

www.astesj.com 561

A Lightweight, Hardware-Based Support for Isolation in Mixed-Criticality Network-on-Chip
Architectures

Giacomo Valente, Paolo Giammatteo, Vittoriano Muttillo, Luigi Pomante*, Tania Di Mascio

Center of Excellence DEWS, Università degli Studi dell'Aquila, 67100 L'Aquila, Italy

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 15 June, 2019
Accepted: 31 July, 2019
Online: 25 August, 2019

 Spatial and temporal isolation is a crucial issue in embedded systems executing multiple
tasks with several levels of criticality. This is considerably significant in the context of
multi-processor (or multi-core) embedded systems running multiple mixed-criticality
applications in parallel. This work deals with the issue of isolation of different application
classes on Network on Chip (NoC) architectures and proposes a lightweight hardware
mechanism able to support mixed-criticality requirements and specifically designed to be
introduced into existing network interfaces. This mechanism supports the execution of
different and contemporary applications with several criticality levels by supervising the
messages exchange among network nodes, with the introduction of limited hardware and
software overhead on the monitored network. The proposed solution is described and
evaluated by means of logical simulations and an implementation on reconfigurable logic,
using a reference NoC architecture with mesh topology. Scalability of the proposed
approach is also discussed and evaluated by means of network simulations. Results show
an area occupation less than 1% in a 3x3 mesh NoC, and a good scalability of the proposed
mechanism in an 8x8 mesh network, indicating it as a valid lightweight solution able to
enforce isolation in NoCs.

Keywords:
Network on Chip
Isolation
Mixed-Criticality
Hardware Support

1. Introduction

 It is possible to define the criticality of the generic component
of a system as the level of assurance needed for that element [1].
Embedded system is a clear example of mixed-criticality system if
different software elements executing on the same hardware
platform possess two or more levels of criticality. The fundamental
problems in mixed-criticality system management are (i) the
simultaneous satisfaction of discordant requirements regarding
advantageous access to shared resources, in order to make the most
of performance of the system, (ii) and a strict partitioning to avoid
disorder between different elements.

Regarding single-processor embedded systems, it is essential to
guarantee the isolation between tasks in terms of time, and several
techniques able to ensure temporal determinism of running have
been presented in scientific literature [2]. On the other hand, about
multi-processor systems, different applications run in parallel on
different processors. The applications must compete in accessing
shared resources, taking advantage of the specific communication
architectures of different hardware implementations. Recently, it

was possible to observe a growing interest towards the usage of
Network on Chip (NoC) architectures [3] as a platform for systems
with high mixed criticality. Compared to traditional shared
(hierarchical) bus solutions, NoCs can more efficiently support the
implementation of multi and many core systems. Table 1 (inspired
by the works presented in [4] and [5]) provides a qualitative
comparison of the two approaches.

In this prospective, the present work shows a mechanism with
lightweight hardware for the management of mixed criticality in a
multi-processor embedded system conceived on a Network on
Chip. In particular, the aim is to give a hardware-based support in
order to control the flow of the messages through the NoC, with
the goal of guaranteeing a reserved access to the NoC itself on the
base of the criticality level of the different tasks running on the
NoC nodes. In such a way, the proposed mechanism supports
spatial and temporal isolation, since, in a given period, only a
subset of the tasks can access the NoC and the connected resources.
Indeed, temporal isolation ensures no interference in the time
domain among tasks to access to a shared resource (i.e., mutual
exclusive access), while spatial isolation protects a shared resource

ASTESJ

ISSN: 2415-6698

*Luigi Pomante, Email: luigi.pomante@univaq.it

Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 561-573 (2019)

www.astesj.com

Special Issue on Advancement in Engineering and Computer Science

https://dx.doi.org/10.25046/aj040467

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj040467

G. Valente et. al / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 561-573 (2019)

www.astesj.com 562

Table 1: Shared bus vs. NOC: a qualitative comparison

 Concurrent access to

different resources

Throughput Physical implementation

Overhead

Scalability Design

complexity

Power

dissipation

Area

occupation

Max

frequency

Shared
Bus

- -

= - + - - -

NoC + + = + - + +

+

so that tasks are able to freely perform access only to a part of it,
or only a subset of existing tasks are able to access to that resource
[6].

 The main characteristics of the proposed mechanism are the
following ones:

• limited effect on system performance, thanks to a
hardware-based approach;

• no limit on the number of criticality levels in the system;

• supporting both spatial and temporal isolation.

In particularly, the innovation points of the proposed approach are
the followings:

• independency from NoC topology, i.e., it can be adapted
to each NoC scenario;

• portability among different networks.

It is worth noting that this paper extends the one presented in [7],
by providing:

• detailed HW design, described in Hardware Description
Language (HDL), together with logical simulation (sec.
4);

• extended scalability analysis by means of OMNET++
simulations (sec. 5 and 6).

The paper is outlined in this way. Section 2 describes the most
important concepts related to the management of isolation in the
context of mixed-criticality in multi-processor and NoC based
systems; the section also briefly summarizes the current main
existing strategies for the effective management of the different
criticality levels. Section 3 shows the proposed mechanism and
details its advantages. Section 4 illustrates the detailed HDL-based
HW design and simulation issues. Section 5 and 6 show the
analysis of a simulated platform that helps to test the effectiveness
of the proposed mechanism for NoC with more nodes. Finally,
Section 7 summarizes conclusions and discusses future works.

2. Isolation in Mixed-Criticality Systems

Spatial and temporal isolation is a fundamental issue for
embedded systems. In particular, for those systems that perform
multiple activities with different levels of criticality, or better to
say, mixed critical embedded systems. The topic is particularly
significant for areas such as aeronautics and automotive. Several
standards have the specific purpose of finding a solution to this
problem and two significant examples are the AUTOMOTIVE
OPEN SYSTEM ARCHITECTURE (AUTOSAR, [8]), a software

architecture in the automotive area, and the Aeronautical Radio
INCorporated (ARINC, [9]), which gives the specifications for
spatial and temporal sectioning in avionics applications critical for
safety (ARINC 653).

