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 The main purpose in this work is to explore the fact that chaos, as a biological 
characteristic in the brain, should be used in an Artificial Neural Network (ANN) system. 
In fact, as long as chaos is present in brain functionalities, its properties need empirical 
investigations to show their potential to enhance accuracies in artificial neural network 
models. In this paper, we present brain-inspired neural network models applied as pattern 
recognition techniques first as an intelligent data processing module for an optoelectronic 
multi-wavelength biosensor, and second for breast cancer identification. To this purpose, 
the simultaneous use of three different neural network behaviors in the present work allows 
a performance differentiation between the pioneer classifier such as the multilayer 
perceptron employing the Resilient back Propagation (RProp) algorithm as a learning rule, 
a heteroassociative Bidirectional Associative Memory (BAM), and a Chaotic-BAM 
(CBAM). It is to be noted that this would be in two different multidimensional space 
problems.  The later model is experimented on a set of different chaotic output maps before 
converging to the ANN model that remarkably leads to a perfect recognition for both real-
life domains. Empirical exploration of chaotic properties on the memory-based models and 
their performances shows the ability of a specific modelisation of the whole system that 
totally satisfies the exigencies of a perfect pattern recognition performance. Accordingly, 
the experimental results revealed  that, beyond chaos’ biological plausibility, the perfect 
accuracy obtained stems from the potential of chaos in the model: (1) the model offers the 
ability to learn categories by developing prototype representations from exposition to a 
limited set of exemplars because of its interesting capacity of generalization, and (2) it can 
generate perfect outputs from incomplete and noisy data since chaos makes the ANN system 
capable of being resilient to noise. 
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1. Introduction  

This paper is an extension of a work originally presented in the 
First International Conference on Cyber Management and 
Engineering (CyMaEn`21) [1].  

During more than 300 years, there were only two kinds of 
movements known in simple dynamical systems: the uniform and 
the accelerated movements. Maxwell and Poincare were among 
the minority of scientists who disagreed with those facts. It was 
only in the last quarter of the 20th century that the third kind of 
movement appeared: chaos [2]. 

The existence of dynamics and nonlinearity in the brain has 
been the topic of numerous research investigations since the 1980s. 
In [3], it was revealed in neurosciences that the activity of the 
olfactory bulb of rabbits is chaotic and, at any time, it may switch 
to any perceptual state (or attractor). In fact, the experimentations 
assessed that when rabbits inhale an odorant, their 
Electroencephalograms (EEGs) display gamma oscillations, 
signals in a high-frequency range [4, 5]. The odor information 
represents then an aperiodic pattern of neural activity that could be 
recognized whenever there was a new odor in the environment of 
after a session of training.  
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Furthermore, during the same period of Freeman’s research, 
other works figured out the existence of chaos in the temporal 
structure of the firing patterns of squid axons, of invertebrate 
pacemaker cells, and in temporal patterns of some brain disorders 
such as schizophrenia and human epileptic EEGs [4-7]. Moreover, 
in red blood cells, chaotic dynamics of sinusoidal flow were 
determined by 0-1 test. In fact, numerous simulations identified the 
existence of chaotic dynamics and complexity in the sinusoidal 
blood flow [8]. In addition, the exploration of dreaming through 
the application of concepts from chaos theory to human brain 
activity during Rapid-Eye-Movement state (REM-state) 
sleep/dreaming proved that chaos is on the flow of thoughts and 
imagery in the human mind [8-10]. Finally, chaos is ubiquitous in 
the brain operations and cognitions according to cognitive 
sciences, linguistics, psychology, philosophy, medical sciences, 
and human development [11-15]. The later issues are still 
addressed in depth in the context of research on the complex 
systems, to which the brain obviously belongs. This is at this level 
that the ultimate goal of AI has to be considered. Indeed, creating 
a machine exhibiting human-like behavior or intelligence, cannot 
be, with keeping the chaos properties aside. 

Moreover, being an offshoot of Artificial Intelligence (AI) 
paradigms, pattern recognition techniques focus on the 
identification of regularities in data in an automated process [16]. 
It is worth noting the fact that, pattern recognition is a cognitive 
functionality in the brain. In fact, in real life, human beings are 
capable of recognizing and recalling patterns of different natures 
and forms (not necessarily perfect patterns) and in different 
conditions, naturally without significant effort.  An intelligent 
pattern recognition system must thus include brain properties, such 
as, the presence of chaos.  

 Furthermore, ANNs represent a discipline of AI that has 
successfully been applied on different nature of pattern recognition 
problems. In fact, ANNs models were employed for data 
compression, data classification, data clustering, feature 
extraction, etc. Data classification is particularly one of the most 
active search and application fields in connectionism [16-18].  
Consequently, ANN approaches encompasses potential techniques 
to face pattern recognition problems.  

Several works can be noticed in the literature, that focus on the 
construction of ANN models that implement NDS properties [19-
23]. Those proposed models are challenging the classical kinds of 
ANNs in terms of biological plausibility [24-28], and in some 
cases, even in terms of computational efficacy of the model [29-
32]. Except that, most of the proposed models were developed 
including the stabilities of attractors with no attention to the 
ongoing instabilities. The present work shows the chaos potentials 
in a recurrent ANN model in comparison with two other 
conventional ANN models. The potentials are such as a perfect 
pattern recognition accuracy and an excellent resilience to noise. 
In addition, the model proposed in this paper faces two aspects in 
the biological plausibility formerly mentioned; the resilience to 
noise, and as a matter of fact that chaotic properties are actually 
present in the brain.  

In the present work, three different ANN models are 
investigated as pattern recognition systems in two different real-
life classification domains: substance identification and breast 
cancer identification. 

