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We present findings on classifying the class of executable code using convolutional, re-
current neural networks by creating images from only the .text section of executables and
dividing them into standard-size windows, using minimal preprocessing. We achieve up to
98.24% testing accuracy on classifying 9 types of malware, and 99.50% testing accuracy
on classifying malicious vs. benign code. Then, we find that a recurrent network may not
entirely be necessary, opening the door for future neural network architectures.

1 Introduction
This paper is an extension of the work originally presented in the
2018 IEEE National Aerospace and Electronics Conference (NAE-
CON) [1] .

Stakes are always escalating in the arms race that is malware
detection. From personal security to breaches at large data centers,
it is important to remain vigilant and always explore new methods
for combating malware. Classifying executable code images may
soon be one of the best methods for malware detection given all
of the advances with neural networks in recent times, and we aim
to further push the field by questioning the amount of information
necessary and size of network necessary to make a judgment.

With our previous work, we proved in concept that using only
the .text section of executable files, and not the data, is a possible
avenue for malware detection. Using only the executable code al-
lows for leaner, faster networks at the lowest possible level in the
hardware stack. Unfortunately, one large issue with malware images
is the extremely variable size of the input - code can be anywhere
from minuscule to gigabytes in size so figuring out how to use one
network to classify code of any size can be difficult. We previ-
ously used padding to standardize all files to one length, negatively
impacting performance. In this work, we extend on our previous
work by using a ”windowing” method to allow for arbitrary-length,
minimally processed input that achieves competitive performance
in malware classification compared with seminal works. To do this,
we use a variant of recurrent neural network called a ConvLSTM

[2] that uses convolution in tandem with a recurrent architecture.
With further investigation, however, we find that it may be possible
to ditch the recurrent relationship altogether, opening the door for a
multitude of possible architectures.

2 Related Work
Viewing executable code as an image has become a subject of in-
terest for many studying malware detection and neural networks.
We will present some of these works for comparison to our work,
to both show the state of research and also how our work has some
advantages and disadvantages to other methods. In particular, our
method has minimal preprocessing of the images, unlike almost all
other methods. To view executable code as an image, each byte of
the file is taken and translated directly from hexidecimal to deci-
mal. These values then become greyscale pixels, creating an image.
Figure 1 shows an example.

Figure 1 shows the first 100 lines of a malicious image where
each line of the executable code is translated to a line of greyscale
pixels. We pad each line with 0’s to the maximum line length. This
format differs from some other formats, especially with the line
padding and that we only use the .text section, or executable code,
and no data. For many of the malware as image works, the results
do not classify malicious vs. benign, but instead classifying which
type of malware a file is. This is because obtaining and distributing
a large number of malicious files is much easier than doing the same
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for benign files. Additionally, it is in some ways a better test of the
network to classify the type of malware than malicious or benign,
as it can be considered a more difficult type of the same problem. If
a network can classify the type of a file out of 10 or more classes of
executable code, it should be easier to classify out of only 2 classes,
in theory.

Figure 1: Example executable code as an image

In 2010, the authors of [3] used k-NN and feature extraction
to achieve 98% accuracy on nearly 9,500 samples of 25 classes of
malware. This is one of the earliest works that visualize malware
as an image and shows that the concept is viable. The authors note
some possible methods of avoiding detection such as inserting re-
dundant bytes. Additionally, we note that this method includes a
large amount of preprocessing for the malware images.

In [4], the authors process the images to a standard size and then
use a densely-connected neural network to achieve 96.35% accuracy
on 3131 files of 24 classes of malware. We note that in this work,
excellent results are achieved on such a large number of classes of
malware.

More than any other method, the ideas of malware image de-
tection have been combined with the burst of developments with
convolutional neural networks (CNNs). CNNs have become the
go-to for image classification due to their ability to identify spatial
relationships in data [5, 6, 7]. In particular, the Microsoft Malware
Classification Challenge has spurred a large interest in using CNNs
for malware detection [8]. For instance, the author of [9] used a
CNN to acheive 95.24% accuracy on a test set of over 40,000 sam-
ples, and then used a residual network to achieve 98.21% accuracy
on the same samples. The author also notes that the test set was
limited to a certain size of binaries and that future work should
expand to any length of binaries. In our own work, which this paper
extends, we presented up to 88% accuracy in classifying malware
on the same data from the Microsoft Malware Classification Chal-
lenge [1] . The largest issue from that work was the large amount of
padding used. Instead of reducing or expanding images, we padded
all images to be the same length. The upside of this method is that it
loses no information, however, there were of course large amounts
of padding for tiny images, affecting performance. Like in this work,
however, we only used the .text section, proving it possible to only
need limited information.