In order to examine the issue of mixed criticality, different
analytical models can be followed [1]. Usually, applications are
modelled as a group of elements. Each one consists of a finite
number of tasks. Each task is expected on a processing resource,
that can be shared among different tasks. For the present analysis,
each task executes a specific activity by performing a certain
number of jobs and it is periodically scheduled on a shared
processing resource.

Focusing on criticality, several schemes have been presented
in literature defining of levels of criticality, from the easiest one,
where only two levels are allowed (i.e., non-critical and critical),
up to configurations where the number of allowed levels is
potentially unlimited [10]. Focusing on isolation, the tasks
belonging to components with a lower criticality level shall not be
able to interfere with higher criticality ones.

In literature, different studies have analyzed the problem of the
management of mixed criticality in single processor systems, from
the isolation point of view [2]. A static allocation of memory
during compilation phase is an appropriate strategy in order to
reach spatial isolation. Contrarily, a Memory Management Unit
and a Memory Protection Unit could support isolation for dynamic
memory allocation. Another appropriate strategy in order to reach
isolation between tasks with several criticality levels is
virtualization. Anyway, full virtualization is generally not
satisfactory for embedded systems (especially if exists real-time
constraints), indeed the required overhead may be impactful on the
temporal constraints of the application. The usage of Hypervisors
[11] in these situations permits to run ate the same time several
operating systems upon a platform in sharing with low overhead,
but still maintaining the isolation of time and space [12].

It is fundamental in a multi-processor system with shared bus
architecture, administer the access to shared communication
elements. This could be done by partitioning the system in order to
eliminate disturbances among applications executing on different
cores, or on peripherals device with DMA. The issue of
partitioning in multi-processor systems is already addressed by
Pellizzoni et al. [13], with the definition of the Architectural
Analysis and Design Language, which is a form of Architectural
Description Language used for mixed-critical systems that
supports by construction the monitoring and optimization of the
communication and processing phase. The time-triggered model
[14] is a different method of partitioning, where a high level of
criticality is related to the time-triggered traffic, while traffic

http://www.astesj.com/

G. Valente et. al / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 561-573 (2019)

www.astesj.com 563

Table 2: Routing arbitration policies for NoCs.

Arbitration Policy Round Robin Time Division Multiplexing Fixed Priority

Description Usually aimed at obtaining fairness
on arbitration, but not used in real-
time systems, given the problems
in calculating the worst-case
latencies for the various
transactions.

The various data flows are statically allocated to
separated time slots. This arbitration policy is
largely adopted in real-time and mixed criticality
implementations, but determining a reservation
scheme for the various time slots is not trivial.

The various transactions are managed
based on predefined priority levels.

triggered by events is generally the best effort. Time-Triggered
Ethernet or TTP/C are kind of protocols that support this kind of
communication mechanism called Time-Division Multiple Access
(TDMA). If no isolation-oriented strategies are implemented, the
management of shared resources is usually demanded to the
specific bus arbitration.

Finally, in a multi-processor system based on NoC, router
arbitration schemes are fundamental. Generally, NoCs are
conceived on the arbitration policies shown in Table 2.

2.1. State of Art

Schoeberl [15] suggested a regular structured time-triggered
NoC (TDMA-based) capable to support foreseeable
communications both on-chip and off-chip. This architecture uses
a pseudo-static communication schedule implemented in a
Cyclone II EP2C35 Field-Programmable Gate Array (FPGA) on
the Altera DE2 board. The underlying network topology is simple
(e.g., ring structure) and optimized for easy routing (wire routing,
not message routing). They implement a simple demo application
(a voting triple modular redundancy sensor), but they evaluate the
scheduling policy offline for each different scenario. An advanced
tool to calculate and verify the schedule is important to render the
proposed NoC useful.

Tobuschat [16] developed a NoC capable to support natively a
mixed criticality. This system is conceived on a methodology
(namely, back suction) capable to maximize the bandwidth
allocated for low importance messages, guarantying that the most
critical messages are delivered by satisfying the related deadlines.
The authors said that sufficient independence is reached, and
worst-case behavior can be predicted through the usage of
virtualization, monitoring infrastructure, and control mechanisms.
Programming of the monitors is only possible by the system
controller, so its correct implementation becomes an essential
point of this work, introducing additional load to the system.
Furthermore, the knowledge of all possible interference enables
timing predictable behavior of the whole system, but this
assumption is not simple to verify with respect to real scenarios.

Burns [17] described the Wormhole Protocol for Mixed
Criticality (WPMC). This protocol points out the dual-criticality,
fixed priority NoCs. Furthermore, if an infraction in transaction
deadlines is catched, it permits to limit the use of communication
elements in favor of high criticality transactions. Successively,
WPMC has been updated in order to advance the low criticality
packets average latency and the latency of the worst-case of the
high criticality ones [18]. The main limitations of this work are
related to the maximum number of criticality levels considered
(not more than two), the lack of a mode change protocol among
several criticality levels, and the study of mixed-criticality end-to-

end latency analysis (i.e., considering task execution as well as
traffic-flows).

More in general, state of art solutions to provide isolation
converge on two main areas: Time Division Multiplexing, that
implies a conservative design with increased resource
requirements [15], and Monitoring of the System, to react in case
of unexpected situations.

The mechanism proposed in this paper falls in the second
category, with the novelty that the monitoring mechanism is
moved into the NoC itself, involving only NoC interconnection
elements and not NoC nodes. This specific aspect will be analyzed,
in more detail, in the following section. In this way, the introduced
mechanism is independent from the NoC topology, as the control
action can be applied independently from the specific NoC
architecture. The mechanism is also easily portable, as it is simple
to introduce custom communication control strategies into existing
network interfaces. These are the two main advances respect to the
state of art.