1.1. Substance identification 
Sensing technology encloses various instrumentation 

techniques for variable characterization in diverse aspects of 
human life [33]. From a hybridization of chemical and physical 
measurement devices, results the construction of biosensors. Those 
devices are capable of converting a chemical or physical 
characteristic of a particular analyte into a measurable signal [34]. 
Those devices offer a great potential for several integrated 
applications for rapid and low-cost measurement and were widely 
used in contrastive scientific practice, certainly owing to their 
remarkable outcome [33-39]. Biosensors were developed 
throughout various applications and principally put an accent on 
the construction of sensing components and transducers. Those 
applications fall under a multiple substance analysis for diagnosis 
[40-44], and estimations [45-48]. 

 The technology of sensor devices led to remarkable 
achievements that are undeniable. Except that, it remains 
important in any sensing process to create a steady and precise 
pattern recognition model admitted to the sensory system for 
substance detection [33]. The raw data that are collected from the 
sensor need to be analyzed. For that purpose, and to offer a 
complete integrated instrument, the classical method has suggested 
incorporating optical filters to the basic sensor, also, the use of 
statistical and threshold-value based techniques for data 
processing. Recent researches offer a potential and more efficient 
alternative: the use of AI paradigms. Plenty of applications can be 
found in the literature that use these pattern recognition methods 
for substance detection such like, Decision Trees [38], random 
forest [34, 43], K Nearest Neighbor [34, 40, 42], Support Vector 
Machine (SVM) [40-43], and ANNs [36-47]. 

The authors use in [47] a biochemical sensor to acquire 
fluorescence measurements from a variety of substances at 
different concentrations. The sensor prototypes utilized Light 
Emitting Diodes (LEDs) as excitation sources, as detailed in [47], 
and LEDs and/or photodiodes as photodetectors. 

 
Figure 1: Sample mission and photo response spectra of the color LEDs [47] 

Basically, the excitation light procured an interaction with the 
tested analyte of various aspects such as fluorescence, reflection, 
absorption, and scattering in a synchronous manner. The resulting 
light was quantified by the photodetectors having distinct spectral 
sensitivities. The LEDs were excited synchronously, one at a time, 
detecting the resultant fluorescence with the remaining LEDs. That 
was the process followed to collect an amount of data for each 
analyte at a specific concentration .This process generated a data 
collection that characterizes a singular spectral signature for a 
compound at a specific concentration, as illustrated in Figure 1. 
That process was repeated for all components at different 
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concentrations. Then, after detecting and amplifying the data with 
a multi-wavelength sensor front end, they are used to train the 
ANN and, upon satisfactory training, the network is assigned to the 
identification of other data collected by the biosensor. The ability 
to determine very low substance concentration levels using the 
ANN dramatically increases the specificity of the biochemical 
sensor.  

The focus of classification techniques is, for given input 
patterns, to detect target classes, determined to define a particular 
substance concentration pairs. In this context, the authors in [47] 
developed a MultiLayered neural network, that was trained with 
the collected data from the biosensor, to process the classification 
phase on data reserved to test the network. The topology of the 
network model is basically a Multi-Layered Neural Network 
(MLNN) which consists of two hidden layers with 56 processing 
neurons for each layer, and a single output neuron. The RProp 
algorithm was employed as a learning rule on the network to 
process the training phase. The learning algorithm in multilayered 
network models consists basically of two phases. At the beginning, 
an input pattern is randomly selected from the training dataset and 
is assigned to the input layer of the ANN. Then, the network 
propagates that pattern from layer to layer until a corresponding 
output pattern is computed by the output layer. In case there is a 
difference between the resulting pattern and the desired output, the 
error is estimated and then propagated in the opposite direction 
through the network, from the output to the input layers. In the 
meanwhile, the weights’ values are readjusted, as the error value 
is propagated backward [16]. 

In [47], the authors developed the MLNN to detect four 
fluorescent organic compounds at different concentrations, as one 
can notice on Table 1. The resulting performance attests a good 
classification capacity of the network, reaching more than 94% of 
perfect analyte detection. The error curves for both the training and 
the recall phases are plotted bellow in Figure 2. 

  
Figure 2: Sum-of-Squares classification error curves versus the number of cycles 

for the 56-56-56-1 MLNN topology. 

Dealing with the same substance identification problem, the 
authors in [48] developed an evolutionary AI approach, based on 
Particle Swarm Optimization (PSO), viewing the detection 
problem as an optimized search. Indeed, the same datasets used in 
[47] were employed in the experimental set-up. The obtained 
results with the PSO model enhanced the recognition accuracy 
reaching 98% of exactitude.  

The results of the latter two works and the same data collection 
were reserved in the present work, with the aim of trying to 
enhance even more the recognition rates obtained, by 
incorporating the properties of chaos in ANN models. We 
investigate a BAM and a CBAM recurrent models to process 
fluorescence data for the substance identification task. 

1.2. Breast cancer detection 
Cancer is a disease that might attack numerous human organs. 

A scourge that continues spreading all over the world with 
alarming new statistics each year. Statistics report that, breast 
cancer is the 2nd dangerous disease all over the world, in fact, the 
rate of mortality from this disease is overwhelming.  

The WHO (World Health Organization), states that breast 
cancer affects more than 2 million women every one year across-
the-board [49, 50]. In 2020, 2.3 million women were diagnosed 
with breast cancer and globally 15% of all death among women 
from cancer was from breast cancer disease. An early diagnosis of 
the disease, increases the chances of survival for the patient.  

The main purpose of medical diagnosis aid systems for breast 
cancer disease is the detection of non-cancerous and cancerous 
tumors [49-53]. The only valid prevention approach for breast 
cancer disease remains the early diagnosis [54-56]. In the 1980s, 
in developed countries, with the establishment of early detection 
protocols and a set of treatment processes generate enhancements 
in survival rates. For a prevention purposes, the National Breast 
Cancer Foundation (NBCF) prescribe a mammogram once a year 
for women that are over 40 years old. 

