

www.astesj.com 388

A Proposal of Control Method Considering the Path Switching Time of SDN and Its Evaluation

Kosuke Gotani1, Hiroyuki Takahira1, Misumi Hata1, 2, Luis Guillen1, Satoru Izumi*, 1, Toru Abe1, 3, Takuo Suganuma1, 3

1Graduate School of Information Sciences, Tohoku University, 980-8577, Japan

2Japan Society for the Promotion of Science, 980-8577, Japan

3Cyberscience Center, Tohoku University, 980-8577, Japan

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 17 June, 2019
Accepted: 31 July, 2019
Online: 16 August, 2019

 Recently, communication demands often change because of the various network services in
companies and individuals. Software Defined Networking (SDN) has emerged as a viable
control paradigm that allows flexible communication, using OpenFlow as its default
standard and enabler. However, when changes happen frequently in SDN networks due to
unforeseen reasons -such as a network failure or topology changes- it takes a long time to
perform all the operations. For instance, to change a routing path, first new paths must be
calculated, then the controller must transmit the commands to the network elements, which
has to process those commands. This process can cause a delay, or even disruption, in the
communication service. Therefore, this paper proposes a network control method to reduce
the time to change a path using OpenFlow.

Keywords:
Software Defined Network
OpenFlow
Path Switching Time

1. Introduction

1.1. Background and Overview

This paper is an extension of a previous work originally
presented at the 5th International Conference on Information and
Communication Technologies for Disaster Management (ICT-
DM2018) [1]. Recently, the spread of cloud services has led to the
diversification of communication [2], as well as the demand for
frequent changes on the communication demand.. Thus, it is
necessary to respond promptly to such demands, e.g., unexpected
network failure. In particular, a technology that can control the
network flexibly is needed.

Therefore, SDN [3,4] and OpenFlow [5,6] have recently
attracted attention. SDN can control the network flexibly by
software and OpenFlow is one of the most popular southbound
implementation protocols of SDN. The OpenFlow architecture
consists of an controller and OpenFlow-enabled switches which
are centrally managed by the controller. In this OpenFlow network,
when a failure or server configuration change occurs, all the paths
of the traffic that is passing by through the involved switches from
a source to a destination (also known as flow) must be changed.

To change the path of a flow, a new flow entry must be installed
in all the switches’ memory. A flow entry is represented by a
condition part and an action part. The condition part includes
specific values on fields within the flow header, such as MAC
address or IP address. The action part includes how to route the
flow when the values of its header match the values of the
condition part.

However, it takes a long time to change various paths of the
several flows.Specifically, it takes around 10 ms to change a single
path due to the influence of the transmission time of a flow entry
form the controller to the switch, and the processing time to add
flow entry into the switch [7, 8, 9]. Therefore,in time-sensitive
situations, such as disasters, in which several paths must be
changes in a short period of time, not all the flow changes will be
successful . For example, SONET (Synchronous Optical Network)
needs to be recovered within 50 ms, but, it will be challenging to
change more than six flows within that time [10]. This time
constraint can lead to delays or even service outage. In this way, a
technique to switch many flows in a short time is needed.

The main goal of this research is to reduce the delay or service
outage in OpenFlow networks, with particular focus on the time
needed to change the path of a flow. The proposal consists of a
network control method that considers the time needed to change
a path in each switch. In this method, the initial assumption is that

ASTESJ

ISSN: 2415-6698

*Satoru Izumi, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, +81-22-217-5453,
izumi@ci.cc.tohoku.ac.jp

Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 388-393 (2019)

www.astesj.com

Special Issue on Advancement in Engineering and Computer Science

https://dx.doi.org/10.25046/aj040447

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj040447

K. Gotani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 388-393 (2019)

www.astesj.com 389

the network model consists of OpenFlow-enabled switches with
different processing time, linked by connections with different
bandwidth. Then, the paths with the shortest switching time and
the least bandwidth requirements are selected. The basic design
was described in [1], and the preliminary simulation experiments
presented in [11]. In this paper, the authors evaluate the
effectiveness of the proposed method using emulated
environments. Based on the obtained results, we confirmed that the
proposed method can reduce the switching time for all paths, so
that it can realize the reduction of communication delay and
network services outages.