3. Proposed HW Support for Isolation

 This paper proposes a mechanism able to consider the different
criticality levels of tasks running on a NoC, and to regulate the
network traffic basing on specific network parameters. The system
model is firstly introduced, then the proposed mechanism is
detailed and analyzed.

3.1. System Model

In the proposed approach, a NoC consists of, at least, two
Nodes (N) and one or more Routers (R). Every node includes one
or more processors/cores, memories, and other peripherals. Intra-
node communications can entrust on several approaches (generally
a hierarchical bus and shared-memory structure). These internal
details are not a constraint for the proposed structure, so they will
be considered abstracted from now on. Inter-node communications
are conceived on message passing: this implies that every node
possess a Network Interface (NI), exploited to send/receive
messages, and linked to a single router port. Every single router
can be linked, to other NI and/or to other routers, considering on
the NoC topology. The routers transmit the messages to final nodes
according to the used routing protocol.

In Figure 1, it is shown a schematic reference NoC, consisting
of four nodes and routers connected in a mesh topology. Every
node of the NoC run one or more tasks Ti. In our case a task could
represent an OS process, thread or simply a generic abstraction of
a piece of software that executes a specific function). Each task is
characterized at least by a task criticality level (ci), i.e., the level of
insurance associated to the task itself. Each task has a default
criticality statically assigned at design-time and can deliver a

http://www.astesj.com/

G. Valente et. al / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 561-573 (2019)

www.astesj.com 564

message (M) over the NoC through the NI of the node on which it
is running. Every message is then outlined by a priority equal to
the sender task criticality.

Figure 1: NoC with 4 nodes in a mesh topology.

3.2. Proposed HW mechanism

 In order to define a mechanism supporting isolation, the
network status is characterized by a global parameter named
Severity. At certain time, the NoC will perform with a level of
severity S in the range [1, Smax]. The isolation mechanism relies
on the following two hypotheses:

• for a given temporal instant, only the messages sent by
tasks with a criticality level 𝑐𝑐 ≥ 𝑆𝑆 can be transmitted by
the NI and forwarded to the routers;

• the severity level can be modified, at run-time, by tasks
that have specific privileges. These tasks (Task Masters,
indicated as TM in Figure 1) are statically defined at
design time.

 At start-up, the system works in the least conservative mode,
with a minimum severity level. If an anomaly condition is
detected, and tasks with high criticality need to be executed, the
system may switch to higher severity level, causing those tasks
with higher criticality to access the network without competition
with lower criticality ones. The following additional hypotheses
are assumed:

• each NI can store the severity level of the network, to
allow the transmission of new messages only if their
criticality is greater or equal than S;

• the severity level of the network could be modified
(raised or lowered) by a TM, by introducing inside the
network a message which change the severity. This
message is propagated to all network nodes and
processed inside the NI. The reception of a message with
a change in severity will activate an update of the severity
level memorized inside the interface.

Being only the TM able to change the NoC Severity, the
configuration of the system results to be protected: indeed, an
untrustworthy entity is not able to change this configuration and

possibly corrupt the system itself. The condition to prompt for a
Severity change depends on the presence of anomalies: metrics
able to indicate when an anomaly is verified can be defined,
depending on the application executed on the NoC; then, by
monitoring these metrics, it is possible to relate the TM
transmission of a Severity change with the anomaly identification.

Observing Figure 1 and supposing that it is related to a scenario
with two levels of criticality and two levels of severity, when the
NoC possess a severity level equal to one, all the tasks can send
and receive messages through the network. The routers could use
a simple First-in First-out (FIFO) policy to manage the message
forwarding toward the proper ports: when the FIFO is full, the
message is rejected by the router, waiting for space in the queue.
When a TM (T9 in the example of Figure 1) starts the procedure
to change the level of severity of the NoC, all the NI shall be
notified in order to update the corresponding value. When the
severity level reaches the value of two, only T2, T6 and T9 are
enabled to send messages while all the tasks will be able only to
receive them. It is important noting that the designer owns the
responsibility in order to eliminate, or to keep tolerable, conditions
where a task cannot react to the message of a more critical one due
to the NoC severity level possessed in that moment.

The reference HW design of the severity management mechanism,
able to implement the isolation mechanism above described, is
shown in Figure 2. It has an Input Buffer (called Message Buffer
in the figure) to manage message traffic from the node: when a
message from the node reaches the input of the buffer, the
Comparator module checks if the criticality of the input message
is greater or equal than the current network severity (stored in the
Severity Register). If that is the case, the output of the comparator
will be low, and the message will be stored into the Message
Buffer. Otherwise, the output of the comparator will be high, and
the message will be rejected: specifically, the loading of the
message buffer will be inhibited, and a reject notification will be
sent to the node. This functionality is described in the flowchart
shown in Figure 3, where the methods fillInputBuffer(), Analyze(),
StoreMessageBuffer() and Reject() implement, respectively, the
reading from the node, the analysis of the received Message, the
storage into the message buffer to transmit along the NoC and the
rejection of the Message.

As above indicated, the aim of the proposed hardware
mechanism is to assist the NoC design where, at a certain time,
only the packets sent by a task with criticality greater or equal than
the severity of the NoC are transmitted. The NI of nodes that
executes the sending tasks blocks all other messages. It should be
highlighted that this degradation is often tolerable in systems with
mixed-criticality [17], as it eliminates any influence between lower
and higher criticality flow. It can be noticed that the suggested
solution does not reduce the number of criticality network levels.
Also, it can be noticed that the proposed mechanism supports both
spatial and temporal isolations: the former is ensured by the fact
that only tasks with criticality greater than S can use the network
resources to send messages. The latter is ensured by the fact that
Severity can be changed over time, so giving the opportunity to all
the tasks to access the network resource in specific temporal slots
while still being able to assure that the most critical ones, when
needed, can run without interferences due to less critical tasks.

http://www.astesj.com/

G. Valente et. al / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 561-573 (2019)

www.astesj.com 565

Figure 2: Implementation of the mechanism in a Network Interface (NI).