The authors of [10] use a convolutional, distributed network,
topped with a recurrent neural network on over 2 million malicious

files. The network uses bytes of the full executable without pre-
processing and uses and embedding, pointing out the issues with
preprocessing. The authors also note difficulties with RNNs due to
the length of the sequence, as we also found. The network achieves
a maximum of 94% accuracy and 98% AUC. This work is the most
similar to ours, however, we expand in a few ways. Most impor-
tantly, we are only using the .text section of files, a much smaller
subset of the total files. Next, we introduce the concept of breaking
the malware image into windows, which would theoretically allow
for processing only window at a time, saving large amounts of mem-
ory. Next, we apply the ConvLSTM architecture to the data which
has not been done before, alleviating RNN issues. We also use
global average pooling in one of the final network layers to improve
generalization [11]. Finally, we are using a different dataset that is
much smaller, but we do achieve better overall performance.

The best performance we could find was by the authors of [12],
who combine a CNN and LSTM in ensemble, achieving 99.88%
accuracy on 40,000 samples balanced equally between malicious
and benign files. Then, when used on only the malicious files, they
achieved 99.36% accuracy on 9 classes. Again, the input is the full
disassembly of the executables and the input is again preprocessed.
Additionally, the authors do not present the method of disassembly
for the benign files. We will discuss in the next section some pos-
sible flaws with mixing these two types of dataset, of which there
may be many.

Executable code as an image has become a hot area of research
in recent years. In many of these works the images are preprocessed
before classification, which might take a large amount of time or
resources in practice depending on the operations, and may be by-
passable by reverse-engineering the preprocessing. Additionally, all
of the works we have seen use the full executable file for classifica-
tion. By only using the .text section of an executable, classification
can be done at a lower level in the hardware stack, with less memory,
less time, and less context of what is running. We will address the
issues of using arbitrary-length files by using minimal preprocessing
and only using the executable code with a ConvLSTM architecture.

3 Network Input

In our previous work we generated our own data using malware
obtained from a Windows installation and live malware found online
[1] , number 240 total files split evenly between the two classes.
There were a few issues with this dataset, namely, the limited size
due to difficulty of acquiring samples and the overly-complex to-
kenization method. The tokenization of assembly resulted in a
larger-than-needed vocabulary size and some preprocessing time
which we attempting to limit as much as possible.

As a second test, we used the data from the Microsoft Malware
Classification Challenge on Kaggle [8], which contains over 20,000
total malware files from 9 classes of malware. With this data, we
are able to directly use the machine code and translate it into deci-
mal per byte, which resembles other works as we have discussed.
We will again evaluate performance on this dataset. Of these files,
10,869 had labels and then of those 10,375 were found to have .text
sections that we could use, however, we quickly hit memory limits
while testing longer files. To solve this, we had to limit to only files
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that had under 50,000 lines of code, resulting in a total of 8,550 files,
of which we used 6,500 training and 2,050 testing files. Because
the final goal is classification of malware vs. binary code, however,
we have generated an additional dataset consisting of 4,550 benign
files from a default Windows installation that were disassembled
using IDA pro. Again, due to the 50,000 line cutoff, we were only
able to use 3,100 of these files. We then combined the benign data
with randomly-chosen malicious files for a second dataset of only
malicious vs. benign classification, consisting of 4,000 training and
1,000 testing files.

We will present results on both of these datasets to validate that
our own benign files were not biased because of some concerns with
the benign data format. While we are comfortable that the datasets
are now fair to compare we will show those concerns and how we
addressed them. Many benign files were initially identifiable by eye
due to some certain characteristics, as in Figure 2:

Figure 2: First 100 lines of a benign code image

The first problem is that there seems to be a long portion of data
bytes at the beginning of many benign files that only includes one
or two executable bytes. In the Microsoft dataset, these sections are
grouped to have many data bytes per line (up to 18). Next, many
lines end in the same color pixel. This is because of how we extract
data from the disassembled bytecode - once disassembled from IDA,
we simply look at every line to see if it starts with ”.text”, signifying
executable code. Then, we extract the hexadecimal bytes from that
line until there are no bytes left. Many of these lines end in the
byte ”db”, a signal from IDA that represents the variable size (a
byte) and not code. For some reason these extra ”db” tokens were
never an issue in the Microsoft dataset as there is always some other
non-hexadecimal token before them, causing them to be excluded
in our extraction. We therefore excluded the ”db” at the end of any
line (which is always lowercase if it is not an actual byte in the code
but added by IDA, so no innocent bytes were lost). With both of
these issues it is possible we are disassembling the data differently
than Microsoft did in the Kaggle challenge. Because the exact way
that the Microsoft dataset was generated is unknown, we present
results on both datasets with the assumption that our benign files
are not, but may be, biased.