Technologies based on AI paradigms are getting more accurate 
and reliable results than conventional ones. AI tools such as pattern 
recognition techniques [49, 51, 53, 54, 55, 56], are estimated for 
being of great help in the medical diagnosis aid field. In fact, as 
part of breast cancer detection, doctors need to be able to 
differentiate between categories of tumors through a reliable 
procedure of examination. Specialists assess the fact that tumors’ 
diagnosis is a task that is considered to be very hard to accomplish. 
It is thus crucial to diagnose breast cancers in an automated manner 
to overcome that difficulty.  

 
Figure 3: ANN for medical diagnosis aid system 

In the field of breast cancer detection, numerous paradigms 
were employed to construct medical diagnosis aid systems. Those 
techniques use pattern recognition tools as Random forest [49-55], 
K-Nearest-Neighbor [52, 54], Logistic regression [51, 53], Naïve 
Bayes [49, 52, 53, 56], Decision Tree [49, 51-55]; not only but also 
ANN models [49-55], in particular, Support Vector Machines 
(SVM), Multi-Layer Neural Networks, Convolutional Neural 
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Networks, or BAM neural network model. All those techniques 
have the same aim: the automation of breast cancer identification 
to assist medical diagnosis protocols.  

As for the first pattern recognition task, the substance 
identification problem, the same three different ANN models are 
used in this work to face a breast cancer identification problem, 
such as, a MLNN, a BAM and a CBAM model.  Indeed, a different 
real-life pattern recognition problem is investigated with a 
different dataset to highlight the potential of chaos in an ANN 
model’s performance. The proposed ANN models are operating as 
breast cancer diagnosis aid systems according to the process shown 
in Figure 3. First, symptoms are collected from the diagnosed 
patients, thereby creating a raw database. Subsequently, raw data 
undergoes a preprocessing phase before being assigned to the 
ANN model for the identification phase. The preprocessing phase 
is detailed in the Data Acquisition section. 

The rest of this paper is organized as follows. Section 2 
proposes briefly an overview about models theory. Section 3 
defines the properties and the pre-processing methods used on the 
two different datasets employed in the experimental set up, such 
as, the fluorescence based measurements and the breast cancer 
dataset. Section 4 presents the different parameters’ details and 
implementations’ descriptions of the developed ANN models with 
their respective results. The obtained results are discussed in the 
last section, the conclusion. 

2. Theory of Models 

Among the various AI techniques applied in pattern 
recognition problems, connectionist approaches proved their good 
ability to process classification, which represents the most active 
field in the research on ANNs [16, 18, 57]. We present in the rest 
of this section an overview of research works employing 
multilayered neural network models and memory-based ones. The 
kind of ANN models that we are about to present in this paper. 

2.1. Multi-Layered Neural Network (MLNN) 

The MLNN is built in a multilayer Perceptron fashion. The 
architecture of such a model is composed of an input layer, one or 
more hidden layers of computing neurons, and an output layer 
generating an output pattern corresponding to the input assigned 
formerly to the network [18]. The MLNN performs a supervised 
learning. In addition, most of MLNNs processes their learning 
phase according to the basis of the pioneer backpropagation 
(Backprop) algorithm or one of its variants. In fact, an error is 
calculated according to the difference between an actual and a 
desired output patterns, which is propagated backward again 
through the network layers and the values of the weights are then 
updated to reduce it [16].  

Basically, the backpropagation algorithm represents a chain 
rule to estimate the effect of each weight value in the network 
according to an arbitrary error-function [58]. Once all the weights 
of the connections are computed, the purpose is to make the error 
value as small as possible through an error-function. The 
commonly used error-function is the simple gradient descent 
including a learning rate parameter. The choice of that parameter 
has a considerable impact on the number of learning epochs 
needed for the ANN to converge. On the one hand, the smaller is 
the learning parameter the greater is the number of learning cycles. 
On the other, under a large value of the learning rate, the network 

risks to generate oscillation, which makes difficult to diminish the 
error value. 

Given the limits of the classical Backpropagation rule, it has 
gone through several improved versions [16, 18, 58, 59], among 
which, introducing a momentum-term. A parameter that was 
supposed to make the learning algorithm more stable and the 
learning convergence quicker. However, it turns out 
experimentally that the optimal value of the momentum parameter 
is equally problem dependent as the learning rate, and finally, no 
general improvement can be carried out. 

Later, numerous algorithms were proposed to face the problem 
of appropriate update of the weight values by using an adaptation 
parameter in the training epochs. That parameter is used actually 
to estimate the weight-step. The adaptation algorithms are  
approximately grouped into two classes, local and global rules 
[58]. On the one hand, local adaptation rules employ the partial 
derivative to adjust weight-specific parameters. On the other hand, 
global ones employ the information concerning the state of the 
whole ANN model, meaning, it uses the orientation of the previous 
weight-step, to update global parameters. Basically, the local rules 
fit better the conception of learning in ANNs. Again, the adaptive 
enhanced version of the Backpropagation algorithm has certain 
limitations. Concretely, the impact of the chosen value of the 
adapted learning parameter is very sensitive to the partial 
derivative [16, 18, 58].  

Finally, the weaknesses of all the aforementioned 
backpropagation variants took over the  conception of the Rprop. 
The fact that this algorithm updates the size of the weight-update 
directly and without taking into account the partial derivative’s 
size, keeps the system away from the ‘blurred adaptivity’ 
phenomenon. All the modified verisons of the backpropagation 
algorithm have the aim to accelerate the neural network 
convergence, and through various experimentations, the Rprop 
have proven to be more useful than the others. The Rprop learning 
scheme offers a great efficacy compared to the classical 
backpropagation algorithm and its above-mentioned modifications 
[58]. Basically, that learning rule processes the weight-step 
adaptation according to a local gradient information. In addition, 
the contribution made by the Rprop rule is that, the introduction of 
an individual update-value for each weight avoids the effort of 
adaptation to be blurred by the gradient behavior. Basically, the 
individual update-value determines the size of the weight-update. 
The value of the update parameter is estimated while the training 
is processed on the network, and that estimation is based on its 
error-function local information. 