Figure 3: Functionality of the proposed HW mechanism.

4. HW Mechanism Design and Validation

This section presents the approach adopted to design and
validate the proposed HW mechanism. The interests have been
focused on three features: behavior validation, practicability
check, and evaluation of the scalability. Regarding the first one, it
allows to check if the developed mechanism behaves as expected.
It is mainly based on HDL-based design and simulations. The
second feature allows to check if this mechanism is possible to
realize on real systems. It is based on a Hardware-In-the-Loop
(HIL) approach applied to a simple NoC implementation on an
FPGA platform. The final and third one (described in section 5)
allows to check if it is possible to exploit the mechanism in real-
size NoC. So, it is based on a Network Simulation approach to
validate behavior and evaluate scalability, without the need to
develop very complex NoCs. So, the following paragraphs,
presents all the details needed to understand the performed HDL-
based design and simulations activities.

4.1. Selected Reference NoC

 A reference NoC has been considered for validation activities.
It is an open-source NoC [19] described in HDL, that can be
simulated and synthetized on FPGA. Such a NoC is of interest,
since its design is very simple, allowing to reduce the number of
required logic units for prototypal implementations. Moreover, it

is provided with a MATLAB program to monitor the network
traffic at run-time.

The reference NoC architecture consists of a network of nodes
able to send and receive data, in order to complete their actions.
Devices in nodes can be of different types, such as processors,
memories and input/output devices. A network adapter is used to
connect a device to a router, and a router connects the node to the
rest of the network. Packet switching is used as a communication
method across the network, with packets used as the
communication medium.

Specifically, there are three types of packets in the network:
write, read_request and read_return, as shown in Figure 4. All of
them have a header, to indicate their type, and other fields
depending on their goal.

Figure 4: Packets of the reference NoC.

The write packet is sent by a master node to write data to a
slave, while a read_request is sent by a master node to a slave one,
and the latter replies with a read_return packet. write and
read_request packets require a destination address: the reference
NoC has a 32-bit address space, where the first 4 bits are used as
the unique node IDs, while the remaining 28 bits are used for local
addresses. The read_request packet also contains the source ID
used by the receiver to send the read_return. read_return packets
only contain the destination node ID of the source where they are
replying to. A write_packet contains 8-bits of write data, while a
read_return contains 8-bits of read data. The packets are sent over
one clock cycle, rather than broken up over multiple clock cycles,
to keep the hardware and logic simple.

Focusing on network adapter (NA), it represents interface
between the node and the router, and its purpose is to convert
signals from the local bus into a suitable packet format for the
network, and back again. There are two types of network adapters
and devices: master and slave. The master network adapter
receives the following signals from the master device:
write_address, write_enable, write_data and read_request. A
master device can connect to the network adapter and the network
should be totally transparent. The NA sends back not_ready,
read_return and read_data. Any device wishing to connect to the
network needs to handle a not_ready signal from the network
adapter. Its output interface with a router is a packet_data_out. It
can receive a busy signal from the router and a read_return packet.

 Routers have five sets of channels connected to them, as shown
in Figure 5. As the mesh organization is used in the network, four
directions can be identified: north, east, south, west, and one
additional channel going toward the local network adapter. The
router is clocked with the global clock of the system. In order to

http://www.astesj.com/

G. Valente et. al / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 561-573 (2019)

www.astesj.com 566

move the packets around the network from sources to destinations,
routers look at a special field of the incoming packets, called xy-
counters [19]: they give priority to y-direction, firstly check in
what vertical direction they should forward the packet, and then
checking for the horizontal one. If a router receives a packet in
which both x and y counters are set to 0, then it indicates that the
packet was destined for that router and that it has now reached its
destination (and should be forwarded to the local network adapter).

Figure 5: Router.

In order to support on debugging actions, a hardware
monitoring system is offered together with the reference NoC [20]
[21]. The monitoring system interfaces with an UART controller,
allowing the communication with a host computer. A MATLAB
program is also provided to be executed on host computer,
providing a visual representation of the current traffic on the
network, which is updated several times per second.

 The proposed HW isolation mechanism has been integrated in
an instance of the reference NoC discussed in the previous sub-
section, composed of 16 nodes in a mesh topology, shown in
Figure 6. Each device within a node is represented by a simple
finite state machine that acts as a master or slave processor (in the
following TP — Test Processor), executing some specific
instructions.

Figure 6: Reference 16 meshed nodes NoC.

 In such a reference NoC, Severity and Criticality concepts have
been introduced. If a TP tries to send a message with criticality less
than current network severity, the message is blocked by NA. It is
worth noting that messages are not blocked by routers, since, in
this case, they are unaware of the isolation mechanisms. This

improves portability but also means that, when a severity change
occurs, all the packets already inside the networks are still able to
freely circulate. In this case, they will be managed accordingly to
their priority, as expected by the type of NoC. For validation
purposes, Criticality, Severity and Priority have been set in the
interval [0, 7]. In order to support the proposed approach, the NoC
has been modified to introduce a fourth type of packet, called
severity_change, shown in Figure 7. The goal of the packet is to
allow a master task to trigger a severity change.

Figure 7: Packets managed by the reference NoC.

Together with the introduction of a new packet type, further
assumptions have been done to reduce the management
complexity of the network, focusing on the purpose of the tests:

• TM has been associated to the node in the upper-right
corner of NoC shown in Figure 6. The corresponding TP
is the only one able to change the severity of the network.