Unfortunately, malware or benignware can come in all sizes, so
the question becomes how to approach classifying arbitrary-length
files. Additionally, the files can reach extreme lengths, so a straight
LSTM or RNN will experience difficulties in training. We therefore
split the files into t windows by grouping every w lines of code. The

number of windows forms the new number of timesteps, and the
dataset can now be seen as an arbitrary-length sequence of images.
An example is shown in Figure 3.

Figure 3: Malware Image Windows

Figure 3 shows a malware image split into windows (not to
scale).

4 Network Architecture
Forming the malicious bytecode into an arbitrary-length, windowed
format allows for input into a variety of network architectures. Be-
fore discussing the network architecture for the new input format,
we first downsample and perform an embedding on the data. We
previously experienced issues with the size of the input being too
large to use at once, and even after purposely omitting files over a
certain length, the networks would train in an unreasonably long
amount of time. Therefore, we utilized pooling to downsample the
input data [1] . While this is the only preprocessing we perform,
which adds time to making predictions, we still perform downsam-
pling on the data by randomly discarding 9 of every 10 lines. Along
with the benefit of faster training and prediction we find that it does
not negatively affect performance and actually improves testing
performance in some cases, which we will discuss in the results
section.

We also previously used embeddings to assist in feature detec-
tion, similar to natural language processing [10, 13], as the magni-
tude of the bytes have no intrinsic meaning. The embedding serves
as a look up table where each singular value maps to a higher-
dimensional space of values with less magnitude.

With the initial layer of an embedding, we now expand on the
previously static, convolutional network. A natural pick for clas-
sification of these videos would be some kind of recurrent neural
network given the time-varying nature and seeming temporal de-
pendency of the problem. In fact, one large question we will pose
throughout our work is if the windows are actually temporally de-
pendent, in other words - does the previous window affect how we
should see the next? Given the nature of the problem, it seems
logical that this would be true, and is the assumption we made for
beginning to explore architectures.

Convolutional LSTMs are a relatively recent form of recurrent
neural network that have cropped up in a few field of study that
involve both temporally- and spatially-related data [2, 14, 15]. In
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Keras, this layer of a network is called ConvLSTM2d [16], meaning
that it performs 2d convolution inside an LSTM. For comparison, A
traditional LSTM uses the following equations:

i = sigm(ht−1 · Ui + xt ·Wi)
f = sigm(ht−1 · U f + xt ·W f )
o = sigm(ht−1 · Uo + xt ·Wo)
g = tanh(ht−1 · Ug + xt ·Wg)
ct = f · ct−1 + i · g

ht = o · tanh(ct)

(1)

Where Wi, f ,o,g and Ui, f ,o,g are trainable weight vectors, and ct

and ht are the hidden state and output, respectively. These equations
can of course change and are only an example for comparison.

LSTMs can help alleviate ”vanishing gradient” issues when
training and therefore allow for training recurrent networks on much
longer inputs than a vanilla RNN [17, 18]. We attempted to use a
regular LSTM on input mawlware without windows and found that
the model would not only take an extraordinarily long time to train,
as expected due to the input length, but would not perform well.
Even if a decent training accuracy was obtained the results would
not translate to testing accuracy.

