan) in accordance to 
the 10-20 system for positioning electrodes. The electrode 
positioning diagram of the Quick-Cap is given in Figure 2. The 
Grael 4K EEG amplifier was employed in this study which has 
been set to 2048 Hz of sampling frequency. Of the 32 channels, the 

FPz electrode was used as the ground electrode and the CPz was 
set as the reference electrode. Thirty remaining electrodes were 
used for the acquisition of brain signal. In addition, the two 
electrodes were placed below the left eye and on the supraorbital 
ridge to record vertical eye movements and eye-blinks. Moreover, 
two other electrodes placed over the outer canthus of both eyes 
were used to monitor horizontal movements of eyes. 

 
Figure 2: Quick-Cap Electrodes Positions 

2.4. Experimental Setup 

Participants were seated upright on a comfortable chair with 
their right arms attached to the AMADEO hand-arm adjustment 
support unit. During protocol A, each participant was trained to 
focus on visual-cues displayed on a computer screen. Visual-cues 
displaying hand-opening and hand-closing pictures to alert 
subjects to perform these specific hand movements. The hand-
closing pictures were displayed every 5 s, followed by the hand-
opening pictures 1 s later with a 4 s waiting period. This resulted 
in 5 s gap between any two hand-closing visual-cues. Each set 
comprised 23 trials of hand movements during this protocol. 

Of the games available on the AMADEO system, the ‘Shoot-
out’ was chosen for use in protocol B. The playing screen of Shoot-
out game is shown in Figure 3. In this game, the subject closes their 
hand to shoot the drum coming out at equal time intervals. Subjects 
have up to 23 trials of the hand movements in each block. 

 
Figure 3: AMADEO Shoot-out Game 

  

http://www.astesj.com/


M. Butt et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 300-307 (2019) 

www.astesj.com     303 

Table 1: Stroke Patients' Details and Clinical Test Scores 
 

 

  

 

 

All participants performed 6 blocks consisting of 23 trials (6 x 
23 = 138) for both protocols. At each hand-closing event, manual 
event markers were sent to the CURRY 8 (Compumedics, 
Neuroscan) software which was used for EEG acquisition. 
Protocol B was the Shoot-out game of AMADEO, which was more 
interesting and interactive compared to protocol A. We explored 
the hypothesis in this study that whether a stronger motor intention 
signal can be produced and detected through SVM during protocol 
B than protocol A. 

3. Signal Processing for Motor Intention Detection 

The intention signal during hand-closing movements was 
detected by offline analysis of the data for both healthy and stroke 
subjects. The movement intention of a limb produces special EEG 
patterns in specific parts of the brain and such slow event-related 
potential is called Movement Related Cortical Potential (MRCP). 
It appears in the delta frequency band of EEG signal as a direct-
current shifts up to 2 s prior to cue-based as well as self-initiated 
movements [26]. When the person performs the required motor 
action, the MRCP disappears. The continuous EEG signal at the 
selected electrodes is divided into two types of epochs. The first, 
containing MRCP signal is called Move epoch and the second, 
which does not have an MRCP signal, is named as No-Move 
epoch. Different time-domain features of MRCP signal are 
extracted from both these epochs. SVM algorithm is then 
employed to classify Move and No-Move epochs and, therefore, 
detecting intention signal of the hand movement.  

3.1. Pre-processing 

The first step in pre-processing is to filter the EEG signal for 
the frequency range between 0.1-1 Hz  [17] as this narrow range 
of delta band best captures the anticipatory based MRCP [27]. This 
band-pass filtering was applied in three steps: first, a high-pass 
filter with cut-off frequency (fc) of 0.1 Hz was applied; second, for 
re-referencing of signals, a Common Average Reference (CAR) 
filter was applied to all signals; and third, a low-pass filter with fc 
of 1 Hz was applied. Both low-pass and high-pass filters were 4th 
order Butterworth causal filters.  After filtering, the signals were 
down-sampled from 2048 Hz to 20 Hz to increase computational 
efficiency [17]. The CURRY 8 (Compumedics-Neuroscan) 
software was used to perform all the aforementioned pre-
processing steps. 