• Severity change requests are forwarded by following a
snake-coil path, as shown in Figure 8. Routers forward
such a packet only in one fixed direction

Figure 8: Snake-coil path.

Master and slave NA adopt a two-levels input buffer at both TP
and Router side. By means of them and a proper busy signal, it is
possible avoid losing input packets. If two packets are concurrently
coming from TP and Router, they are managed at the same time, if
possible, otherwise they are serialized giving priority to the one
with greater criticality. As said before, the criticality/severity
check is performed only in Master NA, specifically by checking
the input buffer at TP side. This represents the major change with
respect to the reference NoC. Another important one is that, if a
message coming from TP is not accepted by NA, TP is notified by
means of a proper msg_rejected signal. A detailed view on NA
modifications is shown in Figure 9 and Figure 10.

The router is identical to the reference NoC one, apart from the
need of improving the existing priority-based routing approach. In
fact, in the case of concurrent packets forwarding, greater priority
shall be given to criticality instead than to the port. It is worth
noting that such a policy is simply priority-based, i.e., the router
does not need to know about the criticality/severity mechanisms
(in fact it is designed to work without knowing anything about the
current severity level).

http://www.astesj.com/

G. Valente et. al / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 561-573 (2019)

www.astesj.com 567

Figure 9: Modified master NA.

Figure 10: Modified slave NA.

Figure 11: Simulated NoC.

Figure 12: Write and read_return paths.

Figure 13: Packet forwarding in router close to node A

http://www.astesj.com/

G. Valente et. al / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 561-573 (2019)

www.astesj.com 568

4.1. Validation by means of logical simulation

The above discussed NoC has been described in VHDL and
simulated by means of Xilinx ISim [22]. In this way, it has been
possible to verify the right forwarding of packets and the behavior
of the proposed mechanism. In Figure 11, the simulated NoC is
shown: it is composed of 16 nodes with different IDs (represented
both in binary and hexadecimal base). Nodes 6, E and F are the
master ones (i.e., they have a master NA and a master TP). In the
considered test case, they perform some writings and readings by
involving node 8 (slave). Written data (write_data) are composed
of node ID and a progressive number (from 0 to 3, since, in the
considered test case, each node performs 4 consecutive writing).
In Figure 12, the main communication paths between the masters
and slave node number 8 are shown.

Test 1 – Router packet forwarding

The first proposed test has the goal of verifying the correct
packets forwarding done by routers. In Figure 13, it is shown the
router close to master Node A managing input from ports N, E, and
S, and forwarding them towards W (since all the write operations
are related to node 8). The reported values represent the write_data
field in hexadecimal base. In the presented test case, master NAs
make use of their 3-bits ID LSB as criticality values for their sent
messages; with this assumption, the following criticality values
have been considered: criticality 6 for node 6 (110), criticality 6
for node E (110), criticality 7 for node F (111).

In Figure 13, it can be noticed that packets from nodes 6 and E
reach the router with 1 clock cycle anticipation (since node F is far

than the others). It is also possible to notice that the first two write
packets (60 and e0), that requires the same output port, are
correctly forwarded giving priority to the packet 60 (same
criticality, but N port). Then, the newly arrived f0 is quickly
forwarded, since it has greater criticality with respect to e0. The
output is the sequence f0, f1, f2, f3. Since also the read_request
packets form F have criticality 7, they are always forwarded in a
single clock cycle (f0 is high for 4 clock cycles).

Test 2 – Isolation

In Figure 14, the isolation capability of the proposed mechanism is
verified. Considering a severity level set to maximum value (i.e.,
7) and stored by each NA, a TP tries to send a message with
criticality less than the current severity. In particular, the TP tries
to send 4 write and 4 read_request packets with criticality 6 (110);
it receives the msg_rejected signal for 8 clock cycles. It is worth
noting that, in this test, msg_rejected notifications are not managed
in any way by the TP (e.g., no tentative resending).

Test 3 - Severity change

In Figure 15, a severity change in the NoC is shown. It is possible
to notice the severity_change packet (highlighted in red) firstly
sent by node 3 (the only allowed to do it, since it is supposed to
be the only one to have a TM) to its NA. Then, such a command
is forwarded to the whole NoC (following the path already shown
in Figure 8), i.e., each NA updates its internal current severity
value and setups a new message to forward the severity_change
command to the next node.

Figure 14: Criticality/Severity check.

http://www.astesj.com/

G. Valente et. al / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 561-573 (2019)

www.astesj.com 569

4.2. HIL-based validation

In order to validate a prototypal implementation of the
proposed mechanism, an instance of the reference NoC, enriched
with that mechanism, has been implemented on a Xilinx Spartan-
3 FPGA [23] using Xilinx ISE Design Suite 14.7 [24]. The testbed
is shown in Figure 16. The prototype consists in a NoC with a 3x3
mesh topology, where each node device is represented by a master
or slave Dummy Processor (DP), namely a simple finite state
machine that acts as a processor executing some specific
instructions. Such a network implements an 8-level Severity and
Criticality system. To keep low the complexity, while focusing on
proposed mechanism features, the TM has been associated to the
node in the upper-right corner so that the corresponding DP is the
only one able to change the severity of the NoC (actually, the
corresponding dummy processor has been designed so that the
user can manually decide when to do severity changes and at what
value, by using board switches). Aside from the node at the top
right that holds the Task Master, all other nodes have been
randomly distributed between the two master and slave types, and
the associated Dummy Processors have been configured to create
a decent amount of traffic packets at all criticality levels in the
network. Severity change requests are forwarded to the other
nodes by following a fixed snake-coil path, as shown in Figure 17.
All packets are forwarded by routers with a Packet-Criticality
based priority policy [19]: the routers first check in which vertical
direction they should forward the packet, and then check for the
horizontal one. If a router receives a packet in which both x and y
counters are set to 0, then it indicates that the packet was destined
for that node and that it has now reached its destination. If, at a

given time, two or more packets from the input ports are destined
to the same output port, a conflict occurs, and priority is given to
the packet with the highest criticality, whereas other packets are
blocked before they can be sorted out later. In the case of equal
criticality, priority is given according to the input port of the
conflict packets, by following the descending order: Local, North,
East, South and West. It is worth noting that such a policy is
simply priority-based, i.e. the router does not need to know about
the criticality/severity mechanism (indeed it is designed to work
without knowing nothing about the current severity level).