Through a set of experimentations on several MLNN models 
[47], the global error performance of the MLNN employing the 
RProp algorithm was the smallest. In addition, the speed of 
convergence of the model was the quickest one. Consequently, the 
resilient backpropagation  is implemented in the learning phase for 
the MLNN model in the present work. Apart from that, the sigmoid 
function [59] is employed as the neuron output function of the 
multilayered model. 

2.2. Bidirectional Associative Memory (BAM) 

The first ANN model offering a learning  process operating in 
a heteroassociative scheme, was proposed in the 1970s [19]. That 
ANN was designed with a focus on constructing a formal system 
that demonstrates the way that brain associates different patterns.  
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In fact, when training the brain perceive something (input 
pattern), another one is recalled (output pattern, or a category). The 
pioneer memory-based ANN model is linear [19], whether through 
its training rule or its the unit activation function. That in fact limits 
the recall capacity of the network, especially in case correlation 
occurs in input patterns. That weakness of the model has pushed 
the research on the field to evolve towards the construction of 
recurrent auto-associative and interpolative models of memory that 
includes nonlinearity [20]. The later models generate dynamic 
functionalities through a nonlinear output feedback function. That 
function nonlinearity offers to the system the possibility to 
converge to stable fixed-points. Consequently, if the networks 
learned training patterns in correspondence with given fixed-point 
attractors, it would be capable of recalling them despite the 
presence of noise in data. The author in [60], used those 
characteristics to incorporate the nonlinear feedback of the 
Hopfield model to a hetero-associative memory model. Finally, the 
BAM came up, a new kind of brain-inspired connectionist models. 

A Multilayered ANN model has different functionalities from 
a memory-based ANN model. Instead of propagating the signal in 
a layer-by-layer fashion from the input layer to output layer, the 
BAM consists of generating feedback loops from its output to its 
inputs; in fact, this model has a recurrent topology [18]. In 
addition, the learning process in memory-based ANN models are 
a brain-inspired artificial approach. Indeed, that learning process 
allows to develop attractors for each pattern since the recurrent 
architecture offers the ability of feedback connections [21]. 
Furthermore, learning with BAMs demonstrates a remarkable 
stability and adaptability against noise and a great capacity of 
generalization. The memory-based model has also exhibited a 
great potential for pattern recognition especially given its capacity 
to be trained under a supervised or an unsupervised scheme. The 
Hebbian rule is the common learning algorithm used for the 
unsupervised trainings in the BAM models [16]. If two units in the 
network are activated in a simultaneous way on either side of a 
connection, the corresponding weight is then increased. Otherwise, 
if two units in the BAM are activated in an asynchronous way on 
either side of a connection, the corresponding weight is thus 
decreased. Concretely that is the Hebb’s law basis. Being the fact 
that the Hebbian learning consists of an unsupervised learning, the 
process is local to the network and is performed independently of 
any external interaction. 

The BAM training is originally performed with a classical 
Hebb’s law [16, 20]. Because of its multiple limitations, among 
which, pattern-correlation, there were numerous enhanced 
versions of the hebbian learning principle. The first memory-based 
model employed a nonlinear activation function (the Signum 
function) in the recall phase. Again, the latter learning rule had 
some limitations such as it is accomplished offline and the network 
is limited to bipolar/binary input patterns. In addition to, the BAM 
generates numerous inaccurate attractors and its memorization 
aptitude is limited.  

To confront those limits, the learning algorithm was modified 
with the use of a projection matrix following the principle based 
on least mean squared error minimization. Other alternatives were 
put forward in the literature tempting to enhance the learning 
algorithm behaviors. In fact, the proposed models tried to 
overcome the classical learning rule by increasing the model’s 
storage capacity and his performance, but also by reducing the 
number of inaccurate states. Unfortunately, most of the proposed 
processes increases the neural network complexity [20]. 

In the present work, the authors use a BAM model that allows 
either an offline or an online learning of the patterns, and most of 
all, a model that is not limited to memorize binary or bipolar 
patterns. Indeed, the memory-based ANN model has to be capable 
of learning real-valued to deal with both of our real-life problems, 
substance identification and breast cancer detection. In the present 
work, the learning rule used in the BAM model is derived from the 
Hebbian/anti-Hebbian rule detailed in [43, 44]. 

𝑊𝑊[𝑘𝑘+1] = 𝑊𝑊[𝑘𝑘] + 𝜂𝜂(𝑦𝑦[0]𝑥𝑥[0]
𝑇𝑇 + 𝑦𝑦[0]𝑥𝑥[𝑡𝑡]

𝑇𝑇 − 𝑦𝑦[𝑡𝑡]𝑥𝑥[0]
𝑇𝑇 − 𝑦𝑦[𝑡𝑡]𝑥𝑥[𝑡𝑡]

𝑇𝑇  (1) 

𝑉𝑉[𝑘𝑘+1] = 𝑉𝑉[𝑘𝑘] + 𝜂𝜂(𝑥𝑥[0]𝑦𝑦[0]
𝑇𝑇 + 𝑥𝑥[0]𝑦𝑦[𝑡𝑡]

𝑇𝑇 − 𝑥𝑥[𝑡𝑡]𝑦𝑦[0]
𝑇𝑇 − 𝑥𝑥[𝑡𝑡]𝑦𝑦[𝑡𝑡]

𝑇𝑇   (2) 

W and V in equations (1) and (2) are the weight matrices for 
both network directions, x[0] and y[0] are the initial inputs to be 
associated. The variable η represents the training parameter, whole 
k represents the number of learning cycles. Through x[t] and y[t], a 
feedback from a nonlinear activation function is included in the 
learning algorithm; which offers to the network the ability to learn 
online and then contributes to the convergence of the BAM’s 
behavior. Given those particularities, we opt to develop this 
learning function on the BAM model in the present work.  

