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 While the Kalman filter, including its many variants, has been the staple of the tracking 
community, it also has been shown to have drawbacks, particularly when tracking through 
a maneuver. The most common issue is a lag in the position of the target track compared 
to the true target position as the target performs its maneuver. Another more problematic 
issue can occur where the filter covariance collapses, requiring the filter to be reinitialized. 
Techniques exist to compensate for maneuvers, but generating their response relies on 
detection of error between the estimated trajectory and the measured target position. In this 
effort, a maneuver detection routine is developed that can be used in conjunction with more 
standard maneuver compensation approaches. This routine is able to validate the existence 
of a maneuver more quickly than use of the inherent detection relied upon in the other 
methods. Maneuver detection is performed by an evidence accrual system that uses a fuzzy 
Kalman filter to incorporate new information and provide a level of evidence that maneuver 
is occurring. The input data uses behavior characteristics of the Kalman gain vector from 
the tracking algorithm. 
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1. Introduction  

Feature objection extraction [1, 2] is an evidence accrual 
technique that can be applied to classification problems. An 
undirected tree [3] with various levels of information is used to 
connect evidence nodes. Each node has a level of evidence and an 
associated level of uncertainty similar to a state in a Kalman filter. 
Within the tree, nodes represent levels of evidence of what might 
be elementary information or a complex combination of 
information. This paper extends work originally presented in the 
2018 Conference on Innovations in Intelligent Systems and 
Applications [1]. In theory, every node can be measured directly 
or indirectly. Unlike typical evidence accrual methods [4-6], the 
states are not probabilistic. When evidence points to more than one 
solution, multiple competing solutions can each have levels of 
evidence. Evidence can affect nodes at the same level, with the 
same evidence potentially increasing one or more than one node in 
levels of evidence, while others may have their levels decreased, 
and still other nodes at the same level may not be affected at all.  

 Feature objection extraction (FOX) propagates information 
within the tree using a variety of function or function-

approximation relationships. The measured information is injected 
using a fuzzy Kalman filter [1, 7]. As will be described in detail, 
the FOX evidence accrual system decomposes high-level concepts 
into simpler concepts until it reaches root nodes which are 
comprised elementary information. Figure 1 describes a basic FOX 
tree with different connections and a variety of level of elementary 
information.  
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Figure 1: Feature-object extraction structure with various interconnections 

in a multi-level tree 
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 FOX is incorporated into a tracking system to detect a target’s 
maneuver and can use the computed values of the track to produce 
a measure of evidence that maneuver is occurring. Maneuver 
detection is important because, if the target dynamics are not 
modeled correctly for a maneuver, the tracking system can have an 
offset or a time-lag in its estimation of the target position and 
velocity. In Figure 2, an example of a maneuvering target 
trajectory is shown, alongside the target track from a Kalman-filter 
based tracking system, a more typical approach. The figure shows 
a track lagging the true target trajectory as the target proceeds 
through the maneuver. This comparative result illustrates the 
deleterious effects that can result when a maneuver occurs. 
Tracking problems also become more prevalent when the 
measurement lies in the unobservable space of the track 
kinematics, as seen in [8]. For example, if an angle-only tracker is 
used, the filter can become numerically unsound and require a 
reinitialization. In the tracking problem, losing a target or creating 
large target kinematic-errors can be life-or-death issue. If a 
maneuver can be detected, the tracking algorithm can be modified 
to improve performance and avoid catastrophic failures. 

The Kalman filter, and its numerous variants, such as the 
extended Kalman filter (EKF) [9] and the unscented Kalman filter 
[10], have long provided the predominant core approaches for 
kinematic target-tracking systems [11]. To reduce the deleterious 
effects that maneuvers have on a tracking system, compensation 
approaches have been developed. The most widely used technique 
is the interacting multiple model (IMM) and its variants [12]. The 
IMM incorporates various maneuver models. The IMM system 
creates weighted combinations of models by comparing the 
residuals of each measurement to each model’s prediction. The 
residual scores are used to interpolate between the models and 
create a weight for the state of each motion model to create a more 
accurate state estimate of the target position and velocity. Other 
techniques include adaptive Kalman filters such as a neural 
extended Kalman Filter (NEKF) [13] that also employ the Kalman 
filter residuals to adapt their maneuver parameters to more closely 
model that of the actual target dynamics.  

All of these approaches rely on the residual measures to detect 
and make the adjustments. While the residual is an effective 
measure, variations in uncertainty can mask the maneuver until the 
residual value becomes significantly large. Fortunately, there exist 
other metrics as part of the Kalman filter that can detect a 

maneuver. Besides the residual, the behaviors of the Kalman gain 
can also indicate that the target is in a maneuver.  

FOX can be employed to combine the disparate information 
and the associated uncertainty, providing for an effort at detection 
based upon more than one type of measure. In the problem 
demonstrated in this work, there is an injection of Kalman gain 
data provided by the aforementioned fuzzy Kalman filter, 
augmenting the residual measures, and the evidence is propagated 
using fuzzy, linear, and nonlinear relationships. 

 Four further sections provide an overview of the development 
of this approach and analyze its capability. Section 2 overviews the 
EKF, the most prominent variant of the Kalman filter used in 
tracking that provides the Kalman gains. Section 3 describes the 
Kalman gain behaviors that can provide information measures to 
indicate a target maneuver. Section 4 describes the FOX evidence 
accrual maneuver detection technique. In Section 5, examples of 
maneuvering targets are described and are used to exemplify the 
capabilities of FOX as a maneuver detection technique. 