Master and slave NA adopt a two-level input buffer at both DP
and Router side. By means of them and a proper busy signal, it is
possible avoiding losing input packets.

After the system implementation on Spartan 3 FPGA, the
monitoring system and the MATLAB program have been used to
check the NoC status. Red wires indicate connections that have a
lot of traffic, yellow ones indicate a small amount of traffic while
white ones indicate no traffic at all. Other than the traffic, it is also
possible to check the amount of busy and msg_rejected events. In
Figure 18, it is possible to notice that with a low severity level
(000) traffic is quite high, since all the nodes are able to send
messages

After the setting of a severity change to the highest severity
level (111) (the changing of severity using the TM is shown in
Figure 17), the traffic appears to be heavily reduced, as shown in
Figure 19. The area occupations are reported in Table 3. The
impact is very small, so the adjective “lightweight”.

Figure 15: Severity Change.

http://www.astesj.com/

G. Valente et. al / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 561-573 (2019)

www.astesj.com 570

Table 3: Area occupation.

 FFs LUTs fMAX
Complete NoC with the
proposed mechanism

37 % 70 % 125
MHz

Proposed mechanism (area
per each NI)

1
(<1%)

2 (<1%) -

Proposed mechanism (area
in 3x3 mesh)

9 18 -

5. Scalability evaluation

In this section, a model of the reference NoC has been
developed using the Omnet++ simulator [25] with the aim to
evaluate the scalability of the proposed mechanism. The model of
the NoC supports n-levels Severity and Criticality. Multiple
standard (unprivileged) tasks and Master tasks can be statically
associated to each node of the network, and different traffic
patterns can be associated with each task. The simulator includes
a statistic unit able to investigate the traffic sequences, and the
possibility to use a flexible time base module able to model
synchronous and asynchronous NoC. In the case of synchronous
NoC, the model of the network makes use of a module (named the
Time-base synchronizer) able to generate clock messages,
ensuring synchronous communication between the various nodes.
Other model features are the following:

• in a fixed, predetermined device, a single TM executes on
the platform

• each router uses the xy routing strategy shown previously
and the broadcasting of the Severity Change Packet;

• the TM can determine the traffic status and eventually its
congestion, by inserting a special broadcast packet called
the Inquire Packet (IP);

The TM will modify the severity by sending a Severity Change
Packet if the measured congestion status exceeds a predefined
threshold, or if there is a timeout elapse. This severity
administration policy needs an additional overhead for the
development of the routers, as every router should be capable to
follow the number of queued packets and deal with the IP.
Furthermore, the suggested enquiry strategy needs the insertion of
additional packets inside the network, possibly disturbing with
device traffic.

In Figure 20, there is the result of a simulation of the modelled
system in case of a synchronous 8x8 NoC. This figure shows the
total number of packets inserted into the network over time,
reported in generic time units (i.e., number of clock cycles) and
two indices of the network status: the number of queued packets
at a certain time and the current network severity. It should be
observed that the value of the two network indices is multiplied
by one hundred for a better clarity of the figure. It can be seen that
the traffic regulation mechanism is adequately capable to limit the
traffic of the network in case of congestion, allowing only the
successful transactions of high criticality messages in a timely
manner: this shows the feedback that the proposed mechanism can
provide when unexpected behavior from the tasks are verified.

In Figure 21, it is reported the number of total sent messages
(red line) and the number of dropped messages (blue line). The

number of dropped messages is lower than the total messages that
go through the network. In particular, the number of total
messages in the tested time interval is 4.14 ∙ 106, while the number
of dropped messages is 3.00 ∙ 106.

Figure 16: Testbed.

Figure 17: Snake-coil path.

Figure 18: Network traffic with low severity (000).

Figure 19: Network traffic with high severity (111).

Figure 20: Simulation of a synchronous 8x8 mesh network.

http://www.astesj.com/

G. Valente et. al / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 561-573 (2019)

www.astesj.com 571

.

Figure 21: Number of total messages (red line) and number of dropped messages

(blue line) for a synchronous 8x8 mesh network.

6. Further Analysis

Thanks to effort spent on creating a model, further analysis
has been done by means of system simulations, introducing other
aspects and evaluating a different broadcast strategy and a
different management of the control traffic messages.

6.1. Different broadcast strategy

In this test, routers have the possibility of changing the
broadcast of the Severity Change Packet. There are two
possibilities:

• snake-coil strategy: the message, with TM in the node at
the top right of the network, is broadcast one router at a
time in a north-south direction, then moves one step to
the left when the message reaches a router located at the
northern or southern limit in the network itself and
resume the journey in the north-south direction. The
method is already described and used in the previous two
sections.

• star-broadcast strategy: it takes its name from the design
formed by the overall path travelled by the messages.
The origin node of the messages can be in any position.
The first router forwards the packet to all the connected
ports in order to reach the maximum number of routers.
Routers located along the north-south axis respect to the
first router forward the message to the east, west and
north, if they received the message from the south, or
forward it to east, west and south, if they received it from
the north. Finally, the routers that receive the packet
from the east [or west] forward the broadcast packet
along the west [or east] direction in order to make the
broadcast packet continue along the east-west axis (see
Figure 22).

