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 Spatial and temporal isolation is a crucial issue in embedded systems executing multiple 
tasks with several levels of criticality. This is considerably significant in the context of 
multi-processor (or multi-core) embedded systems running multiple mixed-criticality 
applications in parallel. This work deals with the issue of isolation of different application 
classes on Network on Chip (NoC) architectures and proposes a lightweight hardware 
mechanism able to support mixed-criticality requirements and specifically designed to be 
introduced into existing network interfaces. This mechanism supports the execution of 
different and contemporary applications with several criticality levels by supervising the 
messages exchange among network nodes, with the introduction of limited hardware and 
software overhead on the monitored network. The proposed solution is described and 
evaluated by means of logical simulations and an implementation on reconfigurable logic, 
using a reference NoC architecture with mesh topology. Scalability of the proposed 
approach is also discussed and evaluated by means of network simulations. Results show 
an area occupation less than 1% in a 3x3 mesh NoC, and a good scalability of the proposed 
mechanism in an 8x8 mesh network, indicating it as a valid lightweight solution able to 
enforce isolation in NoCs. 
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1. Introduction 

 It is possible to define the criticality of the generic component 
of a system as the level of assurance needed for that element [1]. 
Embedded system is a clear example of mixed-criticality system if 
different software elements executing on the same hardware 
platform possess two or more levels of criticality. The fundamental 
problems in mixed-criticality system management are (i) the 
simultaneous satisfaction of discordant requirements regarding 
advantageous access to shared resources, in order to make the most 
of performance of the system, (ii) and a strict partitioning to avoid 
disorder between different elements.  

Regarding single-processor embedded systems, it is essential to 
guarantee the isolation between tasks in terms of time, and several 
techniques able to ensure temporal determinism of running have 
been presented in scientific literature [2]. On the other hand, about 
multi-processor systems, different applications run in parallel on 
different processors. The applications must compete in accessing 
shared resources, taking advantage of the specific communication 
architectures of different hardware implementations. Recently, it 

was possible to observe a growing interest towards the usage of 
Network on Chip (NoC) architectures [3] as a platform for systems 
with high mixed criticality. Compared to traditional shared 
(hierarchical) bus solutions, NoCs can more efficiently support the 
implementation of multi and many core systems. Table 1 (inspired 
by the works presented in [4] and [5]) provides a qualitative 
comparison of the two approaches. 

In this prospective, the present work shows a mechanism with 
lightweight hardware for the management of mixed criticality in a 
multi-processor embedded system conceived on a Network on 
Chip. In particular, the aim is to give a hardware-based support in 
order to control the flow of the messages through the NoC, with 
the goal of guaranteeing a reserved access to the NoC itself on the 
base of the criticality level of the different tasks running on the 
NoC nodes. In such a way, the proposed mechanism supports 
spatial and temporal isolation, since, in a given period, only a 
subset of the tasks can access the NoC and the connected resources. 
Indeed, temporal isolation ensures no interference in the time 
domain among tasks to access to a shared resource (i.e., mutual 
exclusive access), while spatial isolation protects a shared resource  
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Table 1: Shared bus vs. NOC: a qualitative comparison 
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Shared 
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- - 
 

= - + - - - 

NoC + + = + - + + 

 

+ 

 

so that tasks are able to freely perform access only to a part of it, 
or only a subset of existing tasks are able to access to that resource 
[6]. 

 The main characteristics of the proposed mechanism are the 
following ones: 

• limited effect on system performance, thanks to a 
hardware-based approach; 

• no limit on the number of criticality levels in the system; 

• supporting both spatial and temporal isolation. 

In particularly, the innovation points of the proposed approach are 
the followings: 

• independency from NoC topology, i.e., it can be adapted 
to each NoC scenario; 

• portability among different networks. 

It is worth noting that this paper extends the one presented in [7], 
by providing: 

• detailed HW design, described in Hardware Description 
Language (HDL), together with logical simulation (sec. 
4); 

• extended scalability analysis by means of OMNET++ 
simulations (sec. 5 and 6). 

The paper is outlined in this way. Section 2 describes the most 
important concepts related to the management of isolation in the 
context of mixed-criticality in multi-processor and NoC based 
systems; the section also briefly summarizes the current main 
existing strategies for the effective management of the different 
criticality levels. Section 3 shows the proposed mechanism and 
details its advantages. Section 4 illustrates the detailed HDL-based 
HW design and simulation issues. Section 5 and 6 show the 
analysis of a simulated platform that helps to test the effectiveness 
of the proposed mechanism for NoC with more nodes. Finally, 
Section 7 summarizes conclusions and discusses future works. 

2. Isolation in Mixed-Criticality Systems 

Spatial and temporal isolation is a fundamental issue for 
embedded systems. In particular, for those systems that perform 
multiple activities with different levels of criticality, or better to 
say, mixed critical embedded systems. The topic is particularly 
significant for areas such as aeronautics and automotive. Several 
standards have the specific purpose of finding a solution to this 
problem and two significant examples are the AUTOMOTIVE 
OPEN SYSTEM ARCHITECTURE (AUTOSAR, [8]), a software 

architecture in the automotive area, and the Aeronautical Radio 
INCorporated (ARINC, [9]), which gives the specifications for 
spatial and temporal sectioning in avionics applications critical for 
safety (ARINC 653). 