1.2. Novelty and Contribution
 In this work, a novel approach which chooses communication
paths considering not only the processing time to add flow entry of
the switch, but also the available bandwidth in the links. Existing
approaches mainly focus on the reduction of the calculation time
of the paths, or using a backup path in advance. However, they do
no deal with the processing time of the switch.

 By considering both the processing time and the bandwidth, it
can shorten the path switching time and improve the amount of
data transferred in a short period. Moreover, tt can also contribute
to the reduction of the packet-loss due to the communication
interruption during the network failure. This method is effective
for services that require lowdelay communication. Furthermore, it
is possible to improve the amount of data transfer between two
sites in the situation where path change frequently, such as is the
case in a disaster situation.

1.3. Paper Organization
 In the following Section 2, we explain the related work on fast
path switching and the target problem. In Section 3, we describe
the proposed control method. The design of the algorithm is shown
in Section 4. Then, Section 5 shows the evaluation of the proposed
method and its effectiveness. Finally, we conclude this paper in
Section 6.

2. Related Work
2.1. Related Work on Fast Path Switching

There are several authors that studied fast path switching in
OpenFlow networks, which are mainly categorized in two
approaches. The first approach, consists of switching to a backup
path registered in advance in a proactive manner [13,14,15], while
the second one reactively calculates a new path when a request
occurs [10,16,17,18]. These authors select the paths considering a
variety of single parameters, e.g., switching time, bandwidth of the
link between the controller and the switch, and power
consumption. However, all of them largely depend on the available
amount of memory (TCAM) to hold the flow table. In this
research, we deal with methods for calculating and switching the
path reactively.

Cascone et al. [13] proposed a recovery mechanism based on
fast reroute of paths in disaster situations. Mohan et al. [14]
investigated algorithms to choose a backup path to decrease the
number of flow entries. Stephens et al. [15] showed a mechanism
to compress the flow table for fast recovery from link failure.

Astaneh et al. [10] proposed a path selection method to reduce
the path switching time while considering the communication

bandwidth. They reduced the cost of the path switching compared
to the traditional approach of using Dijkstra's algorithm. Sharma et
al. [16] proposed an in-band based path switching method for
failure recovery. Paris et al. [17] showed a dynamic control scheme
for network reconfiguration. Malik et al. [18] proposed a method
to reduce the path calculation and switching time by partially
reusing the route before the change of path. Therefore it can reduce
the number of added flow entries.

2.2. Target Problem

The related work presented in the previous section did not take
into account environments in which there are heterogeneous
switches. Many organizations often build their network by
combining switches with various specifications because of budget
constraints and differences on the time of purchase [12]. Moreover,
the processing time is also different in these switches, causing
large delays when there is a heavy traffic on low-processing time
switches. Therefore, it is necessary to create a network control
method to cope with the difference in processing time when adding
flow entries.

3. A Proposal of Control Method Considering Path
Switching Time

3.1. Overview

In this section, to solve the problems mentioned above, the
authors of this paper propose a network control method that
considers the path switching time of each switch. In this method,
the network model is designed with different processing time for
each switch, and the proposed algorithm selects paths with the
shortest time for all paths. Our proposed method considers both the
processing time of the switch and the network bandwidth.

The proposed method chooses a path with enough bandwidth,
and that goes through high-performance switches to add a flow
entry, so that the overall path switching time is reduced when there
are several flows. In addition, the proposed method also selects
paths sequentially without considering the combination of paths,
so that the computational time per path is reduced.