Figure 22: Star-broadcast strategy.

In Figure 23, it is shown the behavior of the system in case of
a synchronous 8x8 NoC with the star-broadcast strategy instead
of snake-coil one. As in previous section, the value of the two
network indicators is scaled by a factor of one hundred for better
clarity of the graph. Here, the TM periodically sends a control
signal to which all routers respond by entering their own
maximum queue value. In this period, the TM waits a maximum
time equal to 10 clock cycles between one message and another
before deciding to change the severity of the network. After this
time, if the TM does not receive all the answers, then the network
severity increases, trying to moderate the circulation of messages.
Vice versa, when all the messages are received by the TM, the
latter can decide to decrease the severity of the network. When all
the messages are received, the TM in this test evaluates the
average of the received answers.

The test shows that the proposed mechanism manages to
control the flow of messages within the network, although the
network itself is flooded with many control messages. The peak
of messages reached within the network exceeds one thousand
units, a situation in which the severity of the network is zero. In
this case, there are several messages in the network and the TM
fails to receive all the control messages, so the network severity
is raised to one (one hundred in Figure 23).

Figure 23: Simulation of a synchronous 8x8 mesh network without traffic control

and with star-broadcast strategy

This leads to a decrease of messages in the network, but not
enough so the TM causes another increase in severity. With
severity two (two hundred in Figure 23), the severity does not
decrease until the value answered by all nodes is less than a
threshold value. The response received from all the nodes is
averaged in order to obtain an indicative value of the network state.
The value is considered only when the responses are received
from all the routers. Subsequently, two tests are conducted on this
type of broadcast strategy. The first one, shown in Figure 24, uses
an exact average value obtained from all the responses received.
In the second case, shown in Figure 25, the average is modified in
correspondence of a minimum value in order to be higher.

Figure 24: Number of total messages (red line) and number of dropped messages

(blue line) for a synchronous 8x8 mesh network with star-broadcast strategy,
exact average case.

http://www.astesj.com/

G. Valente et. al / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 561-573 (2019)

www.astesj.com 572

Figure 25: Number of total messages (red line) and number of dropped

messages (blue line) for a synchronous 8x8 mesh network with star-broadcast
strategy, modified average case.

Considering these two results, the network that performs best
for message delivery time is the one that uses the modified
average of traffic. However, this method results in a lower number
of total messages sent over the network. Furthermore, with the use
of the modified average, the maximum capacity of the routers
results decreased in messages of a 20%.

6.2. Control traffic messages management

In this situation, devices and routers use two types of states
to differentiate the type of messages processed, by extending the
functionalities already present in the implemented NoC. Here, a
single slot is dedicated to control traffic messages management.
Two states have been identified:

• State zero indicates classic operation, i.e. read, write and
reply messages are exchanged.

• State one only messages intended for traffic control are
exchanged.

The traffic control messages in this type of network have a
priority equal to that of the TM, in order to do not mix service
messages with those of communication useful between the cores.
Currently this functionality is supported only for a synchronous
NoC. For a synchronous 8x8-node networks with control traffic
messages management, the best behavior is obtained with the star-
broadcast strategy (see Figure 26 and Figure 27). Here, there is a
better delivery time for all messages.

Figure 26: Number of total messages (red line) and number of dropped messages
(blue line) for an 8x8 mesh network with control traffic messages management

and snake coil strategy.

Analyzing all the experimental results for 64-node networks
without control traffic messages management, the broadcast
strategy that behaves best is the snake coil, unless the star-

broadcast strategy modifies the average of the messages received.
Therefore, if we consider the modified average, the star-broadcast
improves and shortens the delivery time of the messages.

Figure 27: Number of total messages (red line) and number of dropped messages
(blue line) for an 8x8 mesh network with control traffic messages management

and star-broadcast strategy.

For the 64-node network with control traffic messages
management, the best behavior is given by the star-broadcast. It
must be remembered that, in the network with state, a fixed delay
is introduced in the maximum time of delivery of the messages
equal to the time of control necessary to probe the network.
Despite this, the star-broadcast strategy keeps the average
delivery time of messages low, even if it has a high delivery time.

7. Conclusions

Isolation is an important issue for embedded systems on which
multiple tasks with different level of criticality are running. This
paper has suggested a lightweight isolation mechanism to be
introduced into existing Networks on Chip. This mechanism
supports the execution of multiple applications with different
criticality levels by supervising the packet exchange between
network nodes. It does not reduce the criticality levels and it
supports both spatial and temporal isolation. The system main
innovation is its autonomy from the topology of the NoC and its
easily flexibility among different NoCs. Small NoC
implementations have been provided, showing the small impact
in the area occupation, and motivating the adjective “lightweight”.
Simulation on a network simulator has been proposed to evaluate
the behavior of the mechanism on a NoC with more elements, and
the feedback applied when there are unexpected situations is
shown.

8. Future Works

Future works involve a further analysis to precisely characterize
the overhead of proposed mechanism in a real existing NoC
solution, and to investigate the best severity change policy.
Moreover, given the outlined results, the possibility of adding a
lightweight support for network status analysis will be explored
as well.

Conflict of Interest

The authors declare no conflict of interest.

http://www.astesj.com/

G. Valente et. al / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 561-573 (2019)

www.astesj.com 573

Acknowledgements

Authors would like to thank you Fabio Federici, Mattia Micozzi,
Riccardo Cardinali and Biagio Iorio for the support on solving
technical issues and precious feedbacks.

References

[1] A. Burns, R.I. Davis, “A survey of research into mixed criticality systems”,
ACM Computer Surveys, 50(6):1–37, 2017.

[2] S.K. Baruah, S. Vestal, “Schedulability analysis of sporadic tasks with
multiple criticality specifications,” in 2008 Proceedings of the 20th Euromicro
Conference on Real-Time Systems (ECRTS), Prague, Czech.