2. Target Tracking with the Extended Kalman Filter 

 For kinematic target tracking, the discrete-time dynamics of the 
are defined in (1). 

 𝒙𝒙𝑘𝑘+1 = 𝑭𝑭𝒙𝒙𝑘𝑘 (1) 

The subscript k indicates discrete time, and x is the standard state-
vector representation of the target behavior represents position and 
velocity. In (2), the state vector represents three dimensions 

 𝒙𝒙𝑻𝑻 = [𝒙𝒙 �̇�𝒙 𝒚𝒚 �̇�𝒚 𝒛𝒛 �̇�𝒛]. (2) 

 The target dynamics F are often described with the straight-line 
motion model 

 𝐅𝐅 = �
𝑭𝑭𝟐𝟐𝒙𝒙𝟐𝟐 𝟎𝟎𝟐𝟐𝒙𝒙𝟐𝟐 𝟎𝟎𝟐𝟐𝒙𝒙𝟐𝟐
𝟎𝟎𝟐𝟐𝒙𝒙𝟐𝟐 𝑭𝑭𝟐𝟐𝒙𝒙𝟐𝟐 𝟎𝟎𝟐𝟐𝒙𝒙𝟐𝟐
𝟎𝟎𝟐𝟐𝒙𝒙𝟐𝟐 𝟎𝟎𝟐𝟐𝒙𝒙𝟐𝟐 𝑭𝑭𝟐𝟐𝒙𝒙𝟐𝟐

�, (3a) 

where  

 𝐅𝐅𝟐𝟐𝟐𝟐𝟐𝟐 = �𝟏𝟏 𝒅𝒅𝒅𝒅
𝟎𝟎 𝟏𝟏 �. (3b) 

The term dt is the time difference between the last sensor report on 
the target and the latest sensor report.  

 While the dynamics are linear, the measurements provided by 
sensors are often nonlinear. Using active sensors, such as radar, a 
complete measurement space for the three-dimensional target-
track would be a report h(x) of range, bearing, and elevation, 
shown in (4)  

 

 𝐡𝐡(𝟐𝟐) = �
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟𝑏𝑏𝑟𝑟𝑟𝑟
𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑏𝑏𝑒𝑒𝑟𝑟

� = �
𝜌𝜌
𝛽𝛽
𝜀𝜀
�, (4) 

where 

 ρ = ��𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑝𝑝𝑝𝑝𝑡𝑡�
2 + �𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑦𝑦𝑝𝑝𝑝𝑝𝑡𝑡�

2 + �𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑧𝑧𝑝𝑝𝑝𝑝𝑡𝑡�
2
 

β = arctan�
𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑝𝑝𝑝𝑝𝑡𝑡
𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑦𝑦𝑝𝑝𝑝𝑝𝑡𝑡

� 

 
Figure 2: Ballistic target and standard tracker result in lagging of track 

through maneuver 

 

http://www.astesj.com/


S.C. Stubberud et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 468-477 (2019) 

www.astesj.com    470 

ε = arctan� 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡−𝑧𝑧𝑝𝑝𝑝𝑝𝑡𝑡

��𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡−𝑥𝑥𝑝𝑝𝑝𝑝𝑡𝑡�
2
+�𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡−𝑦𝑦𝑝𝑝𝑝𝑝𝑡𝑡�

2
�, 

and the subscript tgt denotes target component and the subscript 
plt denotes the platform.  

 Since these measurements are generated relative to the sensor 
platform, when they are reported to the tracking algorithm, they 
may be transformed to a universal coordinate system, such as 
earth-centered-earth-fixed (ECEF), be relative to the tracking 
system, or be relative to a localized flat earth [14]. To maintain the 
accuracy of the measurement, though, it is kept in a nonlinear-
coordinate frame rather than being mapped into the track-
coordinate frame which would linearize the tracking system.  This 
is one reason the extended Kalman filter (EKF) is the most 
prevalent tracking algorithm [11]. 

  These measurements are the driving inputs for the tracking 
algorithm. The EKF uses its estimate of the measurement and the 
residual between the estimated and reported measurements to 
correct its state-estimate of the target kinematics. The process of 
EKF to accomplish this is defined in (5a-e)  

  (5a) 

  (5b) 

  (5c) 

  (5d) 

 , (5e) 

where H, based on (4), provides the Jacobian of the output-
coupling function: 

 𝑯𝑯 =

⎣
⎢
⎢
⎢
⎡
𝜹𝜹𝜹𝜹
𝜹𝜹𝒙𝒙

𝟎𝟎 𝜹𝜹𝜹𝜹
𝜹𝜹𝒚𝒚

𝟎𝟎 𝜹𝜹𝜹𝜹
𝜹𝜹𝒛𝒛

𝟎𝟎
𝜹𝜹𝜹𝜹
𝜹𝜹𝒙𝒙

𝟎𝟎 𝜹𝜹𝜹𝜹
𝜹𝜹𝒚𝒚

𝟎𝟎 𝟎𝟎 𝟎𝟎
𝜹𝜹𝜀𝜀
𝜹𝜹𝒙𝒙

𝟎𝟎 𝛿𝛿𝜀𝜀
𝛿𝛿𝑦𝑦

𝟎𝟎 𝜹𝜹𝜀𝜀
𝜹𝜹𝒛𝒛

𝟎𝟎⎦
⎥
⎥
⎥
⎤

. (6) 

 

The function f is the modeled target dynamics, and the matrix 
F in (5d-e) is the associated Jacobian. As stated previously, the 
target dynamics are usually defined as (3a). The subscript indicates 
discrete time, with k|k is the estimate at the time k given all the 
information up to that time and k+1|k is the estimate for time k+1, 
given all the information up through time k.  