3.2. Path Selection Considering Path Switching Time

This section presents the basic concept of the path-selection
mechanism that considers the path switching time as shown in the
example depicted in Figure 1. In this example, there are four
switches (𝑆𝑆1 to 𝑆𝑆4) and the processing time to add a flow entry in
each switch is different. Now, there is a communication flow from
𝑆𝑆1 to 𝑆𝑆4, and for some reason the path must be changed. In this
case, there are two candidate paths; 𝑝𝑝1 (𝑠𝑠1 → 𝑠𝑠2 → 𝑠𝑠3) and
𝑝𝑝2 (𝑠𝑠1 → 𝑠𝑠4 → 𝑠𝑠3). The overall path switching time of the flow is
the processing time for the switch on the path that has the
maximum processing time. For instance, the path switching time
of 𝑝𝑝1 is 4.0 ms and that of 𝑝𝑝2 is 6.0 ms. Thus, the proposed method
chooses 𝑝𝑝1 which has the shortest switching time.

3.3. Path Selection Considering Available Bandwidth

The path cost, which is used to choose the path with enough
communication bandwidth, is calculated by the available
bandwidth of the links on the path. Such that when the link with a
larger communication bandwidth is used in the path, the path cost

http://www.astesj.com/

K. Gotani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 388-393 (2019)

www.astesj.com 390

is smaller. Conversely, when the link bandwidth of the path is
smaller, the path cost is larger. In the example shown in Figure 2,
the path cost of the upper path is smaller because the bandwidth of
the links on that path are larger than the ones in the lower path, and
therefore the former is selected.

Figure 1: Example of Path Selection Considering Path Switching Time

Figure 2: Example of Path Selection Considering Available Bandwidth

4. Design

4.1. Network Model

The network model is defined as below.

• 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆 (𝑖𝑖 = 1, 2, . .) : Switch

• 𝑡𝑡𝑖𝑖 : Processing time for adding one flow entry into 𝑠𝑠𝑖𝑖

• 𝑒𝑒𝑖𝑖,𝑗𝑗 ∈ 𝐸𝐸 : Link between 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗

• 𝐵𝐵𝑖𝑖,𝑗𝑗 : Available bandwidth of 𝑒𝑒𝑖𝑖,𝑗𝑗

• 𝑝𝑝𝑘𝑘 : Path (list of switches)

• 𝑐𝑐𝑖𝑖,𝑗𝑗 : Link cost of 𝑒𝑒𝑖𝑖,𝑗𝑗 (= 1Gbps/𝐵𝐵𝑖𝑖 ,𝑗𝑗)

4.2. Definition of Path Switching Time

 The path switching time is defined as:

“The time from the arrival of the first additional flow entry
from the controller to the switch until the completion of the path
switching on all switches”

Figure 3 shows an example. Suppose that tthere are three
flows (flow 1, 2, and 3) assigned to the paths shown in Figure 3.
In this case, 𝑡𝑡1 is 1 ms, and 𝑠𝑠1 needs to switch the three flows.

Thus, the time to complete the processing of the additional flow
entry is 1 ms * 3 = 3 ms. Then, 𝑡𝑡2 is 4 ms and the 𝑠𝑠2 needs to
switch two flows (flow 1 and 2). Therefore, the time to complete
the processing of the additional flow entries is 8 ms (4 ms * 2).
For the other switches, the time is calculated in the same way.
Finally, the path switching time in this example is 8 ms, which is
the longest time to complete the process.

The path switching time 𝑇𝑇(𝑃𝑃𝑚𝑚) for a set of paths (𝑃𝑃𝑚𝑚) is
defined as in (1)

𝑇𝑇(𝑃𝑃𝑚𝑚) = max
{𝑖𝑖|𝑠𝑠𝑖𝑖∈𝑆𝑆}

{𝑡𝑡𝑖𝑖 × ∑ 𝑧𝑧𝑖𝑖(𝑝𝑝𝑘𝑘)𝑝𝑝𝑘𝑘∈𝑃𝑃𝑚𝑚 } (1)

Here, 𝑧𝑧𝑖𝑖(𝑝𝑝𝑘𝑘) means whether the list of 𝑝𝑝𝑘𝑘 includes 𝑠𝑠𝑖𝑖.