[3] A. Agarwal, C. Iskander, R. Shankar, “Survey of Network on Chip (NoC)
Architectures & Contributions,” Journal of Engineering, Computing and
Architecture, 3(1), 2009.

[4] R. Kamal, N. Yadav, "NoC and Bus Architecture: a comparison",
International Journal of Engineering Science and Technology (IJEST), 4(4),
April 2012.

[5] A. Achballah, S. Saoud "A Survey of Network-On-Chip Tools", International
Journal of Advanced Computer Science and Applications (IJACSA), 4(9),
2013.

[6] A. Esper, G. Nelissen, V. Nelis, E. Tovar, "How realistic is the mixed-
criticality real-time system model?", In Proceedings of the 23rd International
Conference on Real Time and Networks Systems, RTNS ’15, pages 139–148.

[7] F. Federici, M. Micozzi, V. Muttillo, L. Pomante and G. Valente, "Simulation-
Based Analysis of a Hardware Mechanism to Support Isolation in Mixed-
Criticality Network on Chip," 2017 European Modelling Symposium (EMS),
Manchester, 2017, pp. 185-190.

[8] “AUTOSAR”. [Online]. Available: https://www.autosar.org/ [Accessed: 13-
June-2019].

[9] “ARINC”. [Online]. Available: https://www.aviation-ia.com/ [Accessed: 13-
June-2019].

[10] P. Ekberg, M. Stigge, N. Guan, W. Yi, “State-based mode switching with
applications to mixed criticality systems,” in 2013 Proceedings of the 1st
International Workshop on Mixed Criticality Systems (WMC), Vancouver,
Canada.

[11] Andrew S. Tanenbaum and Herbert Bos. 2014. Modern Operating Systems
(4th ed.). Prentice Hall Press, Upper Saddle River, NJ, USA.

[12] V. Muttillo, G. Valente, L. Pomante. 2018, "Criticality-driven Design Space
Exploration for Mixed-Criticality Heterogeneous Parallel Embedded
Systems," In Proceedings of the 9th Workshop and 7th Workshop on Parallel
Programming and RunTime Management Techniques for Manycore
Architectures and Design Tools and Architectures for Multicore Embedded
Computing Platforms (PARMA-DITAM '18).

[13] R. Pellizzoni, P. Meredith, M-Y. Nam, M. Sun, M. Caccamo, and L. Sha,
“Handling mixed-criticality in SoC-based real-time embedded systems,” in
2009 Proceedings Of the 7th ACM international conference on Embedded
software (EMSOFT), Grenoble, France.

[14] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, “The time-
triggered ethernet (TTE) design,” in 2005 Proceedings of the Eighth IEEE
International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 05), Seattle, WA, USA.

[15] M. Schoeberl, “A time-triggered network-on-chip,” in 2007 Proceedings of
the International Conference on Field-Programmable Logic and its
Applications (FPL 2007), Amsterdam, The Netherlands.

[16] S. Tobuschat, P. Axer, R. Ernst, J. Diemer, “IDAMC: A NoC for mixed
criticality systems,” in 2013 Proceedings of the IEEE 19th International
Conference on Embedded and RealTime Computing Systems and
Applications (RTCSA), Hakodate, Japan.

[17] A. Burns, J. Harbin and L. S. Indrusiak, "A Wormhole NoC Protocol for
Mixed Criticality Systems," in 2014 IEEE Real-Time Systems Symposium
(RTSS), Rome, Italy.

[18] L. S. Indrusiak, J. Harbin and A. Burns, "Average and Worst-Case Latency
Improvements in Mixed-Criticality Wormhole Networks-on-Chip," in 2015
27th Euromicro Conference on Real-Time Systems (ECRTS), Lund, Sweden.

[19] G. Best, M. Birman, O. Rahnama, W. Pawlak. “Design and implementation
of a simple mesh Network-on-Chip”. [Online]. Available:
https://github.com/mattbirman/Network-on-Chip-in-VHDL [Accessed: 13-
June-2019].

[20] G. Valente et al., "A Flexible Profiling Sub-System for Reconfigurable Logic
Architectures," 2016 24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP), Heraklion, 2016, pp. 373-
376.

[21] A. Moro, F. Federici, G. Valente, L. Pomante, M. Faccio and V. Muttillo,
"Hardware performance sniffers for embedded systems profiling," 2015 12th

International Workshop on Intelligent Solutions in Embedded Systems
(WISES), Ancona, 2015, pp. 29-34.

[22] “ISIM”. [Online]. Available: www.xilinx.com [Accessed: 13-June-2019].
[23] “Xilinx Spartan3AN” Data Sheet [Online]. Available:

https://www.xilinx.com/support/documentation/data_sheets/ds557.pdf,
[Accessed: 24-May-2019].

[24] “Xilinx ISE Design Suite 14.7” [Online]. Available:
https://www.xilinx.com/products/design-tools/ise-design-suite.html,
[Accessed: 28-July-2019].

[25] “Omnet++”. [Online]. Available: https://omnetpp.org/, [Accessed: 13-June-
2019].

http://www.astesj.com/
https://www.autosar.org/
https://www.aviation-ia.com/

	2. Isolation in Mixed-Criticality Systems
	2.1. State of Art

	3. Proposed HW Support for Isolation
	3.1. System Model
	3.2. Proposed HW mechanism

	4. HW Mechanism Design and Validation
	4.1. Selected Reference NoC
	4.1. Validation by means of logical simulation
	4.2. HIL-based validation

	5. Scalability evaluation
	6. Further Analysis
	6.1. Different broadcast strategy
	6.2. Control traffic messages management

	7. Conclusions
	8. Future Works
	Conflict of Interest
	Acknowledgements
	References