The process noise, Q, indicates the accuracy of the system 
dynamics, and is usually modeled as integrated white noise [15]: 

 𝑸𝑸 = 𝒒𝒒𝟐𝟐 �
𝑸𝑸𝟐𝟐𝒙𝒙𝟐𝟐 𝟎𝟎𝟐𝟐𝒙𝒙𝟐𝟐 𝟎𝟎𝟐𝟐𝒙𝒙𝟐𝟐
𝟎𝟎𝟐𝟐𝒙𝒙𝟐𝟐 𝑸𝑸𝟐𝟐𝒙𝒙𝟐𝟐 𝟎𝟎𝟐𝟐𝒙𝒙𝟐𝟐
𝟎𝟎𝟐𝟐𝒙𝒙𝟐𝟐 𝟎𝟎𝟐𝟐𝒙𝒙𝟐𝟐 𝑸𝑸𝟐𝟐𝒙𝒙𝟐𝟐

� (7a) 

  𝑸𝑸𝟐𝟐𝒙𝒙𝟐𝟐 = �
𝒅𝒅𝒅𝒅𝟑𝟑

𝟑𝟑
𝒅𝒅𝒅𝒅𝟐𝟐

𝟐𝟐
𝒅𝒅𝒅𝒅𝟐𝟐

𝟐𝟐
𝒅𝒅𝒅𝒅
�. (7b) 

 As the process noise is increased, the dynamic model, F, in 
(5d-e) is weighted less. The measurement becomes more dominant 
in the processing, allowing more of the measurement noise to be 
passed thought the filter to the track solution. As the process noise 
is decreased, in contrast, the reaction of the tracking algorithm 
becomes less responsive to the measurement and more smoothing 
occurs. 

While not explicit in the (5a) and often overlooked, the EKF’s 
Kalman gain is affected by the process noise, the error covariance 
P, and the state estimate x. The state estimate is injected into the 
Kalman gain though the output-coupling Jacobian H. The gain is 
also affected by the measurement noise R. The measurement noise 
relates to the quality of the sensor. A standard radar will have its 
angle accuracies based on its beamwidth, for example while the 
range accuracy will be based on the resolution of the pulse signal. 
The accuracy indicates that the target can be anywhere within the 
beam and so-called range bin, as with airborne radar.  

Since a Kalman filter is used, the accuracy is represented as a 
Gaussian distribution. (If the accuracy is not Gaussian, techniques 
such as Gaussian sums could be used to represent the measurement 
accuracy [16], but that is beyond the needs of these developments.) 
In Kalman filtering, the ratio of Q to R represents the relative belief 
of the target-motion model versus that of the sensor reports. If Q 
is smaller relative to R, the measurements will have a reduced of 
effect on the target track and the results from measurements over 
time will be smoothed, with the effects of noise less pronounced. 
If this ratio is reversed, the measures will dominate the track 
behavior, with the effects of individual measurements more 
pronounced in the target track. It is of note that, since the EKF is a 
measurement driven method, measurements will always ultimately 
have some effect on the target track. When the measurements noise 
is smaller, the measurement effects will have a faster impact on the 
track as sensors are viewed as more accurate. 

3. Kalman Gain Monitoring 

The extended Kalman filter (EKF) behaves differently than the 
Kalman filter for linear time-invariant systems. While the Kalman 
filter for such systems is predictable in nature, the EKF will vary 
over time. The variations in the error covariance P are affected by 
the nonlinear behavior of the system and the local estimate in both 
the update equation of (5c) and the prediction equation of (5e).  

The behavior of the Kalman gain within the EKF, the vector K, 
often precedes the noticeable changes of the error covariance. This 
arises as the Kalman gain is affected both by the nonlinearities 
directly in (5a) and by the variations in the error covariance matrix. 
As the gains change over time, the filter can inherently detect 
changes in the actual system that vary from the estimation model. 
In [1], for a target tracking application of the extended Kalman 
filter, the Kalman gains demonstrated that over time there existed 
features in their behaviors that coincided with target maneuvers. 
The analysis of [1] looked at the individual gains, tracking both 
position and velocity of the targets in two-dimensional space using 
a range and bearing measurement. The resulting behaviors of the 
eight element Kalman-gain vector were used as features to identify 
when various maneuvers, including turns and simple linear 
accelerations, occurred. Another example is provided here.  

The details of the scenario are shown in Figure 3. The target 
simulates the behavior of a submarine as it is being tracked by 
another vessel. The submarine maintains a straight-line trajectory 
with a constant speed. The trailing vessel also maintains a constant 
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speed and course. After some time, the target maneuvers. This 
represents a concept in a submarine-tracking problem where, being 
tracked, the target maneuvers to clear baffles to “see” the trailing 
ship and possibly cause a break-in-track of the enemy’s tracking 
system. The platform ship then maneuvers, followed quickly by 
the submarine maneuvering again. These successive maneuvers 
can result in the filter becoming numerically unsound.  