 
3.2.  Epoch Extraction & Channel Selection 

For further processing, the data were imported into a 
MATLAB toolbox known as ‘EEGLAB’. Generally, MRCP 
signal does not exist 2 s before the onset of movement, all Move 
epochs were extracted from continuous EEG data between -2 s to 

0 s with 0 s indicating the instance of actual motor execution. 
Between 0.5 s to 2.5 s, No-Move epochs were extracted when 
subjects opened or relaxed their hands. Therefore, epoch length 
was fixed at 2 s for both epochs. All Move epochs were inspected 
visually for artifacts, for instances eye-blinks, head movement, 
and other movement-related artifacts, and then these were 
removed from the data. 

The EEG electrodes located over the left hemisphere of the 
brain were only chosen because the right-hand movement was 
considered in this experiment. The electrodes selected were C3, 
FC3, CP3, Cz, T7 and a Short Laplacian (SL) channel calculated 
using the C3-(FC3+Cz+CP3+T7)/4 formula [28]. In literature, the 
C3 channel is most commonly used for right-hand motor intention 
detection using the MRCP signal. The four neighboring electrodes 
of the C3 channel and their linear combination were also 
investigated to determine the best electrode choice for each 
protocol. It is possible that the negative peak of the MRCP exists 
before -1.5 s is due to artifact presence. Therefore, every Move 
epoch was again visually inspected and such Move epochs and 
their counter-part No-Move epochs were deleted to get the final 
processed data which was then used to extract features of MRCP 
signal. 

3.3. Feature Extraction & Classification 
The two time-domain features from both the Move and No-

Move epochs were extracted. These features were the negative 
peak and the slope of the MRCP signal. The Move epochs have 
prominent negative peak and slope of MRCP signal compared to 
No-Move epochs. Based on these time-domain features, the SVM 
classifier differentiates between both epochs. These were plotted 
and outliers were removed (along with their counter-class features) 
before applying the SVM. This prevented biasing the results of 
SVM due to outliers. In each protocol, an average of 10±2 epochs 
was rejected per subject. The Move class was marked with a label 
of ‘1’ and the No-Move class was marked with a label of ‘0’. 
Depending on these input features, the SVM classified between 
class 1 and 0. Three-fourths of the dataset was utilized for training 
data while one-fourth was used as test data for classification.  

3.4. Evaluation of SVM Classifier Performance  
The SVM classifier’s performance was determined based on 

classification accuracy percentage, True Positive Rate (TPR)−also 
known as sensitivity and True Negative Rate (TNR)−also called 
specificity. They were calculated using the relationships given in 
(1), (2) and (3) where True Positive, False Positive, True Negative 
and False Negative were abbreviated as TP, FP, TN, and FN 
respectively. 

   Accuracy=(TP+TN)/(TP+TN+FP+FN)            (1) 

Gender Age Stroke 
type 

Time since 
stroke 

(months) 

Lesion location Paretic 
Hand 

MAS Hand 
Score  
(0-6) 

FMA Hand 
Score  
(0-14) 

Female 64 Ischemic 7  Left pons Right 2 9 

Male 60 Ischemic 4  Left pons & left 
frontal regions 

Right 2 8 
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                   TPR=TP/(TP+FN)                             (2) 

                   TNR=TN/(TN+FP)                            (3) 

Receiver Operating Characteristics (ROC) curve was analyzed 
to determine the classifier’s performance during protocol A and B. 
Moreover, Area Under the Curve (AUC) for the ROC curve was 
calculated for both protocols. In the end, all these performance 
metrics were compared to find out which protocol helps better to 
maintain stronger motor intention level in both healthy subjects 
and stroke patients and therefore, obtaining better classification 
results. In addition, these results also could show which electrode 
was the best choice for intent detection during protocol A and 
protocol B.  

4. Results & Discussion 

The experimental work demonstrated the utility of the 
AMADEO device for rehabilitation of post-stroke patients, while 
also performing the motor intention detection using the described 
SVM algorithm.  