It is worth noting that, the cubic map detailed in [20, 22], is 
used as the unit output function of the memory-based model. The 
cubic map is employed for the BAM model under a non-chaotic 
mode, as detailed in section IV. 

The training process of the BAM was performed under the basis of 
the following algorithm: 

1) Selecting randomly a pattern pair from the learning 
dataset; 

2) Computing Xt and Yt according to the output function 
employed (Cubic-map); 

3) Computing the adjusted values of the weight matrix  
according to (1) and (2); 

4) Reiteration of steps 1) to 3) until the weight marix 
converges; 

This same learning rule is used further in the third ANN 
developed model, the C-BAM. 

2.3. Chaotic Bidirectional Associative Memory (C-BAM) 

Since chaotic patterns were found in the brain [11, 12, 13, 14, 
24, 25], numerous research works were proposed in the literature, 
tempting to include dynamic properties in ANN models. It must be 
noted that, time and change are the two properties that particularly 
defines the impressive properties of the NDS approach. As a result, 
those proposed NDS-based models are confronting the classical 
doctrines on brain functionalities and most of the theories that were 
assessed since the inception of neuroscience and cognitive 
sciences. This comes up with, challenging also the disciplines that 
focus on the construction of brain-inspired models such like 
artificial intelligence, and specifically ANNs paradigms.  

 Furthermore, most of proposed models are of a computational 
nature and leave dynamic principles aside. Moreover, concerning 
the models that encompasses NDS characteristics, only fixed 
points are taken into account to store and retrieve information. As 
a result, characteristics of the NDS approach are kept aside [46, 
50]. Basically, perceived as a nuisance, chaos is, most of the time, 
excluded from the models.  
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The main purpose in the construction of brain-inspired AI 
models, particularly ANNs; cannot however ignore principles of 
nonlinear dynamical systems. 

Moreover, in spite the various existing models in 
connectionism, not all those models are applicable to include NDS 
properties. Indeed, memory-based models such as BAMs offer the 
ability to develop nonlinear and dynamic behaviors. In fact, their 
recurrent architecture offers characteristics that allow an ANN 
model to generate oscillations [20, 21, 22, 23, 24, 25].  

 
Figure 4: Bifurcation diagram of the cubic map [20]. 

The parameters employed in the CBAM model are as follows: 
the learning rule employed in the former BAM model, derived 
from the Hebbian/antiHebbian algorithm; also, the BAM’s 
topology is kept the same; and concerning the output function, 23 
chaotic maps (including the former cubic-map) operating in a 
chaotic mode are used after training, at the recall phase. 

Chaotic maps characteristics 

We test a set of 22 chaotic function defined in detail in [2, 61, 
62, 63, 64, 65], among which, the Spikin maps family, the Tent 
maps, the Mira group, the Bernoulli map, and the Henon map. The 
last map is the one that completes the CBAM model’s performance 
to perfect, at performing both the substance identification task and 
the breast cancer identification problem, as detailed further in this 
paper in the Experimentation section.  

The 23rd function is the same cubic map used in the former 
BAM model, except that we set its parameters this time so that it 
can work in a chaotic mode. The function parameters are set 
according to its bifurcation diagram in the Figure 4, as detailed 
further in section IV. As one can notice, the process is capable of 
leading the system to stable attractors for value δ < 1, although an 
aperiodic behavior can occur when the parameter value exceeds 1, 
and then, switching the system into a chaotic phase (black areas in 
the bifurcation diagram). The 23 output functions tested on the 
CBAM model are listed in Table 2. 

The Henon map 

This function is detailed in [2] as follows: 

𝑓𝑓(𝑥𝑥,𝑦𝑦) = (𝛼𝛼 − 𝑥𝑥2 + 𝛽𝛽.𝑦𝑦, 𝑥𝑥) 

The Henon map has to inputs, such as x and y, and two outputs, 
the new values of x and y [2]. The use of the control parameters’ 
values α = 1.28 and β = -0.3, we notice that the orbit converges to 
a 2-period attractor (as shown in Figure 5), when at the value α=1.4 
the attractor becomes fractal [2]. 

Table 1: The performances of the CBAM with the 23 maps, the BAM and the 
MLNN model. 

ANN Model Breast 
Cancer 
Recognition 

Substance 
Identification 

Map 
ID. 

CBAM-Henon 100% 100% 1 
CBAM-Bernoulli 100% 75.35% 2 
CBAM-Logistic3 98.59% 77.32% 3 
CBAM-Mira1 98.59% 72.16% 4 
CBAM-Spikin 
Map3 

96.48% 76.83% 5 

CBAM-Spikin 
Map 

95.43% 76.66% 6 

CBAM-Logistic2 94.38% 74.89% 7 
CBAM-Tent 91.92% 75.78% 8 
CBAM-Logistic 89.47% 68.77% 9 
CBAM-Spikin 
Map2 

84.90% 76.78% 10 

CBAM-PWAM2 77.89% 55.93% 11 
CBAM-
TailedTent1 

75.78% 53.52% 12 

CBAM-Logistic1 72.62% 51.95% 13 
CBAM-PWAM4 70.17% 49.23% 14 
CBAM-PWAM3 65.96% 46.34% 15 
CBAM-Tent1 62.45% 44.87% 16 
CBAM-PWAM1 53.32% 40.21% 17 
CBAM-Logistic-
Cubic 

44.21% 72.98% 18 

CBAM-Mira2 22.45% 31.44% 19 
CBAM-Spikin 
Map1 

18.94% 45.76% 20 

CBAM-Ideka 18.94% 45.89% 21 
CBAM-Mira-
Gumolski 

12.27% 23.91% 22 

CBAM-Tent2 4.56% 18.67% 23 
BAM 96.56% 90.17% --- 
MLNN 89.32% 94.79% --- 

 

  
Figure 5: The attraction bassin of the Henon map, β = -0.3 [65]. 