Figure 4 shows the behavior of the four Kalman gains related to 
the range over this whole scenario and is marked where the target 
and the sensor platform perform maneuvers. The Kalman gains 
show different behaviors, including a sharp transient, a significant 
change in the slope of the gain, and a zero-crossing.  

The other four gains, which relate to the bearing measurements, 
are shown in Figure 5, and are larger in magnitude, but similar in 
relative behavior. Other test cases [1, 17], have also shown the 
gains to high frequency behaviors during maneuvers. 

From these various test cases, the features of interest to detect 
a target maneuver have been determined to include monitoring the 
frequency behavior, the zero-crossings, the transient behavior, the 
slope performance, and the ownship (platform) maneuvers.  It has 
also been determined that only a subset of the Kalman gains are 
necessary to observe. These include the gains related to the 
position states and range measurements K11 and K31 and all of the 

gains related to the bearing measurements Ki2, where those 
required vary by feature  

4. Evidence Accrual Using Feature Object Extraction 

 Many evidence accrual methods have been developed to 
combine information which, in this case, provide a level of 
evidence that a maneuver is occurring or has ceased to be. The 
primary evidence accrual techniques are the Dempster-Shafer 
method [5] and the Bayesian taxonomy approach [4], also referred 
to as the Pearl Tree. While these techniques have been utilized for 
decades, they have drawbacks, including that both represent the 
information as probabilities that update following Bayes rule. 
Also, uncertainty in the information that is the basis of the 
probabilities is not modeled easily, even with Dempster-Shafer.  

 FOX provides for distinct levels of evidence, such as of 
maneuver and for a non-maneuver separately. Since the measures 
of evidence are generated independently, the scores, unlike 
probabilities, are not related and an increasing evidence for one 
decision (i.e., a maneuver) need not decrease the other decision 
(i.e., no maneuver). Evidence can prove one or multiple decisions 
thus changing all or some of the decision.   

 FOX is also designed to provide a quality score with each level 
of evidence. The quality score is similar to a Kalman filter error 
covariance in that a high score indicates uncertainty while a low 
score indicates a high degree of certainty about the evidence score. 
The corroboration of evidence gathered from various behaviors 
can improve the certainty that an event occurred. Conversely, with 
multiple sources of evidence, maneuver events can be detected 
with one gain behavior being triggered while the others have not 
met the threshold.  

For the maneuver detection problem, each of the elements of 
the Kalman gains’ behaviors from the target tracking system can 
be used individually to indicate when a target maneuver is being 
initiated.  

 The FOX technique is designed to decompose a complex 
classification problem into a series of smaller and simpler 
problems. For the maneuver detection problem, a unidirectional 
tree is employed, as shown in Figure 6, illustrating use of FOX to 
accrue evidence based upon multiple behaviors of the Kalman 

 
Figure 4: The behavior of the range-related Kalman gains over the course of 

the scenario with the target maneuvers marked 

 

 
Figure 3: A manuevering target being tracked by a maneuvering 

sensor platform 

 

 

Figure 5: The behavior of the bearing-related Kalman gains over the course 
of the scenario with the target maneuvers marked 
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For maneuver detection, the top level is Detected Maneuver. 
The degree of evidence for this evidence node is limited to a range 
between 0 and 1. A corresponding tree for determining a level 
evidence for no maneuver occurring would be similar in concept 
with different linkages. The next level of this tree is comprised the 
individual-event detections of the tracking-system’s Kalman gain 
vector: Zero Crossing, Gain Frequency, and Slope Variation. 
These three components are combined to create the Detected 
Maneuver scores. As the evidence levels in these states increase 

from 0 to 1, the overall detection-levels vary based not only on the 
lower-level scores but the quality level as well. Poor quality scores 
are weighted less than higher quality scores.  

 6, the shaded states indicate elementary-evidence input 
nodes. These represent the elemental measurements such as the 
measured frequencies or number of zero crossings. The unshaded 
nodes are referred to as states of interest. These are states of 
combined information. 

 approach is that, unlike the 
states of Markov chain [6], these states need not be disjoint nor do 
the states need be a complete representation of all the states of the 
system.  

While the Kalman gain elements of the target tracking system 
provide evidence to the FOX evidence accrual system which 
employs a Kalman filter itself. To clarify, the Kalman filter of the 
FOX system in this case, actually a fuzzy Kalman filter, is different 
than that of the tracking system that is a source of evidence. 

The level of evidence for a state of interest can be generated in 
two ways. The first is through direct observation, which implies a 
direct measurement is available, as shown with the shaded nodes. 
The evidence is then processed through a substate, depicted with a 
clear node. The tree of Figure 6 shows some substates have 
multiple injection nodes flowing into them. The FOX Kalman 
filter that injects the evidence into the tree nodes is a fuzzy Kalman 
filter (FKF). The FKF takes the multiple inputs and creates a 
single-output fuzzy measure. Substates that do not have direct 
evidence injection are generated using systems theory. The 
substates connect to state of interest through links that represent 
the functional relationship.  