In order to examine the issue of mixed criticality, different 
analytical models can be followed [1]. Usually, applications are 
modelled as a group of elements. Each one consists of a finite 
number of tasks. Each task is expected on a processing resource, 
that can be shared among different tasks. For the present analysis, 
each task executes a specific activity by performing a certain 
number of jobs and it is periodically scheduled on a shared 
processing resource. 

Focusing on criticality, several schemes have been presented 
in literature defining of levels of criticality, from the easiest one, 
where only two levels are allowed (i.e., non-critical and critical), 
up to configurations where the number of allowed levels is 
potentially unlimited [10]. Focusing on isolation, the tasks 
belonging to components with a lower criticality level shall not be 
able to interfere with higher criticality ones.  

In literature, different studies have analyzed the problem of the 
management of mixed criticality in single processor systems, from 
the isolation point of view [2]. A static allocation of memory 
during compilation phase is an appropriate strategy in order to 
reach spatial isolation. Contrarily, a Memory Management Unit 
and a Memory Protection Unit could support isolation for dynamic 
memory allocation. Another appropriate strategy in order to reach 
isolation between tasks with several criticality levels is 
virtualization. Anyway, full virtualization is generally not 
satisfactory for embedded systems (especially if exists real-time 
constraints), indeed the required overhead may be impactful on the 
temporal constraints of the application. The usage of Hypervisors 
[11] in these situations permits to run ate the same time several 
operating systems upon a platform in sharing with low overhead, 
but still maintaining the isolation of time and space [12]. 

It is fundamental in a multi-processor system with shared bus 
architecture, administer the access to shared communication 
elements. This could be done by partitioning the system in order to 
eliminate disturbances among applications executing on different 
cores, or on peripherals device with DMA. The issue of 
partitioning in multi-processor systems is already addressed by 
Pellizzoni et al. [13], with the definition of the Architectural 
Analysis and Design Language, which is a form of Architectural 
Description Language used for mixed-critical systems that 
supports by construction the monitoring and optimization of the 
communication and processing phase. The time-triggered model 
[14] is a different method of partitioning, where a high level of 
criticality is related to the time-triggered traffic, while traffic  
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Table 2: Routing arbitration policies for NoCs. 

Arbitration Policy Round Robin Time Division Multiplexing Fixed Priority 

Description Usually aimed at obtaining fairness 
on arbitration, but not used in real-
time systems, given the problems 
in calculating the worst-case 
latencies for the various 
transactions. 

The various data flows are statically allocated to 
separated time slots. This arbitration policy is 
largely adopted in real-time and mixed criticality 
implementations, but determining a reservation 
scheme for the various time slots is not trivial. 

The various transactions are managed 
based on predefined priority levels. 

triggered by events is generally the best effort. Time-Triggered 
Ethernet or TTP/C are kind of protocols that support this kind of 
communication mechanism called Time-Division Multiple Access 
(TDMA). If no isolation-oriented strategies are implemented, the 
management of shared resources is usually demanded to the 
specific bus arbitration. 

Finally, in a multi-processor system based on NoC, router 
arbitration schemes are fundamental. Generally, NoCs are 
conceived on the arbitration policies shown in Table 2. 

2.1. State of Art 

Schoeberl [15] suggested a regular structured time-triggered 
NoC (TDMA-based) capable to support foreseeable 
communications both on-chip and off-chip. This architecture uses 
a pseudo-static communication schedule implemented in a 
Cyclone II EP2C35 Field-Programmable Gate Array (FPGA) on 
the Altera DE2 board. The underlying network topology is simple 
(e.g., ring structure) and optimized for easy routing (wire routing, 
not message routing). They implement a simple demo application 
(a voting triple modular redundancy sensor), but they evaluate the 
scheduling policy offline for each different scenario. An advanced 
tool to calculate and verify the schedule is important to render the 
proposed NoC useful. 

Tobuschat [16] developed a NoC capable to support natively a 
mixed criticality. This system is conceived on a methodology 
(namely, back suction) capable to maximize the bandwidth 
allocated for low importance messages, guarantying that the most 
critical messages are delivered by satisfying the related deadlines. 
The authors said that sufficient independence is reached, and 
worst-case behavior can be predicted through the usage of 
virtualization, monitoring infrastructure, and control mechanisms. 
Programming of the monitors is only possible by the system 
controller, so its correct implementation becomes an essential 
point of this work, introducing additional load to the system. 
Furthermore, the knowledge of all possible interference enables 
timing predictable behavior of the whole system, but this 
assumption is not simple to verify with respect to real scenarios. 