On the one hand, the black zones in the Figure 5 represent the 
initial values whose trajectories diverge towards infinity. On the 
other hand, the white zones represent the initial values that are 
pulled by the 2-periods attractor. The basin limit is a curve that 
moves from the inside to the outside of initial values’ space. 

The Bernoulli map 

This chaotic function is defined in [31] as follows: 
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      x[n] = y[n-1], 

      y[n] = mod(δ.x[n-1], 1) 

Where δ is a control parameter set to 1.99 so the map can 
operate in a chaotic mode [64]. x and y represent the input and the 
output of the system respectively. 

The Mira maps group 

The original Mira map  is defined as follows [61]: 

x[n] = y[n-l], 

y[n] = y[n-l] - ax[n -1] if  x[n -1] < 6 , 

y[n] = y[n-l] + bx[n -1] – 6 (a + b), otherwise 

where x and y represent the initial conditions for the trajectory 
of the map. After numerous trials on the values of the control 
parameters of the Mira map, we set them during the final 
experimentation to: a=1.05; and b=2. The modified Mira map is 
used to imitate the spiking phenomenon of the biological neurons 
[32], this map is defined as follows: 

f(x) = y,  

f(y) = a x + b x2 + y2 

We use this map with the following control parameters’ values: 

- Mira_map1, a = 0.8, b = 1, where the map has one breast 
cancer fixed-point with two positive eigenvalues. 

- Mira_map2, a = -0.8, b = 0.2, where the map has a stable 
set. 

The dynamic characteristics of the Mira map and its versions 
are detailed in [47, 48]. 

The Spiking maps group 

The original Spiking_map is defined in [63] as follows: 

𝑋𝑋[𝑛𝑛] = 𝑓𝑓�𝑋𝑋[𝑛𝑛−1],𝑌𝑌[𝑛𝑛−1]�, 

𝑌𝑌[𝑛𝑛] = 𝑌𝑌[𝑛𝑛−1] − 𝜇𝜇�𝑋𝑋[𝑛𝑛−1] + 1� + 𝜇𝜇𝜇𝜇, 

𝑓𝑓(𝑥𝑥,𝑦𝑦) = �

𝛼𝛼
(1 − 𝑥𝑥)

+ 𝑦𝑦, 𝑖𝑖𝑓𝑓 𝑥𝑥 ≤ 0

𝛼𝛼 + 𝑦𝑦,     𝑖𝑖𝑓𝑓 0 < 𝑥𝑥 < 𝛼𝛼 + 𝑦𝑦,
−1, 𝑖𝑖𝑓𝑓 𝑥𝑥 ≥ 𝛼𝛼 + 𝑦𝑦

 

Where, x[n] is the fast dynamical variable, µ is a constant value set 
at 0.001, y[n] is the slow dynamical variable, its moderate evolution 
is on account of to the small value of the parameter µ. The map’s 
control parameters are the variables α and σ. We use also the 
Spiking Map with three different modifications. We experiment 
the parameters’ values used in [63] so that the map operates in a 
chaotic mode: 

- Spiking_Map1: µ = 0.001; α = 5.6  and   σ = 0.322 

- Spiking_Map2: µ = 0.001; α = 4.6  and   σ = 0.16 

- Spiking_Map3: µ = 0.001; α = 4.6  and   σ = 0.225 

 In the present work, we aim at experimenting 23 chaotic maps 
with the CBAM model, among which we have presented few ones. 
These selected functions are among the ones that have laid the best 
accuracy rates.  

 Furthermore, we have relied on useful mathematical tools to 
set the different chaotic maps’ parameters, among which,  the 
Lyapunov exponent. It represents a logarithmic estimation for the 
mean expansion rate per cycle of the existing distance between two 
infinitesimally close trajectories [2]. The interest in the present 
work concerns particularly the case where that value is positive. It 
must be noted that, a NDS with a positive Lyapunov exponent 
characterizes the fact that the system is chaotic. That system is in 
particular sensible to initial conditions. Figure 6 shows a 
bifurcation diagram of the Henon map.  

For each vertical slice shows the projection onto the x-axis of an 
attractor for the map for a fixed value of the parameter α. 

  
Figure 6: The bifurcation diagram for the Henon map [65]. 

Whereas, a stable movement has a negative Lyapunov exponent.  
An example is illustrated in the Figure 7, which concerns the 
Henon map Lyapunov Exponent. 

Both of those mathematical tools, the bifurcation diagram and the 
Lyapunov exponent, are useful in our experimental set up to have 
control over the dynamical behaviors of the performed output unit 
functions. 

 
Figure 7: The Lyapunov exponent [65]. 
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3. Data Acquisition 

It is a common routine to prepare data before performing the 
learning and the recall phases on an ANN model. Numerous 
preprocessing techniques exist in the literature varying according 
to the nature of the data.  We detail in the following subsections 
the preprocessing procedure applied on both the set of 
fluorescence-based measurements, and the breast cancer data 
collection. It is worth noting here that, noise and missing data are 
two characteristics that are kept in the datasets.  

3.1. Fluorescence based measurements 
A set of fluorescence-based measurements was collected from 

the optoelectronic biosensor for each analyte at a specific 
concentration through the procedure detailed in [47]. The first 
pattern recognition problem to aboard in the present work concerns 
the identification of different analytes at different concentrations. 
Table 1 illustrates the test compounds under their different 
concentrations.  