𝑧𝑧𝑖𝑖(𝑝𝑝𝑘𝑘) = � 1 (𝑠𝑠𝑖𝑖 ∈ 𝑝𝑝𝑘𝑘)
 0 (𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) (2)

Figure 3: Example of Path Switching Time

4.3. Link Cost

The proposed method prioritizes the path switching time
rather than the path cost, and chooses paths sequentially. The
overview of the sequential path selection method is as follows:

• Choose a path for one flow at a time.
• Substract the required bandwidth of the flow from the link

bandwidth on the path, and update the link cost every time
the path is selected.

• Assign a flow to the path until there is no available
bandwidth left for the flow.

Figure 4 shows an example of the link cost update. If the
link bandwidth is 1 Gbps, the link cost is 1. Then, when a flow
requires 300 Mbps of bandwidth, it is inserted into the link. The
available bandwidth of the link becomes 700 Mbps, and the link
cost increases to about 1.4.

Figure 4: Example of Link Cost Update

4.4. Flow of Path Selection

This section explains the process of path selection. In order
to consider both the processing time of the switch and the path
cost, the proposed method chooses paths as detailed below.

http://www.astesj.com/

K. Gotani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 388-393 (2019)

www.astesj.com 391

1. Compute the paths with the smallest increase in the path
switching time.

2. Choose the path with the lowest path cost form the
computed paths.

3. Repeat process 1 and 2 for the number of flows that needs
to change.

5. Experimentation

5.1. Overview

The proposed method was evaluated in an emulated
environment. The network used in the experiment is shown in
Figure 5. Here, the available bandwidth 𝐵𝐵𝑖𝑖 ,𝑗𝑗 of all links is set as 1
Gbps. Also, the processing time of the source switch, and
destination switch was set to 1 ms; while remaining switches were
randomly set from 1 to 10 ms.

Several flows with different required bandwidth were
inserted, and randomly shutdown links. After the link is down the
paths of the flows are switched. To compare the effectiveness of
the proposal, the obtained throughput is obtained and compared
with an existing method, which selects paths considering only
path cost.

In this experiment, Mininet (ver. 2.2.2) [19] was used as a
network emulator on a single computer, whose specification is as
below:

• CPU: Intel (R) Xeon (R) CPU E5-2650 v4 @ 2.20
GHz) x 8 cores

• Memory: 16 GB

We also used OpenDaylight (0.3.3-Lithium-SR3) [20] as the
OpenFlow controller, and OpenVSwitch (ver. 2.5.5) [21] as the
OpenFlow switch.

Figure 5: Network Topology Used in the Experiment

5.2. Results

The authors categorize the throughput comparing the
proposed method with the existing method into the following
three patterns:

• The proposed method always dominates (Win).

• The proposed method dominates until a certain time
(Win[time]).

• The proposed method is equal to the existing method (Eq).

Examples of graphs of the three patterns are shown in Figures
6, 7, and 8. The comparison of the data transfer amount between
the proposed method and the existing method is shown in Table
1. From the table, it is observed that when the total bandwidth of
the flows is 1,800 Mbps or more, and the number of disconnected
links is large, the data transfer amount of the proposed method is
always better. However, when the total bandwidth of the flows is
1,800 Mbps or more, and the number of link disconnections is
small, then the amount of transferred data of the proposed method
is larger within 0.1 to 0.2 seconds.