Recent works, including our own, have shown that classifying
malware images responds well to convolution [1] . Therefore, in-
stead of using a LSTM, it is possible to use the Convolutional LSTM
(from now on, ConvLSTM). The ConvLSTM consists of nearly the
same parts as a regular LSTM except that many dot products are
simply switched to being convolution:

i = sigm(ht−1 ∗ Ui + xt ∗Wi)
f = sigm(ht−1 ∗ U f + xt ∗W f )
o = sigm(ht−1 ∗ Uo + xt ∗Wo)
g = tanh(ht−1 ∗ Ug + xt ∗Wg)
ct = f · ct−1 + i · g

ht = o · tanh(ct)

(2)

Where Wi, f ,o,g and Ui, f ,o,g are trainable weight vectors, and ct

and ht are the hidden state and output, respectively.
The ConvLSTM was introduced in 2015 by [2] as a way to

capture both spatial and with temporal relations in precipitation
forecasting, as opposed to an LSTM, which is only capable of cap-
turing temporal relations. ConvLSTMs have since been used many
times to capture spatio-temporal relations in data. In [15], they
are used to build on feature extraction in gesture recognition, and
in [19], the authors add to the ConvLSTM architecture for traffic
accident prediction. More notably, in [20], the authors use a nested
ConvLSTM for video classification. Our work can be seen as con-
verting the malware to a video rather than an image, and taking
inspiration from these works. In our case, the ConvLSTM cap-
tures spatial relations in blocks and functions of code and temporal
relations between those blocks.

With the recurrent networks it was found best to use use two
hidden recurrent layers, one that returns sequences and a second that
does not. When a recurrent network in Keras has the parameter re-
turn sequences set to true, the output of the layer is not just the final
output but the output of each timestep, the result being a sequence

of the same length. Using this parameter is useful as it allows the
stacking of recurrent layers and therefore deeper networks.

While our models that use ConvLSTM found success, which
we will discuss in the results section, we also found that they took
up a large amount of time to train due to the complexity of the
hidden state. Many modified RNNs were attempted by removing or
adding various gates to the ConvLSTM hidden state until we tested
a recurrent network that simply adds the previous hidden state to
the current as so:

ht = xt ∗Wt + bt + ht−1

yt = σ(ht)
(3)

Where σ represents the sigmoid function, Wi and bi are trainable
weight vectors, ht is the hidden state, and yt is the output at time t.

This network is about as minimal as a recurrent neural network
can get and can be compared to a standard recurrent network where
the hidden weight vector is set to all 1s. We call this the ”Min-
ConvRNN”. In theory, one layer of this network that does acts the
same as if each timestep was independently run through a small
neural network and then summed afterwards. Because there are
two hidden layers used and each timestep is returned for the first,
however, the intermediate timesteps returned by the first hidden
layer do not resemble a kind of distributed network.

We can perform backpropogation on the MinConvRNN for
training through the widely-known procedure of BackPropogation
Through Time (BPTT). We will perform BPTT on the MinCon-
vRNN for completeness, however, gradients are calculated symbol-
ically and automatically in our simulations, so these calculations
are not stricly necessary. BPTT consists of unrolling the recurrent
neuron into t neurons and repeatedly applying the chain rule. We
will start by defining all parameters in Table 1, for any arbitrary
objective function J.

Table 1: MinConvRNN Backpropogation Parameters

Variable Name Purpose

xt Input at time t
ht Hidden state at time t
Wt Weight vector at time t
bt Bias vector at time t
yt Output of neuron at time t
σ Sigmoid Function
δt

∂Jt
∂yt

Jt Objective function value at time t

The goal of backpropogation is to find the partial derivative of
the objective function with respect to a parameter. In this instance,
∂Jt
∂Wt

. Note that Wt for time t is a formality, and Wi = W j,∀(i, j) ∈ t,
and the same for bi. We begin by defining the base case of t = 1
such that h0 = 0, making h1 = x1 ∗W1 + b1.

Then, we can define the partial derivative of J with respect to
Wt using the chain rule:

∂Jt

∂Wt
=
∂Jt

∂yt
·
∂yt

∂ht
·
∂ht

∂Wt
(4)
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We can define δt to be ∂Jt
∂yt

to simplify notation as the expression
will change for a different J. We can then calculate the other terms
directly as:

∂yt

∂ht
= σ′(ht) · 1

∂ht

∂Wt
=
∂xt ∗Wt

∂Wt

(5)

We leave ∂xt∗Wt
∂Wt

alone to simplify the expression, but we note
it is computable. It is also known commonly known that σ′(x) =
∂σ(x)
∂x = σ(x) · (1 −σ(x)), and we will use σ′(x) for simplification of

expressions as well.
The full partial derivative at time t can then be defined as:

∂Jt

∂Wt
= δt · σ

′(xt ∗Wt + bt + ht−1) ·
∂xt ∗Wt

∂Wt
(6)

Because Wt is the same ∀t as stated earlier, we can compute the
partial derivative for W for n timesteps as:

∂J
∂W

=
∑

t

δt · σ
′(xt ∗W + bt + ht−1) ·

∂xt ∗W
∂W

h0 = 0
t ∈ [1, 2...n]

(7)

For a recurrent neural network where only the output is consid-
ered, we could factor out δt from the sum. We can also perform a
similar process to find the partial derivative for b for n timesteps as
∂J
∂b =

∑
t δt · σ

′(xt ∗W + bt + ht−1), with the same conditions.
This partial derivative does not look too dissimilar to that of a

basic recurrent neuron. The neuron is indeed recurrent in the sense
that it is necessary to calculate ht−1 in order to calculate ht, and
that the gradient must be propogated starting with the initial output
in the same manner. Regardless of these equations, however, the
neuron as defined in Eq. 3 does not make intuitive sense. Taking
the raw sum after convolution, in theory, might simply lead to an
unbounded output in the hidden state that approaches ∞ (or −∞ )
for all elements as the number of timesteps approaches∞ , leading
to all 1s (or 0s) in the output with the sigmoid activation.

As will be shown in the results, we found the MinConvRNN to
largely match the performance of the ConvLSTM2d. The success
of the MinConvRNN begs the question if a recurrent neural network
is necessary, or in other words, if executable code as an image has
a temporal dependency when it comes to classification. As will
be presented in results, it is even possible to scramble the order of
the input lines and achieve decent performance using the same net
trained on ordered input lines. It seems unintuitive at first but a
simple explanation is simply that a large amount of code is wrapped
up in short functions. Depending on how large the window size is
made, it is possible that each window encapsulates even multiple
functions. Because the order in which functions are defined largely
does not matter, there is not a strong temporal dependence between
windows. A different explanation may be that even between win-
dows, temporal dependency does not matter, and that the class of a
file is largely determined by the types and quantities of commands
issued, and not their order. Future work will need to investigate
the temporal dependence of the data more closely as it will greatly
affect how we classify malware with neural networks.

Regardless of the type, after the recurrent layers, the output has
three dimensions. The first two dimensions can be average-pooled
to reduce overfitting [11], and then connected with a final densely-
connected layer for the output. The architecture of the network is
shown in Figure 4.

5 Performance

We present results on both the Malware Classification Challenge
dataset and the Malware vs. Benign dataset as discussed, starting
with the Malware Classification Challenge dataset.

Table 2 shows the final results of the ConvLSTM2d and Min-
ConvRNN networks. Both networks were trained until no further
performance gains were seen.

Table 2: Results on Microsoft Malware Classification Challenge Dataset

Metric ConvLSTM MinConvRNN

Parameter Count 573,634 116,951
Train Accuracy 98.35% 97.28%
Test Accuracy 98.24% 96.39%

Time to Inference ∼63.67ms ∼23.73ms

In Table 2, it can be seen firstly that both networks performed
competitively to other works. The MinConvRNN was purposely
limited in size to have the same number of convolutional kernels
as the ConvLSTM2d network, being 50 kernels of size 4 in the
first hidden recurrent layer, and 25 kernels of size 3 in the second
hidden recurrent layer. The network was kept the same size to
demonstrate the relatively similar performance. While the ConvL-
STM2d network did achieve better results, it has nearly 5 times the
total number of parameters. Better results are certainly possible
through tweaking the network size, activation functions, etc., but
we see these networks as a proof-of-concept for future work that
does not rely on recurrent networks given the performance of the
MinConvRNN. Additionally, we note that the ConvLSTM2d takes
nearly twice as long to make a prediction given an input due to the
complexity of the hidden state. If we can cut out the recurrent nature
of the network, the time to predict would drastically go down.

Table 3 shows Confusion matrix for the ConvLSTM2d network
on the testing data, where the row is the actual class and the column
is the predicted class. Of note is that one class in the dataset has an
extremely low number of samples, class 5. Neither this network nor
the MinConvRNN was able to correctly identify and class 5 samples.
This might be addressed by using weighted categorical crossentropy,
but again, we are presenting these results as a proof-of-concept.