Table 2: Test substances with their concentrations 

Compound Concentration Category 

Chlorophyll 

10-4 M 
10-5 M 
10-6 M 
10-7 M 
10-8 M 

1 
2 
3 
4 
5 

Coumarin 

10-3 M 
10-4 M 
10-5 M 
10-6 M 
10-7 M 

6 
7 
8 
9 
10 

Rhomadine B 

10-4 M 
10-5 M 
10-6 M 
10-7 M 

11 
12 
13 
14 

Erythrosin B 

10-4 M 
10-5 M 
10-6 M 
10-7 M 
10-8 M 

15 
16 
17 
18 
19 

 

We have 19 classes among which each class represents one 
compound at a specific concentration. 

Concretely, each measurement in the dataset is composed of 64 
values forming an 8x8 matrix. The row in the matrix provides the 
outputs of 7 photodetectors LEDs [47], and one more output 
corresponding to the excitation LED which is fixed to 0, and then 
removed leading to the resulting matrix 8x7. Consequently, the 
size of each vector in the data collection is 56. Furthermore, a 
random division of the dataset was employed to get two distinct 
ones, the first one is dedicated to the learning process (two thirds 
of the entire collection), while the second one is reserved for the 
testing phase (the remaining third). The resulting datasets contains 
2103, and 1051 vectors respectively.  

3.2. Breast Cancer database 
 Concerning the second pattern recognition problem 
investigated in the present work, the authors employ the 
Yougoslavia Breast Cancer dataset in the experimentations. 
Clinical data have been collected by Matjaz Zwitter & Milan 
Soklic at the oncological institute of the university medical center 

of Ljubljana in Yougoslavia. The entire data collection contain 286 
tumor cases. Each tumor case is represented as a vector of 10 
attributes: the tumor frequency, the patient age, the type of the 
menopause, the tumor-size, inv-node, node-caps, deg-malig, 
breast position, breast-quad, the irradiation value. It must be noted 
here that few attributes are missing in the breast cancer dataset. 
The authors apply scaling on the data collection with dividing the 
values by 10. The digit 0 was excluded to prevent the system from 
instable fixe points. As a result, the normalized dataset is 
represented by digits in the interval [1, 13].  

Finally, the data collection is composed of  286 tumor cases coded 
in a set of rows of dimension 10. 

Moreover, the different tumor cases  in the breast cancer 
dataset are not identified. A categorization phase must be 
accomplished to determine them. As a consequent, the authors 
developed a Self-Organized Map (SOM), an ANN model detailed 
in [66]. The designed SOM model consists of a map that is 
composed of 400 neurons (20*20 cells). Computing units are 
represented through the matrix cells. As one can notice in Figure 
8, the numbers displayed in the 73 cells consist of the resulting 
categories’ identifiers processed by the SOM network.  

 
Figure 8: The SOM breast cancers’ categorization 

The obtained map indicates that each neuron in the network has 
the medical specificities of the category that it represents. As a 
result, the 175 classes (plotted in Figure 8) generated by the SOM 
are used for breast cancer identification.  

For the experimentation needs, and according to the procedure 
followed in the substance identification task, the breast cancer 
dataset was separated into two subsets. The first set contains the 
equivalent of two-thirds (191 vectors), while the second set 
contains the remaining third (95 vectors). The first dataset is 
reserved for the training phase, and the second for the recall phase. 

The cross-validation method is used to determine the accuracy 
rates for the different ANN models developed, and this, whether in 
substance identification task or in the breast cancer detection 
problem.   

4. Experimentations and Results 

It is worth noting that, the topology, the activation function 
and the learning rule are the main parameters that characterizes an 
ANN model. We detail in the following subsections those 
parameters in each of the MLNN, the BAM and the C-BAM 
models. 
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4.1. MLNN model 
The authors in [47] investigate a set of experimentations on 

several MLNN architectures and different parameters and 
converged on the multilayered model employed for the substance 
identification task. The Stuttgart Neural Networks Simulator 
(SNNS) of the Stuttgart University in Germany was used for the 
different MLNN experimentations. The best network performance 
obtained was with the MLNN topology  consisting of an input 
layer of the size 56 according to the size of the input vectors, two 
hidden layers with the same size as the input layer, and one output 
unit generating the output pattern corresponding to input assigned 
to the network.  The aforementioned learning algorithm was used 
as the learning rule, the RProp. The sigmoid was the output 
function of the MLNN model.  

We kept the same conception principle for the breast cancer 
detection task. The topology of the resulting MLNN model 
consists of an input layer containing 10 units according to the size 
of the tumor-case vector, two hidden layers with 10 computing 
neurons for each, and one output.  The MLNN topology for the 
breast cancer detection task is plotted in the Figure 9 bellow. 

 
Figure 9: The MLNN topology 10-10-10-1. 

The implemented ANN models are tested in the recall phase 
with the patterns that were not used during the learning process. 
Meaning that those patterns were not affected to the network 
during its learning phase, but during the recall only. In addition, 
the cross validation technique is used to determine the different 
ANNs’ recognition accuracies. Finally, once the tests are achieved, 
the average of the three experimentations on each of the ANN 
models is considered as its overall classification exactitude. 
Empirically, the MLNN model reached 94,79% of good overall 
recognition for the substance identification task, 89.32% of 
exactitude for the breast cancer identification problem.   

4.2. BAM model 
The memory-based network architecture is the second ANN 

model developed in the present work and it is composed of two 
Hopfield-like neural networks interconnected in head-to-tail 
fashion, as one can notice in Figure 10. We employ in the BAM 
model the parameters experimented in [20, 21].  

The network topology describes an interconnection that allows 
a recurrent flow of information that is processed bidirectionally. In 
that way, the vectors composing the pairs to be learned do not have 

to be specifically of same dimensions and that, contrary to the 
conventional BAM designs, the weight matrix from one side is not 
necessarily the transpose of that from the other side. 