Burns [17] described the Wormhole Protocol for Mixed 
Criticality (WPMC). This protocol points out the dual-criticality, 
fixed priority NoCs. Furthermore, if an infraction in transaction 
deadlines is catched, it permits to limit the use of communication 
elements in favor of high criticality transactions. Successively, 
WPMC has been updated in order to advance the low criticality 
packets average latency and the latency of the worst-case of the 
high criticality ones [18]. The main limitations of this work are 
related to the maximum number of criticality levels considered 
(not more than two), the lack of a mode change protocol among 
several criticality levels, and the study of mixed-criticality end-to-

end latency analysis (i.e., considering task execution as well as 
traffic-flows). 

More in general, state of art solutions to provide isolation 
converge on two main areas: Time Division Multiplexing, that 
implies a conservative design with increased resource 
requirements [15], and Monitoring of the System, to react in case 
of unexpected situations.  

The mechanism proposed in this paper falls in the second 
category, with the novelty that the monitoring mechanism is 
moved into the NoC itself, involving only NoC interconnection 
elements and not NoC nodes. This specific aspect will be analyzed, 
in more detail, in the following section. In this way, the introduced 
mechanism is independent from the NoC topology, as the control 
action can be applied independently from the specific NoC 
architecture. The mechanism is also easily portable, as it is simple 
to introduce custom communication control strategies into existing 
network interfaces. These are the two main advances respect to the 
state of art. 

3. Proposed HW Support for Isolation 

 This paper proposes a mechanism able to consider the different 
criticality levels of tasks running on a NoC, and to regulate the 
network traffic basing on specific network parameters. The system 
model is firstly introduced, then the proposed mechanism is 
detailed and analyzed. 

3.1. System Model 

In the proposed approach, a NoC consists of, at least, two 
Nodes (N) and one or more Routers (R). Every node includes one 
or more processors/cores, memories, and other peripherals. Intra-
node communications can entrust on several approaches (generally 
a hierarchical bus and shared-memory structure). These internal 
details are not a constraint for the proposed structure, so they will 
be considered abstracted from now on. Inter-node communications 
are conceived on message passing: this implies that every node 
possess a Network Interface (NI), exploited to send/receive 
messages, and linked to a single router port. Every single router 
can be linked, to other NI and/or to other routers, considering on 
the NoC topology. The routers transmit the messages to final nodes 
according to the used routing protocol.  

In Figure 1, it is shown a schematic reference NoC, consisting 
of four nodes and routers connected in a mesh topology. Every 
node of the NoC run one or more tasks Ti. In our case a task could 
represent an OS process, thread or simply a generic abstraction of 
a piece of software that executes a specific function). Each task is 
characterized at least by a task criticality level (ci), i.e., the level of 
insurance associated to the task itself. Each task has a default 
criticality statically assigned at design-time and can deliver a 
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message (M) over the NoC through the NI of the node on which it 
is running. Every message is then outlined by a priority equal to 
the sender task criticality. 

 
Figure 1: NoC with 4 nodes in a mesh topology. 

3.2. Proposed HW mechanism 

 In order to define a mechanism supporting isolation, the 
network status is characterized by a global parameter named 
Severity. At certain time, the NoC will perform with a level of 
severity S in the range [1, Smax]. The isolation mechanism relies 
on the following two hypotheses: 

• for a given temporal instant, only the messages sent by 
tasks with a criticality level 𝑐𝑐 ≥ 𝑆𝑆 can be transmitted by 
the NI and forwarded to the routers; 

• the severity level can be modified, at run-time, by tasks 
that have specific privileges. These tasks (Task Masters, 
indicated as TM in Figure 1) are statically defined at 
design time. 

 At start-up, the system works in the least conservative mode, 
with a minimum severity level. If an anomaly condition is 
detected, and tasks with high criticality need to be executed, the 
system may switch to higher severity level, causing those tasks 
with higher criticality to access the network without competition 
with lower criticality ones. The following additional hypotheses 
are assumed: 

• each NI can store the severity level of the network, to 
allow the transmission of new messages only if their 
criticality is greater or equal than S; 

• the severity level of the network could be modified 
(raised or lowered) by a TM, by introducing inside the 
network a message which change the severity. This 
message is propagated to all network nodes and 
processed inside the NI. The reception of a message with 
a change in severity will activate an update of the severity 
level memorized inside the interface. 

Being only the TM able to change the NoC Severity, the 
configuration of the system results to be protected: indeed, an 
untrustworthy entity is not able to change this configuration and 

possibly corrupt the system itself. The condition to prompt for a 
Severity change depends on the presence of anomalies: metrics 
able to indicate when an anomaly is verified can be defined, 
depending on the application executed on the NoC; then, by 
monitoring these metrics, it is possible to relate the TM 
transmission of a Severity change with the anomaly identification. 