Figure 6: The Proposed Method Dominates Always (Win)

Figure 7: The Proposed Method Dominates Until A Certain Time (Win[112s])

Moreover, when the total bandwidth of flows is less than
1,400Mbps, and the amount of transferred data of the proposed
method is larger is within 1.5 seconds, the proposed method is
larger regardless of the number of disconnected links. Finally,
when the total bandwidth of flows is less than 1,200 Mbps, the
proposed method is always better.

http://www.astesj.com/

K. Gotani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 388-393 (2019)

www.astesj.com 392

Table 1: Comparison of the data transfer amount between the proposed method and the existing method

 Total bandwidth of the flows [Mbps]
 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000
Number
of down
links

0 Win Win Win
[1.5ms]

Win
[0.3ms]

Win
[0.1ms]

Win
[0.1ms]

Win
[0.1ms]

Win
[0.1ms]

Win
[0.1ms]

Win
[0.1ms]

Win
[0.1ms]

4 Win Win Win
[1.5ms]

Win
[0.3ms]

Win
[0.2ms]

Win
[0.2ms]

Win
[0.2ms]

Win
[0.1ms]

Win Win Win

8 Win Win Win Win
[0.2ms]

Win
[0.1ms]

Win Win Win
[0.1ms]

Win Win Win

12 Win Win Win Win
[0.1ms]

Win Win Win Win Win Win Win

16 Win Win Win Win Win Win Win Win Win Win Eq
18 Eq Eq Eq Eq Eq Eq Eq Eq Eq Eq Eq

Figure 8: The Proposed Method Is Equal To The Existing Method (Eq)

5.3. Discussion

From the experimental results in the previous sections, the
authors of this paper confirm that the proposed method is more
effective than the existing method, since the amount of transferred
data is equal or larger to the existing method while the path
switching time is shortened. Morever, the path switching process
is more effective than the existing method when these events
occurs frequently and there is not enough bandwidth.

6. Conclusion

This paper presents a network control method considering
the path switching time in SDN. We designed the path selection
method and evaluated with an emulated experimentation. From
the experimental results, it is confirmed that the proposed
method is effective in situation where changes occurs frequently
in a short time due to link disconnection and restoration (e.g.,
disasters).

As future work, we will extend the proposed method by
introducing other parameters and experiment with real networks.
Currently, we focused on the time from the arrival of the first
additional flow entry from the controller to the switch until the
completion of the path switching on all switches. Thus, we will

evaluate the total time of changing paths from the moment some
events occur until they complete changing the paths in
comparison with related work.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] K. Gotani, H. Takahira, M. Hata, L. Guillen, S. Izumi, T. Abe, and T.
Suganuma, “OpenFlow Based Information Flow Control Considering Route
Switching Cost,” Proc. the 5th International Conference on Informationand
Communication Technologies for Disaster Management (ICT-DM 2018),
pp.1-4, 2018.

[2] Ministry of Internal Affairs and Communications,
ahttp://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h30/html/nd252140.
html (Accessed 2019).

[3] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On Scalability of Software-
Defined Networking,” IEEE Communication Magazine, Vol. 51, No. 2,
pp.136-141, 2013.

[4] “Software-Defined Networking (SDN) definition,” Open Networking
Foundation, https://www.opennetworking.org/sdn-resources/sdndefinition,
(Accessed 2019).

[5] N. McKeown, T. Anderson, H. Balakrishna, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in
Campus Networks,” ACM SIGCOMM Computer Communication Review,
Vol. 38, Iss. 2, pp.69-74, 2008.

[6] Open Networking Foundation, “OpenFlow Switch, Specification (Version
1.5.1),” https://www.opennetworking.org/wp-
content/uploads/2014/10/openow-switch-v1.5.1.pdf (Accessed 2019).

[7] A. Nguyen-Ngoc, S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, and M. Jarschel,
“Performance Evaluation Mechanisms for FlowMod Message Processing in
OpenFlow Switches,” Proc. of IEEE Sixth International Conference on
Communications and Electronics (ICCE2016), pp.40-45, 2016.

[8] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. Moore, “OFLOPS: An
open framework for openflow switch evaluation,” Proc. of Passive and Active
Measurement (PAM2012), LNCS 7192, pp.85-95, 2012.