Six electrodes which include C3, FC3, CP3, Cz, T7, and SL 
were chosen to determine the importance of electrode selection in 
intent detection during each protocol. Performance metrics were 
calculated after the SVM application on test data, including 
classification accuracy, TPR, TNR and AUC for ROC. 

4.1. Intent Detection of Stroke Patients 

The performance of the SVM algorithm for detection of hand 
motor intention signal produced by the stroke patients is studied in 
this sub-section. Table II presents the accuracy of the SVM 
classifier at all six selected electrodes for protocols A and B. For 
protocol A, the FC3 electrode shows the maximum accuracy of the 
SVM classifier of about 72%. Whereas, the same electrode shows 
classification accuracy of 89% for intent detection when stroke 
patients perform the hand movement during protocol B. This 
supports our hypothesis that during protocol B, subjects are more 
involved in performing hand movement and are likely to have 
greater classification accuracy as compared to protocol A. The 
same trend is demonstrated by the results of C3, CP3, T7, and SL 
electrodes. However, for electrode Cz, protocol B is showing 
lower classifier’s accuracy than that for protocol A. The list of 
electrodes based on the classification accuracies from high-to-low 
for protocol A is FC3, Cz, SL, C3, T7, and CP3. A similar list for 
the protocol B is FC3, SL, C3, CP3, T7, and Cz. It is clear from 
the classifier accuracy results that for both protocols, FC3 shows 
the maximum classifier performance. However, for protocol B the 
classifier’s accuracy is higher than that for protocol A at all 
electrode sites except Cz.   

4.2. Intent Detection of Healthy Subjects 

      The results of the classifier accuracy for healthy subjects for 
protocols A and B are presented in Table III. The analysis of data 
for healthy subjects shows that protocol B has better accuracy of 
SVM classifier than protocol A, except for the channels Cz and T7. 
With respect to the results acquired for FC3, protocol B has an 
accuracy of SVM classifier of 98% while the classification 
accuracy of protocol A is 86%. From Table III, it is clear that the 
classifier’s accuracy varies in accordance with the selected 
electrode. For protocol A, the electrodes can be listed as FC3, Cz, 

C3, T7, SL, CP3 electrodes can be ranked in order of their 
effectiveness in determining the intent signal. Similarly, for 
protocol B, the ranking is FC3, C3, SL, CP3, Cz, T7. 

Table 2: Accuracy of SVM Classifier for Post-Stroke Patients 

 

 

 

 

 

 

 

 
 

Table 3: Accuracy of SVM Classifier for Healthy Subjects 

 

 

 

 

 

 

 

 

When the Cz electrode from stroke patients’ data as well as 
the Cz and T7 electrodes from healthy subjects’ data were chosen, 
protocol A had slightly better classification accuracy than 
protocol B. There could be many possible reasons for this 
apparent contradiction. The artifact removal is performed using 
visual inspection method so it might be possible that the data at 
Cz and T7 electrodes still contain some artifacts in the test data 
used for protocol B that made the classifier accuracy for protocol 
B less than protocol A. Moreover, the outlier values removal form 
Cz and T7 electrodes might cause loss of large data points for 
protocol B and due to fewer test data values, the performance of 
protocol B has deteriorated.  

4.3. Other Performance Metrics of the SVM Classifier 

      The accuracy alone cannot justify the performance of the 
classifier, therefore, sensitivity (TPR) and specificity (TNR) 
parameters should be also considered. The TPR and TNR values 
show whether the extracted features in Move and No-Move 
classes are distinct enough to be classified accurately by SVM. 
Figure 4 shows bar graph representations of TPR and TNR using 
stroke patients’ data from protocol A at all six electrodes. 
Similarly, Figure 5 shows TPR and TNR values at all selected 
electrodes for protocol B. For protocol A, Figure 4 shows that 