Observing Figure 1 and supposing that it is related to a scenario 
with two levels of criticality and two levels of severity, when the 
NoC possess a severity level equal to one, all the tasks can send 
and receive messages through the network. The routers could use 
a simple First-in First-out (FIFO) policy to manage the message 
forwarding toward the proper ports: when the FIFO is full, the 
message is rejected by the router, waiting for space in the queue. 
When a TM (T9 in the example of Figure 1) starts the procedure 
to change the level of severity of the NoC, all the NI shall be 
notified in order to update the corresponding value. When the 
severity level reaches the value of two, only T2, T6 and T9 are 
enabled to send messages while all the tasks will be able only to 
receive them. It is important noting that the designer owns the 
responsibility in order to eliminate, or to keep tolerable, conditions 
where a task cannot react to the message of a more critical one due 
to the NoC severity level possessed in that moment.  

The reference HW design of the severity management mechanism, 
able to implement the isolation mechanism above described, is 
shown in Figure 2. It has an Input Buffer (called Message Buffer 
in the figure) to manage message traffic from the node: when a 
message from the node reaches the input of the buffer, the 
Comparator module checks if the criticality of the input message 
is greater or equal than the current network severity (stored in the 
Severity Register). If that is the case, the output of the comparator 
will be low, and the message will be stored into the Message 
Buffer. Otherwise, the output of the comparator will be high, and 
the message will be rejected: specifically, the loading of the 
message buffer will be inhibited, and a reject notification will be 
sent to the node. This functionality is described in the flowchart 
shown in Figure 3, where the methods fillInputBuffer(), Analyze(), 
StoreMessageBuffer() and Reject() implement, respectively, the 
reading from the node, the analysis of the received Message, the 
storage into the message buffer to transmit along the NoC and the 
rejection of the Message. 

As above indicated, the aim of the proposed hardware 
mechanism is to assist the NoC design where, at a certain time, 
only the packets sent by a task with criticality greater or equal than 
the severity of the NoC are transmitted. The NI of nodes that 
executes the sending tasks blocks all other messages. It should be 
highlighted that this degradation is often tolerable in systems with 
mixed-criticality [17], as it eliminates any influence between lower 
and higher criticality flow. It can be noticed that the suggested 
solution does not reduce the number of criticality network levels. 
Also, it can be noticed that the proposed mechanism supports both 
spatial and temporal isolations: the former is ensured by the fact 
that only tasks with criticality greater than S can use the network 
resources to send messages. The latter is ensured by the fact that 
Severity can be changed over time, so giving the opportunity to all 
the tasks to access the network resource in specific temporal slots 
while still being able to assure that the most critical ones, when 
needed, can run without interferences due to less critical tasks. 
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Figure 2: Implementation of the mechanism in a Network Interface (NI). 

 
Figure 3: Functionality of the proposed HW mechanism. 

4. HW Mechanism Design and Validation 

This section presents the approach adopted to design and 
validate the proposed HW mechanism. The interests have been 
focused on three features: behavior validation, practicability 
check, and evaluation of the scalability. Regarding the first one, it 
allows to check if the developed mechanism behaves as expected. 
It is mainly based on HDL-based design and simulations. The 
second feature allows to check if this mechanism is possible to 
realize on real systems. It is based on a Hardware-In-the-Loop 
(HIL) approach applied to a simple NoC implementation on an 
FPGA platform. The final and third one (described in section 5) 
allows to check if it is possible to exploit the mechanism in real-
size NoC. So, it is based on a Network Simulation approach to 
validate behavior and evaluate scalability, without the need to 
develop very complex NoCs. So, the following paragraphs, 
presents all the details needed to understand the performed HDL-
based design and simulations activities. 

4.1. Selected Reference NoC 

 A reference NoC has been considered for validation activities. 
It is an open-source NoC [19] described in HDL, that can be 
simulated and synthetized on FPGA. Such a NoC is of interest, 
since its design is very simple, allowing to reduce the number of 
required logic units for prototypal implementations. Moreover, it 

is provided with a MATLAB program to monitor the network 
traffic at run-time. 

The reference NoC architecture consists of a network of nodes 
able to send and receive data, in order to complete their actions. 
Devices in nodes can be of different types, such as processors, 
memories and input/output devices. A network adapter is used to 
connect a device to a router, and a router connects the node to the 
rest of the network. Packet switching is used as a communication 
method across the network, with packets used as the 
communication medium. 

Specifically, there are three types of packets in the network: 
write, read_request and read_return, as shown in Figure 4. All of 
them have a header, to indicate their type, and other fields 
depending on their goal. 

 
Figure 4: Packets of the reference NoC. 

The write packet is sent by a master node to write data to a 
slave, while a read_request is sent by a master node to a slave one, 
and the latter replies with a read_return packet. write and 
read_request packets require a destination address: the reference 
NoC has a 32-bit address space, where the first 4 bits are used as 
the unique node IDs, while the remaining 28 bits are used for local 
addresses. The read_request packet also contains the source ID 
used by the receiver to send the read_return. read_return packets 
only contain the destination node ID of the source where they are 
replying to. A write_packet contains 8-bits of write data, while a 
read_return contains 8-bits of read data. The packets are sent over 
one clock cycle, rather than broken up over multiple clock cycles, 
to keep the hardware and logic simple. 