[9] R. Bifulco and A. Matsiuk, “Towards Scalable SDN Switches: Enabling
Faster Flow Table Entries Installation,” Proc. of 2015 ACM Conference on
Special Interest Group on Data Communication (SIGCOMM 2015), pp.343-
344, 2015.

[10] S. A. Astaneh and S. Shah Heydari, “Optimization of SDN Flow Operations
in Multi-Failure Restoration Scenarios,” IEEE Transactions on Network and
Service Management, Vol.13, No.3, pp.421-432, 2016.

[11] K. Gotani, H. Takahira, M. Hata, L. Guillen, S. Izumi, and T. Abe, “OpenFlow
Based Information Flow Control Considering Route Switching Cost,” Proc.
the 2nd IEEE International Workshop on Information Flow Oriented
Approaches in Internet of Things and Cyber-Physical Systems (InfoFlow
2019), pp.527-530, 2019.

[12] A. Feldmann, P. Heyder, M. Kreutzer, S. Schmid, J.P. Seifert, H. Shulman, K.
Thimmaraju, and M. Waidner, “NetCo: Reliable Routing With Unreliable
Routers,” Proc. of the 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshop (DSN-W), pp.128-135, 2016.

http://www.astesj.com/
http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h30/html/nd252140.html
http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h30/html/nd252140.html
https://www.opennetworking.org/wp-content/uploads/2014/10/openow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openow-switch-v1.5.1.pdf

 K. Gotani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 388-393 (2019)

www.astesj.com 393

[13] C. Cascone, L. Pollini, D. Sanvito, A. Capone, and B. Sanso, “SPIDER: Fault
resilient SDN pipeline with recovery delay guarantees,” Proc. of IEEE
NetSoft Conference Workshops (NetSoft), pp. 296-302, 2016.

[14] P. M. Mohan, T. Truong-Huu, and M. Gurusamy, “TCAM-Aware Local
Rerouting for Fast and Efficient Failure Recovery in Software Defined
Networks,” Proc. of 2015 IEEE Global Communications Conference
(GLOBECOM 2015), pp.1-6, 2015.

[15] B. Stephens, A. L. Cox, and S. Rixner, “Scalable Multi-Failure Fast Failover
via Forwarding Table Compression,” Proc. ACM SIGCOMM Symposium on
SDN Research Article (SOSR 2016), no. 9, pp.1-12, 2016.

[16] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, “In-Band
Control Queuing and Failure Recovery Functionalities for OpenFlow,” IEEE
Network, vol. 30, no. 1, pp. 106-112, 2016.

[17] S. Paris, G. S. Paschos, and J. Leguay, “Dynamic Control for Failure
Recovery and Flow Reconfiguration in SDN,” Proc. International Conference
on the Design of Reliable Communication Networks (DRCN 2016), pp.152-
159, 2016.

[18] A. Malik, B. Aziz, M. Adda, and C. Ke, “Optimization Methods for Fast
Restoration of Software-Defined Networks,” IEEE Access, Vol.5, pp.16111-
16123, 2017.

[19] Mininet, http://mininet.org/
[20] OpenDaylight, https://www.opendaylight.org/
[21] Open vSwitch, http://openvswitch.org/

http://www.astesj.com/
http://mininet.org/
https://www.opendaylight.org/
http://openvswitch.org/

	1.1. Background and Overview
	1.2. Novelty and Contribution
	1.3. Paper Organization
	2. Related Work
	2.1. Related Work on Fast Path Switching
	2.2. Target Problem

	3. A Proposal of Control Method Considering Path Switching Time
	3.1. Overview
	3.2. Path Selection Considering Path Switching Time
	3.3. Path Selection Considering Available Bandwidth

	4. Design
	4.1. Network Model
	4.2. Definition of Path Switching Time
	4.3. Link Cost
	4.4. Flow of Path Selection

	5. Experimentation
	5.1. Overview
	5.2. Results
	5.3. Discussion

	6. Conclusion
	Conflict of Interest
	References