The FKF of the FOX system is based upon a development of 
Watkins [7] and modified in [2]. This approach was selected to 

allow a wide variety of measurement types and uncertainty models 
to be used with ease. The FKF implementation is a straightforward 
variant of the standard Kalman filter with a modification in the 
update equations. The FKF is defined in (8) with five equations, 
(8a) to (8e). Comparing the sets of equations, (5) and (8), two of 
these, the Kalman gain equation of (5a) and (8a), and the state 
update equation of (5b) and (8b), are the ones where counterparts 
differ. The fuzzy measures are incorporated by using the first 
moment, indicated as mom1, of the consequent fuzzy membership 
function, referred to as 𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎, or the membership adjunct. 

 (8a) 

 (8b) 

  (8c) 

  (8e) 

The use of fuzzy logic provides for simplified linguistic based 
conversion from the measurement coordinate systems to the 
evidence space, which has been defined as a value between 0 and 
1. If the measurement and uncertainty values are crisp, the FKF 
devolves into the standard Kalman filter.  

The nature of the measurement data determines whether the 
fuzzy measure or a crisp measure is used. A true measure such as 
the number of zero crossings or a known even as the knowledge of 
a platform maneuver would be a crisp value that would map into 
crisp groupings. The mapping of data into groupings, such as a 
determination based upon the frequency behavior or degree of 
slope change, would be fuzzy. 

Once elementary evidence is injected into the tree, it can 
propagate another FKF process or through the use system theory 
process as follows. A state of interest and its direct-substates are 
represented in vector form as 

 𝟐𝟐S = [𝑥𝑥𝑠𝑠1 𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑛𝑛 𝑥𝑥𝑛𝑛] (9) 

The state of interest or of the node value is the first element of the 
state vector. 

Using first-order observer decomposition [18], the evidence 
dynamics are given as 

 . (10) 

The state of interest is comprised of its substates and the previous 
value of the state of interest. The observer concept provides a 
forgetting factor. This forgetting factor and the observer updating 
equation are used to incorporate the quality factor of each sub-
state. In (10), the uncertainty can be incorporated as a simple 
scaling in the state values or in the state-of-interest function, 𝑓𝑓(∙). 

1
| 1 | 1 1( ( ( )))T T

k k k k adjmom m −
− −= +K P H HP H R

| | 1 1 | 1( ( ) )k k k k adj k kmom m− −= + −x x K Hx

 
Figure 6: The proposed evidence accrual tree decomposition for Kalman gain 

maneuver detection approach of FOX 
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The associated error covariance or uncertainty equation is 
propagated by (11). 

 𝑃𝑃𝑘𝑘 = 𝑓𝑓𝑎𝑎𝑃𝑃𝑎𝑎,𝑘𝑘−1𝑓𝑓𝑎𝑎𝑇𝑇 + 𝑓𝑓1𝑃𝑃𝑠𝑠1,𝑘𝑘−1𝑓𝑓1𝑇𝑇 + ⋯+ 𝑓𝑓𝑛𝑛𝑃𝑃𝑠𝑠𝑛𝑛,𝑘𝑘−1𝑓𝑓𝑛𝑛𝑇𝑇 + 𝑞𝑞𝑥𝑥 . 

  (11) 

 This decomposition of the problem into the individual 
substates reduces the complex model of the interactions of 
information into simplified operations. The decomposition also 
simplifies the incorporation of the uncertainty into the state vector.   

4.1. Maneuver Detection Fuzzy Membership Functions 

To generate the injection evidence, the following antecedent 
and consequent functions along with their associated inference 
engines were considered: 

4.1.1. Frequency Amplitude Variation 

 When a maneuver occurs, some Kalman gain elements 
experience high frequency changes in amplitude. The high 
frequency behavior indicates that a maneuver could be 
occurring. As seen in [17], the high frequencies indicate 
potential issues with the Kalman filter that are a result of sharp 
maneuvers. The frequencies are mapped into a score using two 
input antecedent functions: Max_frequency_value and 
Ratio_of_high_frequency_to_low_frequency_power. 

 Figure 7 provides a four-element antecedent function that 
breaks the fast Fourier transform (FFT) spectrum of a time slice 
of the Kalman gain maps into the four trapezoidal-based 
functions. Figure 8 shows the five-element triangular 
antecedent membership functions that represents the ratio of 
the power of the highest-tenth of the spectrum to the lowest 
tenth of the spectrum. Table 1 provides the inference engine of 
the two sets of membership functions. These map to the 
consequence functions shown in Figure 9. These are 
defuzzified using the FKF. 

 

Table 1: Kalman Gain Frequency Inference Engine 

 Frequency Maximum 
Membership Function 

Frequency Power Ratio  
Membership Function 1 2 3 4 
1 1 2 3 4 
2 1 2 4 4 
3 2 3 4 5 
4 2 4 5 5 
5 3 4 5 5 

 
4.1.2. Number of Zero Crossings 

The number of zero crossings is a crisp value. The number of 
zero crossings 𝑟𝑟𝑛𝑛𝑚𝑚𝑍𝑍𝑍𝑍 is mapped into a score 𝑍𝑍𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: 