Focusing on network adapter (NA), it represents interface 
between the node and the router, and its purpose is to convert 
signals from the local bus into a suitable packet format for the 
network, and back again. There are two types of network adapters 
and devices: master and slave. The master network adapter 
receives the following signals from the master device: 
write_address, write_enable, write_data and read_request. A 
master device can connect to the network adapter and the network 
should be totally transparent. The NA sends back not_ready, 
read_return and read_data. Any device wishing to connect to the 
network needs to handle a not_ready signal from the network 
adapter. Its output interface with a router is a packet_data_out. It 
can receive a busy signal from the router and a read_return packet. 

 Routers have five sets of channels connected to them, as shown 
in Figure 5. As the mesh organization is used in the network, four 
directions can be identified: north, east, south, west, and one 
additional channel going toward the local network adapter. The 
router is clocked with the global clock of the system. In order to 

http://www.astesj.com/


G. Valente et. al / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 561-573 (2019) 

www.astesj.com     566 

move the packets around the network from sources to destinations, 
routers look at a special field of the incoming packets, called xy-
counters [19]: they give priority to y-direction, firstly check in 
what vertical direction they should forward the packet, and then 
checking for the horizontal one. If a router receives a packet in 
which both x and y counters are set to 0, then it indicates that the 
packet was destined for that router and that it has now reached its 
destination (and should be forwarded to the local network adapter). 

 
Figure 5: Router. 

In order to support on debugging actions, a hardware 
monitoring system is offered together with the reference NoC [20] 
[21]. The monitoring system interfaces with an UART controller, 
allowing the communication with a host computer. A MATLAB 
program is also provided to be executed on host computer, 
providing a visual representation of the current traffic on the 
network, which is updated several times per second. 

 The proposed HW isolation mechanism has been integrated in 
an instance of the reference NoC discussed in the previous sub-
section, composed of 16 nodes in a mesh topology, shown in 
Figure 6. Each device within a node is represented by a simple 
finite state machine that acts as a master or slave processor (in the 
following TP — Test Processor), executing some specific 
instructions. 

 
Figure 6: Reference 16 meshed nodes NoC. 

 In such a reference NoC, Severity and Criticality concepts have 
been introduced. If a TP tries to send a message with criticality less 
than current network severity, the message is blocked by NA. It is 
worth noting that messages are not blocked by routers, since, in 
this case, they are unaware of the isolation mechanisms. This 

improves portability but also means that, when a severity change 
occurs, all the packets already inside the networks are still able to 
freely circulate. In this case, they will be managed accordingly to 
their priority, as expected by the type of NoC. For validation 
purposes, Criticality, Severity and Priority have been set in the 
interval [0, 7]. In order to support the proposed approach, the NoC 
has been modified to introduce a fourth type of packet, called 
severity_change, shown in Figure 7. The goal of the packet is to 
allow a master task to trigger a severity change. 

 
Figure 7: Packets managed by the reference NoC. 

Together with the introduction of a new packet type, further 
assumptions have been done to reduce the management 
complexity of the network, focusing on the purpose of the tests: 

• TM has been associated to the node in the upper-right 
corner of NoC shown in Figure 6. The corresponding TP 
is the only one able to change the severity of the network. 

• Severity change requests are forwarded by following a 
snake-coil path, as shown in Figure 8. Routers forward 
such a packet only in one fixed direction 

 
Figure 8: Snake-coil path. 

Master and slave NA adopt a two-levels input buffer at both TP 
and Router side. By means of them and a proper busy signal, it is 
possible avoid losing input packets. If two packets are concurrently 
coming from TP and Router, they are managed at the same time, if 
possible, otherwise they are serialized giving priority to the one 
with greater criticality. As said before, the criticality/severity 
check is performed only in Master NA, specifically by checking 
the input buffer at TP side. This represents the major change with 
respect to the reference NoC. Another important one is that, if a 
message coming from TP is not accepted by NA, TP is notified by 
means of a proper msg_rejected signal. A detailed view on NA 
modifications is shown in Figure 9 and Figure 10. 

The router is identical to the reference NoC one, apart from the 
need of improving the existing priority-based routing approach. In 
fact, in the case of concurrent packets forwarding, greater priority 
shall be given to criticality instead than to the port. It is worth 
noting that such a policy is simply priority-based, i.e., the router 
does not need to know about the criticality/severity mechanisms 
(in fact it is designed to work without knowing anything about the 
current severity level). 
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Figure 9: Modified master NA. 

 
Figure 10: Modified slave NA. 

 
Figure 11: Simulated NoC. 

 
Figure 12: Write and read_return paths. 

 

 

 
Figure 13: Packet forwarding in router close to node A
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4.1. Validation by means of logical simulation 

The above discussed NoC has been described in VHDL and 
simulated by means of Xilinx ISim [22]. In this way, it has been 
possible to verify the right forwarding of packets and the behavior 
of the proposed mechanism. In Figure 11, the simulated NoC is 
shown: it is composed of 16 nodes with different IDs (represented 
both in binary and hexadecimal base). Nodes 6, E and F are the 
master ones (i.e., they have a master NA and a master TP). In the 
considered test case, they perform some writings and readings by 
involving node 8 (slave). Written data (write_data) are composed 
of node ID and a progressive number (from 0 to 3, since, in the 
considered test case, each node performs 4 consecutive writing). 
In Figure 12, the main communication paths between the masters 
and slave node number 8 are shown. 