Channel SVM Classifier’s Accuracy (%) 
Protocol A Protocol B 

C3 52.88 81.01 

CP3 26.25 60.16 

FC3 72.22 88.89 

Cz 70.45 34.56 

T7 49.29 51.43 

SL 66.33 83.78 

Channel 
SVM Classifier’s Accuracy (%) 

Protocol A Protocol B 

C3 64.58 92.86 

CP3 57.7 76.3 

FC3 86.25 98.0 

Cz 73.81 70.0 

T7 63 57.69 

SL 60.0 83.33 

http://www.astesj.com/


M. Butt et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 300-307 (2019) 

www.astesj.com     305 

TNR for CP3, FC3, Cz, and SL is significantly lower than its 
corresponding TPR. On the other hand, in the case of T7, TNR is 
slightly higher and slightly lower for C3. However, for protocol 
B, TNR is higher than TPR for each choice of electrode except for 
CP3 and T7 as shown in Figure 5.  
 

Similarly, TPR and TNR values using data of healthy subjects 
for both protocols is shown in Figure 6 and Figure 7. In the case 
of protocol A, Figure 6 demonstrates that TPR obtained for C3, 
Cz and FC3 is higher than its corresponding TNR, whereas, for 
CP3, T7, and SL, the reverse is the case. Figure 7 shows that TPR, 
for all six electrodes, is higher than its corresponding TNR for 
protocol B indicating that the Move class contains the adequate 
features to correctly detect motor intention signal. 

 

Figure 4: Protocol A Stroke Patients Data 

 

Figure 5: Protocol B Stroke Patients Data 
 

ROC curve is another way of comparing the performance of 
the SVM classifier for protocols A and B. Figure 8 shows the 
ROC curve for the FC3 channel, the most appropriate channel for 
intent detection of hand movement for this experiment, for healthy 
participants which shows that protocol B has superior 
performance. 

 

Figure 6: Protocol A Healthy Subject Data 

 

Figure 7: Protocol B Healthy Subject Data 

  
Figure 8: ROC Curve Using FC3 Channel 

The Area Under the Curve (AUC) for ROC is also an 
important factor in assessing the classifier performance. The 
excellent classifier has an AUC value of 1 whereas 0.5 value 
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shows its random guessing behavior. The AUC values for FC3 
channel for both healthy subjects and stroke patients are listed in 
Table IV.  It is found that AUC for protocol B is greater than 
protocol A for both healthy subjects and stroke patients which was 
the expected outcome. Moreover, AUC value for protocol B in the 
healthy group is ~0.95 which is approximately equal to ideal AUC 
value for the classifier. 

Table 4: Area Under the ROC Curve for FC3 Channel 

 

 

 

5. Conclusion 

The utilization of EEG-BCI system together with AMADEO 
robotic rehabilitation system for the functional recovery of the 
hand of the post-stroke patients was reported as the first stage of 
our work. The movement intention for both healthy participants as 
well as post-stroke patients was detected using SVM classifier. 
Two protocols that were based on simple visual-cues and the 
AMADEO 2D game were used to detect the hand-closing 
movement intention vs the resting state. This was followed by an 
evaluation of the SVM classifier performance by selecting 
different single electrodes. The average classifier accuracy of 
67.56% for the visual-cue protocol and 79.7% for the gaming 
protocol was achieved for healthy subjects. Similarly, for stroke 
patients, the classifier accuracy obtained was 56.24% and 66.64% 
for the visual-cue and the game protocols respectively. The results 
demonstrated that the 2D games, for example, AMADEO Shoot-
out were better activities in retaining concentration compared to 
static pictures using visual-cues. We conclude that gaming 
scenarios are preferable for robot-based rehabilitation exercises to 
promote the active participation of the patients. The FC3 electrode 
was found to be the best single electrode for the designed 
experiment with both protocols. Both TPR and TNR were 
important in determining the performance of the classifier, as these 
parameters could indicate whether good results of the classifier 
were obtained either by detecting positive class or negative class 
accurately. In addition to TPR and TNR, it was shown that the 
ROC plot and AUC parameters of the classifier could also be used 
as the performance metric evaluators for the classifier.  
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