 𝑍𝑍𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �

0 𝑟𝑟𝑛𝑛𝑚𝑚𝑍𝑍𝑍𝑍 = 0
0.2 𝑟𝑟𝑛𝑛𝑚𝑚𝑍𝑍𝑍𝑍 = 1 𝑒𝑒𝑟𝑟 2
0.6 𝑟𝑟𝑛𝑛𝑚𝑚𝑍𝑍𝑍𝑍 = 3, 4, 𝑒𝑒𝑟𝑟 5
1.0 𝑟𝑟𝑛𝑛𝑚𝑚𝑍𝑍𝑍𝑍 > 5

 (12) 

4.1.3. Slope Changes 

 The size of the slope changes in a given time interval is 
measured. The value is an absolute value of the difference 
between the initial slope and the ending slope compared to the 
maximum and minimum values. This crisp value is mapped 
similarly to the number of zero crossings but, are mapped 
evenly across four regions are mapped into the scores: 

  

𝑆𝑆𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =

⎩
⎪⎪
⎨

⎪⎪
⎧ 0        𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
≤ 0.5

0.33 0.5 <  𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

≤ 2.5

0.67 2.5 <  𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

≤ 4.0

1.00 4.0 <  𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

      

 (13) 

Unlike the other injection evidence mentioned here, the 
uncertainty is also fuzzy. The size in the slope changes creates 
the next score. Figures 10 depicts a five-element trapezoidal 
function that map the change in slopes. Table 2 provides the 
inference engine that maps into the consequence function 
represented by five triangular functions as seen in Figure 11. 
Again, the defuzzification is performed by the FKF. 

Table 2: Kalman Gain Slope Inference Engine 

 𝑆𝑆𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

Slope Average 
Membership 

Function 0.0 0.33 0.67 1.0 
1 1 1 2 3 
2 1 2 3 3 
3 3 3 4 4 
4 5 5 5 5 
5 5 5 5 5 

 

  
Figure 7: Kalman Gain Frequency amplitude variation FFT time slice 

antecedent function 

 

Figure 8: Kalman Gain Frequency amplitude power ratio membership 
function 

  

 

Figure 9: Kalman Gain Frequency Consquence Function 

 

http://www.astesj.com/


S.C. Stubberud et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 468-477 (2019) 

www.astesj.com    474 

 

Figure 10: Changes in Kalman Gain Slope Membership Function 

 

Figure 11: Changes in Kalman Gain Slope Consquence Function 

  Now that the direct evidence has been defined, the higher level 
nodes, depicted in Figure 4, can also be defined. The function 
relating the three sets of substate evidence to the Detected 
Maneuver state is defined with the limited linear combination in 
(14). 
 𝒙𝒙𝑴𝑴𝑴𝑴(𝑘𝑘) = min�1, 𝜇𝜇(𝑘𝑘)�, 

        
𝜇𝜇(𝑘𝑘) = [0.7 0.47 0.7] 𝒙𝒙𝑴𝑴𝑴𝑴(𝑘𝑘), 

with 

 𝒙𝒙𝑴𝑴𝑴𝑴 = �
𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀
𝑥𝑥𝑀𝑀𝑀𝑀𝑍𝑍𝑍𝑍
𝑥𝑥𝑀𝑀𝑀𝑀𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠

�, (14) 

where 𝟐𝟐𝐌𝐌𝐌𝐌 (k) is the estimated level of evidence at time k for 
detection of a maneuver state. The states that comprise 𝟐𝟐𝐌𝐌𝐌𝐌  are 
𝒙𝒙𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝒒𝒒, the frequency behavior of the Kalman gain used to detect 
a maneuver, 𝒙𝒙𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴, which is the incidence of zero-crossings for a 
Kalman gain value, and 𝒙𝒙𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴, which is the change in slope of 
the Kalman gain value that indicates a manuever. For 𝒙𝒙𝑴𝑴𝑴𝑴 , the 
score was not directly weighted by the measurement uncertainty 
and is solely based on the current values of the components. 

The subnode xMDZC is defined at time k as 

 𝑥𝑥𝑀𝑀𝑀𝑀𝑍𝑍𝑍𝑍(𝑘𝑘) = [0.2 0.95] ∙          

     �
𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑍𝑍𝑍𝑍(𝑘𝑘 − 1)

max�1, 𝑥𝑥𝑝𝑝𝑠𝑠(𝑘𝑘 − 1)� ∙ �1 − 𝑥𝑥𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑝𝑝(𝑘𝑘 − 1)��, 

  (15)   

where 𝑥𝑥𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑝𝑝(𝑘𝑘) is either 1 or 0, with a 1 indicating the platform 
is, and a 0 indicating that it is not, in a maneuver at time k. 𝑥𝑥𝑝𝑝𝑠𝑠  is 
defined based upon whether the measurement is range-bearing in 
(16) or bearing only in (17), using elements of the Kalman gain. 
For range-bearing, 

𝑥𝑥𝑝𝑝𝑠𝑠(𝑘𝑘) = 0.4 𝑥𝑥𝐾𝐾11𝑍𝑍𝑍𝑍 (𝑘𝑘) + 0.4 𝑥𝑥𝐾𝐾31𝑍𝑍𝑍𝑍 (𝑘𝑘) + 0.4 𝑥𝑥𝐾𝐾12𝑍𝑍𝑍𝑍 (𝑘𝑘)
+ 0.4 𝑥𝑥𝐾𝐾22𝑍𝑍𝑍𝑍 (𝑘𝑘) + 0.4 𝑥𝑥𝐾𝐾32𝑍𝑍𝑍𝑍 (𝑘𝑘) + 0.4 𝑥𝑥𝐾𝐾42𝑍𝑍𝑍𝑍 (𝑘𝑘), 