Test 1 – Router packet forwarding  

The first proposed test has the goal of verifying the correct 
packets forwarding done by routers. In Figure 13, it is shown the 
router close to master Node A managing input from ports N, E, and 
S, and forwarding them towards W (since all the write operations 
are related to node 8). The reported values represent the write_data 
field in hexadecimal base. In the presented test case, master NAs 
make use of their 3-bits ID LSB as criticality values for their sent 
messages; with this assumption, the following criticality values 
have been considered: criticality 6 for node 6 (110), criticality 6 
for node E (110), criticality 7 for node F (111). 

In Figure 13, it can be noticed that packets from nodes 6 and E 
reach the router with 1 clock cycle anticipation (since node F is far 

than the others). It is also possible to notice that the first two write 
packets (60 and e0), that requires the same output port, are 
correctly forwarded giving priority to the packet 60 (same 
criticality, but N port). Then, the newly arrived f0 is quickly 
forwarded, since it has greater criticality with respect to e0. The 
output is the sequence f0, f1, f2, f3. Since also the read_request 
packets form F have criticality 7, they are always forwarded in a 
single clock cycle (f0 is high for 4 clock cycles). 

Test 2 – Isolation 

In Figure 14, the isolation capability of the proposed mechanism is 
verified. Considering a severity level set to maximum value (i.e., 
7) and stored by each NA, a TP tries to send a message with 
criticality less than the current severity. In particular, the TP tries 
to send 4 write and 4 read_request packets with criticality 6 (110); 
it receives the msg_rejected signal for 8 clock cycles. It is worth 
noting that, in this test, msg_rejected notifications are not managed 
in any way by the TP (e.g., no tentative resending). 

Test 3 - Severity change 

In Figure 15, a severity change in the NoC is shown. It is possible 
to notice the severity_change packet (highlighted in red) firstly 
sent by node 3 (the only allowed to do it, since it is supposed to 
be the only one to have a TM) to its NA. Then, such a command 
is forwarded to the whole NoC (following the path already shown 
in Figure 8), i.e., each NA updates its internal current severity 
value and setups a new message to forward the severity_change 
command to the next node. 

 

 
Figure 14: Criticality/Severity check.
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4.2. HIL-based validation 

In order to validate a prototypal implementation of the 
proposed mechanism, an instance of the reference NoC, enriched 
with that mechanism, has been implemented on a Xilinx Spartan-
3 FPGA [23] using Xilinx ISE Design Suite 14.7 [24]. The testbed 
is shown in Figure 16. The prototype consists in a NoC with a 3x3 
mesh topology, where each node device is represented by a master 
or slave Dummy Processor (DP), namely a simple finite state 
machine that acts as a processor executing some specific 
instructions. Such a network implements an 8-level Severity and 
Criticality system. To keep low the complexity, while focusing on 
proposed mechanism features, the TM has been associated to the 
node in the upper-right corner so that the corresponding DP is the 
only one able to change the severity of the NoC (actually, the 
corresponding dummy processor has been designed so that the 
user can manually decide when to do severity changes and at what 
value, by using board switches). Aside from the node at the top 
right that holds the Task Master, all other nodes have been 
randomly distributed between the two master and slave types, and 
the associated Dummy Processors have been configured to create 
a decent amount of traffic packets at all criticality levels in the 
network. Severity change requests are forwarded to the other 
nodes by following a fixed snake-coil path, as shown in Figure 17. 
All packets are forwarded by routers with a Packet-Criticality 
based priority policy [19]: the routers first check in which vertical 
direction they should forward the packet, and then check for the 
horizontal one. If a router receives a packet in which both x and y 
counters are set to 0, then it indicates that the packet was destined 
for that node and that it has now reached its destination. If, at a 

given time, two or more packets from the input ports are destined 
to the same output port, a conflict occurs, and priority is given to 
the packet with the highest criticality, whereas other packets are 
blocked before they can be sorted out later. In the case of equal 
criticality, priority is given according to the input port of the 
conflict packets, by following the descending order: Local, North, 
East, South and West. It is worth noting that such a policy is 
simply priority-based, i.e. the router does not need to know about 
the criticality/severity mechanism (indeed it is designed to work 
without knowing nothing about the current severity level). 

Master and slave NA adopt a two-level input buffer at both DP 
and Router side. By means of them and a proper busy signal, it is 
possible avoiding losing input packets. 

After the system implementation on Spartan 3 FPGA, the 
monitoring system and the MATLAB program have been used to 
check the NoC status. Red wires indicate connections that have a 
lot of traffic, yellow ones indicate a small amount of traffic while 
white ones indicate no traffic at all. Other than the traffic, it is also 
possible to check the amount of busy and msg_rejected events. In 
Figure 18, it is possible to notice that with a low severity level 
(000) traffic is quite high, since all the nodes are able to send 
messages  

After the setting of a severity change to the highest severity 
level (111) (the changing of severity using the TM is shown in 
Figure 17), the traffic appears to be heavily reduced, as shown in 
Figure 19. The area occupations are reported in Table 3. The 
impact is very small, so the adjective “lightweight”. 