Table 4 shows the confusion matrix for the MinConvRNN on the
testing dataset, where the rows are the actual class and the columns
are the predicted class.
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Figure 4: RNN for Malware Classification Architecture (for arbitrary hidden state)

Table 3: Confusion Matrix for ConvLSTM2d Net on Testing Data

1 2 3 4 5 6 7 8 9

1 249 0 0 0 0 0 0 0 0
2 2 364 0 0 0 0 0 0 0
3 0 0 681 0 0 0 0 0 0
4 0 0 0 99 0 0 0 0 0
5 2 1 0 0 0 0 1 2 0
6 3 0 0 3 0 107 0 0 0
7 0 1 0 0 0 1 89 2 1
8 6 1 0 0 0 1 0 259 1
9 3 1 0 0 0 0 0 4 166

Table 4: Confusion Matrix for MinConvRNN on Testing Data

1 2 3 4 5 6 7 8 9

1 245 0 0 0 0 0 0 2 2
2 3 356 1 0 0 2 0 3 1
3 0 0 680 0 0 0 0 1 0
4 0 0 1 98 0 0 0 0 0
5 1 0 0 1 0 1 0 2 1
6 1 0 0 4 0 105 0 2 1
7 0 1 12 0 0 1 80 0 0
8 13 2 0 1 0 0 0 252 0
9 4 1 5 1 0 1 0 2 160

Overall, we see performance for both networks, moreso the
ConvLSTM2d, matching other works. The benefit to using these
networks is the minimal preprocessing, the small size of the net-
works, and the minimal amount of input by only using the executable
code.

Table 5 shows the results of the networks on the Malicious vs.
Benign dataset.

Results on the Malicious vs. Benign Dataset are on par or better
than the previous dataset. Despite reservations with the benign data
as previously discussed we believe that the networks show com-
petitive performance in classifying Malicious vs. Benign data to
seminal works. The MinConvRNN again shows worse performance

than the ConvLSTM, likely due to the smaller number of parameters.
Considering that the network is smaller, the relative success of the
MinConvRNN calls into question whether using a recurrent network
is necessary.

Table 5: Results on Malicious vs. Benign Dataset

Metric ConvLSTM MinConvRNN

Parameter Count 573,634 116,951
Train Accuracy 99.78% 99.32%
Test Accuracy 99.50% 99.20%

Test Recall 99.37% 98.12%
Test Precision 99.58% 99.58%

Time to Predict ∼91.16ms ∼35.32ms

6 Future work
There are many topics of future work to expand on. In the big
picture, the concept of a non-recurrent network would be interesting
to test compared to the recurrent networks. It is possible to take
more inspiration from video classification methods in this way. We
have observed that a minimal recurrent network achieves decent per-
formance, so with optimization, a purely time-distributed network
that is aggregated afterwards may perform well.

With or without recurrent, it would be important to optimize
the network, exploring activation function, weighted categorical
crossentropy, cross-validation methods, and pruning methods. Per-
forming an architecture optimization search would take much more
work, but would improve the performance of the network.

There are also some flaws in our methodology, the largest be-
ing the limit of 50,000 line long samples. One possible method
of removing this constraint is to reformat the data. The figures of
malware code show that each line is padded with 0’s to be the same
length - this was done to preserve the ordering of the opcodes in
relation to the data. This format, however, may be unnecessary and
the code is often treated as one contiguous block in other works. The
size of the input would be greatly reduced by removing the padding,
which would not only allow for any length input, but also faster
and possibly more accurate predictions. Additionally, it would also
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ensure compatibility with the Microsoft and Benign datasets given
the different maximum line lengths.

Finally, finding a way to extend the work to hardware would be
great for evaluating the feasibility of the practical implementation of
the networks. One possible method of using the malware-detecting-
network in practice might be to deploy it in a custom chip or FPGA.
While the network is likely too large for such acceleration now, with
compression techniques, it may be possible to make the network fit.
Putting the network in separate, purpose-built hardware would not
only free up resources from the main system but also speed up the
network considerable.

7 Conclusion
Malware detection will always be a vital part of computer systems.
In recent times, classifying malware images made from the exe-
cutable bytes of a file has become a possible route to take.

This extension of our previous conference paper again proves
it is possible to classify malware with nothing other than the .text
section of an executable, which contains the actual code that makes
up the program. Additionally, we expand on the type of network for
detection by creating windows out of the malware image. With this
format, minimal preprocessing is required to feed the image into
a convolutional, recurrent neural network, achieving competitive
performance.

Additionally, we find that using a recurrent neural network may
not be entirely necessary. By stripping the ConvLSTM2d of its
components and making the MinConvRNN, we have shown that
the temporal dependency between windows may not be necessary,
opening the doors to new network architectures. Using the MinCon-
vRNN is not the end of the story - it is highly likely that even leaner
neural network architectures are possible for malicious assembly.
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