  (16)   

or, if the measurement is bearing-only 

𝑥𝑥𝑝𝑝𝑠𝑠(𝑘𝑘) = 0.67 𝑥𝑥𝐾𝐾11𝑍𝑍𝑍𝑍 (𝑘𝑘) + 0.67 𝑥𝑥𝐾𝐾21𝑍𝑍𝑍𝑍 (𝑘𝑘) + 0.67 𝑥𝑥𝐾𝐾31𝑍𝑍𝑍𝑍 (𝑘𝑘)
+ 0.67 𝑥𝑥𝐾𝐾41𝑍𝑍𝑍𝑍 (𝑘𝑘). 

  (17)   

Here, the subscript Kij indicates the ith, jth element of the Kalman 
gain and 𝑥𝑥𝐾𝐾𝐾𝐾𝑎𝑎𝑍𝑍𝑍𝑍 (𝑘𝑘)  indicates the Kalman gain number of zero-
crossings upto time k. 

The subnode xMDfreq is defined in (18) and (19) for the range-
bearing measurement and in (20) and (21) for the bearing 
measurements.  

For the range-bearing subnode 𝒙𝒙𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝒒𝒒, 

      𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘) = 

         �min �1, 𝜇𝜇𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘)�� ∙ �1 − 𝑥𝑥𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑝𝑝(𝑘𝑘 − 1)�,  (18) 

where  
𝜇𝜇𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘) = [0.9 0.2 0.3 0.3 0.3 0.2] 𝟐𝟐Krb

𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘), 

and 

  𝟐𝟐Krb
𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀

(𝑘𝑘 − 1)

𝑥𝑥𝐾𝐾11
𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘)
𝑥𝑥𝐾𝐾31
𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘)
𝑥𝑥𝐾𝐾22
𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘)
𝑥𝑥𝐾𝐾32
𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘)
𝑥𝑥𝐾𝐾42
𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (19)  

For the bearing-only measurement, the subnode xMDfreq is defined 
similarly, but with different Kalman gains, as  

     𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘) = 

          �min �1, 𝜇𝜇𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘)�� ∙ �1 − 𝑥𝑥𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑝𝑝(𝑘𝑘 − 1)�, (20) 

where  
𝜇𝜇𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘) = [0.9 0.6 0.6 0.5] 𝟐𝟐Kb

𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘), 

 and 

  𝟐𝟐Kb
𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘) =

⎣
⎢
⎢
⎢
⎡
𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘 − 1)

𝑥𝑥𝐾𝐾21
𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘)
𝑥𝑥𝐾𝐾31
𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘)
𝑥𝑥𝐾𝐾41
𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘) ⎦

⎥
⎥
⎥
⎤

. 

  (21) 

 
Finally, the subnode xMDslope is defined in (22) and (23) for range-
bearing measurements and in (24) and (25) for bearing-only 
measurements. For range-bearing, 

     𝑥𝑥𝑀𝑀𝑀𝑀𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠(𝑘𝑘) = 

          �min �1, 𝜇𝜇𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠(𝑘𝑘)�� ∙ �1 − 𝑥𝑥𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑝𝑝(𝑘𝑘 − 1)�, (22) 

where  
μslope(𝑘𝑘) = [0.7 0.4 0.4] 𝟐𝟐Krb

𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠(𝑘𝑘), 

and 

  𝟐𝟐Krb
𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠(𝑘𝑘) = �

𝑥𝑥𝑀𝑀𝑀𝑀𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠(𝑘𝑘 − 1)

𝑥𝑥𝐾𝐾12
𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘)
𝑥𝑥𝐾𝐾32
𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘)

�. (23) 

For bearing only, 
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      𝑥𝑥𝑀𝑀𝑀𝑀𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠(𝑘𝑘) = 

          �𝑚𝑚𝑏𝑏𝑟𝑟 �1, 𝜇𝜇𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠(𝑘𝑘)�� ∙ �1 − 𝑥𝑥𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑝𝑝(𝑘𝑘 − 1)�, (24)  

where 
𝜇𝜇𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠(𝑘𝑘) = [0.7 0.4 0.4] 𝟐𝟐Kb

𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠(𝑘𝑘), 

and 

    𝟐𝟐Kb
𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠(𝑘𝑘) = �

𝑥𝑥𝑀𝑀𝑀𝑀𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠(𝑘𝑘 − 1)

𝑥𝑥𝐾𝐾11
𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘)
𝑥𝑥𝐾𝐾31
𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀(𝑘𝑘)

�. (25) 

 
5. Scenario, Example, and Analysis 
 In each of two examples, an EKF target tracking system is 
employed and the FOX system as previously described is applied. 
The scenario used to demonstrate the effectiveness of FOX 
technique as applied to the maneuver detection problem was 
summarized in Section 2 and is illustrated in Figure 3. The 
simulator was developed in MATLAB by the authors. The 
scenario lasts 1200 seconds. A platform is heading 5 degrees west 
of north for 480 seconds at 15 kts. Then, the platform changes 
heading and speed over 60 seconds to 65 degrees west of north and 
to 9 kts. The platform remains at this heading and speed for the rest 
of the scenario. The target heads due north for 360 seconds at 15 
kts. Then the target changes course and speed over 130 seconds. 
The course is changed to 70 degrees west of north, and the speed 
is slowed to 10 kts.  At 620 seconds into the scenario, the heading 
and speed is changed again. This time the acceleration of the target 
is changed over 224 seconds. The speed is changed to 15 kts while 
the heading is changed to 10 degrees east of north. 