 
Figure 15: Severity Change.
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Table 3: Area occupation. 

 FFs LUTs fMAX 
Complete NoC with the 
proposed mechanism 

37 % 70 % 125 
MHz 

Proposed mechanism (area 
per each NI) 

1 
(<1%) 

2 (<1%) - 

Proposed mechanism (area 
in 3x3 mesh) 

9 18 - 

 
5. Scalability evaluation 

In this section, a model of the reference NoC has been 
developed using the Omnet++ simulator [25] with the aim to 
evaluate the scalability of the proposed mechanism. The model of 
the NoC supports n-levels Severity and Criticality. Multiple 
standard (unprivileged) tasks and Master tasks can be statically 
associated to each node of the network, and different traffic 
patterns can be associated with each task. The simulator includes 
a statistic unit able to investigate the traffic sequences, and the 
possibility to use a flexible time base module able to model 
synchronous and asynchronous NoC. In the case of synchronous 
NoC, the model of the network makes use of a module (named the 
Time-base synchronizer) able to generate clock messages, 
ensuring synchronous communication between the various nodes. 
Other model features are the following: 

• in a fixed, predetermined device, a single TM executes on 
the platform 

• each router uses the xy routing strategy shown previously 
and the broadcasting of the Severity Change Packet; 

• the TM can determine the traffic status and eventually its 
congestion, by inserting a special broadcast packet called 
the Inquire Packet (IP); 

The TM will modify the severity by sending a Severity Change 
Packet if the measured congestion status exceeds a predefined 
threshold, or if there is a timeout elapse. This severity 
administration policy needs an additional overhead for the 
development of the routers, as every router should be capable to 
follow the number of queued packets and deal with the IP. 
Furthermore, the suggested enquiry strategy needs the insertion of 
additional packets inside the network, possibly disturbing with 
device traffic. 

In Figure 20, there is the result of a simulation of the modelled 
system in case of a synchronous 8x8 NoC. This figure shows the 
total number of packets inserted into the network over time, 
reported in generic time units (i.e., number of clock cycles) and 
two indices of the network status: the number of queued packets 
at a certain time and the current network severity. It should be 
observed that the value of the two network indices is multiplied 
by one hundred for a better clarity of the figure. It can be seen that 
the traffic regulation mechanism is adequately capable to limit the 
traffic of the network in case of congestion, allowing only the 
successful transactions of high criticality messages in a timely 
manner: this shows the feedback that the proposed mechanism can 
provide when unexpected behavior from the tasks are verified. 

In Figure 21, it is reported the number of total sent messages 
(red line) and the number of dropped messages (blue line). The 

number of dropped messages is lower than the total messages that 
go through the network. In particular, the number of total 
messages in the tested time interval is 4.14 ∙ 106, while the number 
of dropped messages is 3.00 ∙ 106. 

 
Figure 16: Testbed. 

 
Figure 17: Snake-coil path. 

 

 
Figure 18: Network traffic with low severity (000). 

 
Figure 19: Network traffic with high severity (111). 

 
Figure 20: Simulation of a synchronous 8x8 mesh network. 
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.

 
Figure 21: Number of total messages (red line) and number of dropped messages 

(blue line) for a synchronous 8x8 mesh network. 

6. Further Analysis 

Thanks to effort spent on creating a model, further analysis 
has been done by means of system simulations, introducing other 
aspects and evaluating a different broadcast strategy and a 
different management of the control traffic messages. 

6.1. Different broadcast strategy 

In this test, routers have the possibility of changing the 
broadcast of the Severity Change Packet. There are two 
possibilities: 

• snake-coil strategy: the message, with TM in the node at 
the top right of the network, is broadcast one router at a 
time in a north-south direction, then moves one step to 
the left when the message reaches a router located at the 
northern or southern limit in the network itself and 
resume the journey in the north-south direction. The 
method is already described and used in the previous two 
sections. 

• star-broadcast strategy: it takes its name from the design 
formed by the overall path travelled by the messages. 
The origin node of the messages can be in any position. 
The first router forwards the packet to all the connected 
ports in order to reach the maximum number of routers. 
Routers located along the north-south axis respect to the 
first router forward the message to the east, west and 
north, if they received the message from the south, or 
forward it to east, west and south, if they received it from 
the north. Finally, the routers that receive the packet 
from the east [or west] forward the broadcast packet 
along the west [or east] direction in order to make the 
broadcast packet continue along the east-west axis (see 
Figure 22). 

 
Figure 22: Star-broadcast strategy. 