 
The platform sensor in the first example is a range-bearing 

sensor with a reporting time of 1 second. The range accuracy is 
0.01 m while the bearing accuracy is 0.0003 radians. In the second 
example, the range sensor is turned off, while the bearing sensor 
has the same sample time and accuracy in the first example. 

5.1.  Example 1 

The target track of the scenario when using the range-bearing 
measurement is shown in Figure 12. The associated Kalman filter 

gains associated to the range measurements are seen in Figure 4 
and the gains associated to the bearing measurements were 
provided in Figure 5. The gains are windowed over a 20 second 
segment. The window continually slides until the end of the 
scenario.  Figure 13 shows the resulting maneuver detection score. 

 
The maneuver detection results indicate that the FOX 

maneuver detection does detect the target maneuvers when the 
measurements driving the tracking system contain both a range and 
a bearing. Using a detection threshold of 0.7, the first target 
maneuver is detected 31 seconds after it begins (near 400 seconds 
into scenario) and FOX continues to detect it until the platform 
begins its maneuver. The second maneuver is detected 170 seconds 
into its 224 second increase-in-speed and turn. When the target 
switches from east to west in absolute bearing, the event is detected 
as a maneuver for 30 seconds. The sharper maneuver (the first 
maneuver) is detected earlier and for a longer percentage of time 
of the maneuver. The maneuver has a significant effect on the 
range and bearing change and impacts the Kalman gain relatively 
more than a measurement that has little relative impact as with the 
second maneuver.  

In the second maneuver, the effect on the Kalman gain vector 
values is smaller; the change in bearing and range is smaller at first, 
and then builds. This compares similarly to the results in [1, 17] in 
that the closer a target is to the platform and the sharper the 
maneuvers, the greater the Kalman gain behavior. When the target 
moves from east to west of the platform, the bearing changes from 
positive to negative. While the tracker handles the transition 
smoothly, the sign-changes affect the Jacobian of the 
measurement-coupling function H, as in Eq. (5a). This would be 
the same if the platform were to maneuver. The results indicate that 
using the Kalman gains are able to provide indication of 
maneuvers. The underlying scores indicate that slope behavior is 
important in target turns. The frequency behavior complements the 
zero-crossing in the last two detections. 

5.2. Example 2 

Figure 14 shows the target track overlaid the truth track for the 
scenario. The target track is, as expected, terribly inaccurate as 
bearing-only measurement makes the target location and velocity 
partially unobservable [19]. The target also maneuvers, and this 
exacerbates the issue [20]. The associated Kalman gains are shown 
in Figure 15.  The Kalman gains are similar to the bearing gains of 

 
Figure 12: The test scenario with the tracked target using range and 

bearing meaasurements. 

 
Figure 13: FOX maneuver-detection system results for the range-

bearing example 
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range-bearing measurement of Example 1. The gains are 
windowed over a 20 second segment. The window continually 
slides until the end of the scenario.  Figure 16 shows the maneuver 
detection score.  

 

 

 

The maneuver detection algorithm shows six detections of 
maneuvers. As discussed in [8], the estimations from a bearings-
only track have significant observability issues. The fact that the 
target is moving originally parallel to the sensor platform results in 
the range information not being observable. This often collapses 
the range uncertainty covariance. Three times the target track is 
detected as a maneuver. In watching the tracker behavior, the 
Kalman gain is actually providing indications of the failure of the 
tracking system. When the target maneuvers, the algorithm detects 
this behavior as the EKF becomes more inaccurate. The platform 
maneuver provides a pseudo cross-fix which temporarily corrects 
the track but does not provide enough information to stabilize the 
filter. The second maneuver is detected later than the maneuver 
when the range-bearing tracking. For this unobservable 
measurement type, the FOX algorithm will detect issues with the 
tracker performance besides maneuvers. 

5.3. Summary of Results  

The two test scenarios indicate that the FOX maneuver-
detection algorithm was able to provide triggers when the target is 
in or concluding a maneuver. The algorithm also detects other 
events, particularly the failure of the EKF. This would indicate that 
at times a reset in the tracker could be useful. It also indicates that 
behaviors, such as the change from east-to-west of the target, needs 
to be incorporated into the algorithm similar to the platform 
maneuver. 

6. Conclusions 
In this paper, the FOX evidence accrual technique was applied 

to the problem of detecting target maneuvers using measures from 
the Kalman gain behaviors from an EKF tracking routine. The 
algorithm was demonstrated to a variety of events most notably, 
when the trackign system begins to numerically collapse. Kalman 
gains of an EKF are important element in detecting tracking 
failures or changes. The results indicate that other highest-level 
nodes,i.e., target cross-overs and Kalman collapse, should be 
incorporated into the FOX system. Maneuver detection can be 
exploited to work with EKF tracking systems. Incorporation of the 
method into an interacting multiple-model (IMM) tracking system 
is planned to advance the applicability of the technique. 
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