In Figure 23, it is shown the behavior of the system in case of 
a synchronous 8x8 NoC with the star-broadcast strategy instead 
of snake-coil one. As in previous section, the value of the two 
network indicators is scaled by a factor of one hundred for better 
clarity of the graph. Here, the TM periodically sends a control 
signal to which all routers respond by entering their own 
maximum queue value. In this period, the TM waits a maximum 
time equal to 10 clock cycles between one message and another 
before deciding to change the severity of the network. After this 
time, if the TM does not receive all the answers, then the network 
severity increases, trying to moderate the circulation of messages. 
Vice versa, when all the messages are received by the TM, the 
latter can decide to decrease the severity of the network. When all 
the messages are received, the TM in this test evaluates the 
average of the received answers. 

The test shows that the proposed mechanism manages to 
control the flow of messages within the network, although the 
network itself is flooded with many control messages. The peak 
of messages reached within the network exceeds one thousand 
units, a situation in which the severity of the network is zero. In 
this case, there are several messages in the network and the TM 
fails to receive all the control messages, so the network severity 
is raised to one (one hundred in Figure 23). 

 
Figure 23: Simulation of a synchronous 8x8 mesh network without traffic control 

and with star-broadcast strategy 

This leads to a decrease of messages in the network, but not 
enough so the TM causes another increase in severity. With 
severity two (two hundred in Figure 23), the severity does not 
decrease until the value answered by all nodes is less than a 
threshold value. The response received from all the nodes is 
averaged in order to obtain an indicative value of the network state. 
The value is considered only when the responses are received 
from all the routers. Subsequently, two tests are conducted on this 
type of broadcast strategy. The first one, shown in Figure 24, uses 
an exact average value obtained from all the responses received. 
In the second case, shown in Figure 25, the average is modified in 
correspondence of a minimum value in order to be higher. 

 
Figure 24: Number of total messages (red line) and number of dropped messages 

(blue line) for a synchronous 8x8 mesh network with star-broadcast strategy, 
exact average case. 
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Figure 25:  Number of total messages (red line) and number of dropped 

messages (blue line) for a synchronous 8x8 mesh network with star-broadcast 
strategy, modified average case. 

Considering these two results, the network that performs best 
for message delivery time is the one that uses the modified 
average of traffic. However, this method results in a lower number 
of total messages sent over the network. Furthermore, with the use 
of the modified average, the maximum capacity of the routers 
results decreased in messages of a 20%.  

6.2. Control traffic messages management 

In this situation, devices and routers use two types of states 
to differentiate the type of messages processed, by extending the 
functionalities already present in the implemented NoC. Here, a 
single slot is dedicated to control traffic messages management. 
Two states have been identified:  

• State zero indicates classic operation, i.e. read, write and 
reply messages are exchanged. 

• State one only messages intended for traffic control are 
exchanged.  

The traffic control messages in this type of network have a 
priority equal to that of the TM, in order to do not mix service 
messages with those of communication useful between the cores. 
Currently this functionality is supported only for a synchronous 
NoC. For a synchronous 8x8-node networks with control traffic 
messages management, the best behavior is obtained with the star-
broadcast strategy (see Figure 26 and Figure 27). Here, there is a 
better delivery time for all messages. 

 
Figure 26: Number of total messages (red line) and number of dropped messages 
(blue line) for an 8x8 mesh network with control traffic messages management 

and snake coil strategy. 

Analyzing all the experimental results for 64-node networks 
without control traffic messages management, the broadcast 
strategy that behaves best is the snake coil, unless the star-

broadcast strategy modifies the average of the messages received.  
Therefore, if we consider the modified average, the star-broadcast 
improves and shortens the delivery time of the messages.  

 
Figure 27: Number of total messages (red line) and number of dropped messages 
(blue line) for an 8x8 mesh network with control traffic messages management 

and star-broadcast strategy. 

For the 64-node network with control traffic messages 
management, the best behavior is given by the star-broadcast. It 
must be remembered that, in the network with state, a fixed delay 
is introduced in the maximum time of delivery of the messages 
equal to the time of control necessary to probe the network. 
Despite this, the star-broadcast strategy keeps the average 
delivery time of messages low, even if it has a high delivery time. 

7. Conclusions 

Isolation is an important issue for embedded systems on which 
multiple tasks with different level of criticality are running. This 
paper has suggested a lightweight isolation mechanism to be 
introduced into existing Networks on Chip. This mechanism 
supports the execution of multiple applications with different 
criticality levels by supervising the packet exchange between 
network nodes. It does not reduce the criticality levels and it 
supports both spatial and temporal isolation. The system main 
innovation is its autonomy from the topology of the NoC and its 
easily flexibility among different NoCs. Small NoC 
implementations have been provided, showing the small impact 
in the area occupation, and motivating the adjective “lightweight”. 
Simulation on a network simulator has been proposed to evaluate 
the behavior of the mechanism on a NoC with more elements, and 
the feedback applied when there are unexpected situations is 
shown.  

8. Future Works 

Future works involve a further analysis to precisely characterize 
the overhead of proposed mechanism in a real existing NoC 
solution, and to investigate the best severity change policy. 
Moreover, given the outlined results, the possibility of adding a 
lightweight support for network status analysis will be explored 
as well. 
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