The unit activation function employed in the BAM model is 
the cubic map described in [21]. Figure 4 illustrates the bifurcation 
diagram of that function according to δ, the parameter that dictates 
the dynamic behavior of the outputs.  

Fundamentally, this cubic function has three fixed points, -1, 
0, and 1, of which both the values-1 and 1 are stable fixed points. 
They offer to the memory the possibility to develop two attractors 
at these values. The cubic output function takes several time steps 
to converge. First, the given stimulus is projected from the network 
space to the stimuli space. Second, in the following time steps, the 
stimulus is progressively pushed toward one of the stimuli space 
corners.  

Furthermore, according to Figure 4, one can notice that the 
learning rule leads to stable attractors for value δ < 1, when it gets 
an aperiodic behaviour when exceeding 1 before leading the 
system into a chaotic phase (black areas in the bifurcation 
diagram).  

The experimentations on the BAM were realized with the cubic 
map operating in a fixed-points mode. The Hebbian/antiHebbian 
learning rule includes a feedback from the nonlinear output 
function via the couple of patterns to be associated; which allows 
the BAM to learn online, thus contributing to the convergence of 
the weight connections. 

 
Figure 10: The BAM architecture. 

The breast cancer recognition accuracy of the BAM model is 
plotted in Figure 11.  

 
Figure 11: Error curve relative to the number of learning epochs. 
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The network could reach a steady state after a reasonable 
number of learning cycles. The error was less than 0,0005 after 
1700 epochs. The BAM could correctly categorize 85 tumors cases 
from the testing dataset. That means that the accuracy rate of the 
network reached 90,17% at the recall phase. It is worth here that, 
that recognition rate was accomplished inspite the missing values 
in the data, which proves a good capacity of generalization on the 
one hand and a good resilience to noise on the other.  

The accuracy increased with the substance identification task 
to 96,56 % of exactitude. That is certainly due to the better 
conditions of the data collection despite the larger problem space. 

4.3. CBAM model 
The third model developed in the present work is the chaotic 

BAM model. The same main BAM’s parameters are kept  in the 
C-BAM network, consisting of the same topology and learning 
rule as the ones of the former BAM, detailed in [20], except that, 
the neuron activation function was replaced by chaotic functions. 
Distinction between the two memory-based ANN models 
throughout that parameter offers the possibility to concretely 
estimate the network pattern recognition performance with, and 
without chaos. The first chaotic output function tested on the C-
BAM is the same cubic map employed in the BAM model, 
operating in a chaotic mode during recall. For that purpose, the 
value of δ was set to 0.1 during training and to 1.5 during recall.As 
one can notice in Figure 4, those values correspond to a fixed-point 
and chaotic behavior respectively for that output map. 
Subsequently, the experimentation of 22 other chaotic maps on the 
CBAM model were investigated.  Indeed, after reaching a steady 
state in the learning process, the parameters of each function were 
fixed so it can operate in a chaotic mode, according to the 
bifurcation diagram of each map [2, 61, 62, 63, 64].   

The recognition accuracy rates are illustrated in Table 2 for 
both substance identification and the breast cancer identification 
tasks. For the purpose of results comparison, the MLNN’s and the 
classical BAM’s performances are also mentioned. 

 
Figure 12: The CBAM error curves for the substance identification’s task with 

the best 5 performing chaotic maps. 

The Figure 12 and the Figure 13 show the best recognition 
accuracies of the CBAM model with five particular maps, for the 
substance identification task, and the breast cancer identification 
task, respectively.  

 
Figure 13: The CBAM error curves for the breast cancers’ recognition task with 

the best 5 performing chaotic maps. 

As one can notice in the above graphs, the accuracy is total in 
both problem domains, particularly with the Henon function. 

5. Conclusion 

Three different ANN models were developed in the present 
work to deal with two different real life problems. Both of those 
problems focus on pattern recognition, the first task concerns 
substance identification while the second is about breast cancer 
detection. On the one hand, the MLNN model reached a good 
performance at recalling the substance identification data despite 
the problem of the huge space dimension (56 is the vectors’ size) 
and the multiclass criterion (19 different classes). The rate was less 
good for breast cancer identification with the same model in spite 
of this; the problem of space dimension was diminished to 10. This 
fact is indicative of the poor generalization capacity of the Multi-
Layered Neural Network when data contains noise. In fact, as 
mentioned in the Data Characteristics section, noise and missing 
values are two properties that are kept in the datasets. On the other 
hand, the BAM recurrent model provides a good overall recall for 
breast cancer identification seeking more that 96% of exactitude. 
However, the error increased with the multi-class problem relative 
to fluorescent-based measurements. The BAM results highlight its 
good resilience to noise; nevertheless, it was less good at facing 
the large problem space of the fluorescence-based measurements. 

In addition, the presence of chaos in the brain-inspired 
memory-based model provided remarkable results particularly 
with certain chaotic maps. The recognition accuracy of the CBAM 
facing the breast cancer detection task was acceptable with six 
functions employed in a chaotic mode [70% to 89%]; while eight 
maps varied from good to perfect, reaching a 100% of correct 
recognition with the Henon and Bernoulli map.  The performance 
was less good with regard to the substance identification problem 
compared to the first one, and that is with almost all the chaotic 
maps except for the Henon map that kept the overall accuracy total. 
The pattern recognition system employing that particular map was 
remarkable dealing with both substance identification and breast 
cancer detection problems. Accordingly, we can state that this 
particular model encompasses assets which allow it an excellent 
generalization capacity and a great resilience to noise leading to 
perfect pattern recognition performance. 
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 It is crucial to line up future artificial neural networks 
investigations with the dynamical characteristics of the Henon 
chaotic function, among which, the fractal dimensions of the 
Henon attractors. In essence, fractals and modern chaos theory 
radically question the dynamical concepts in all contexts and more 
particularly in nature and its mimetic artificial systems, among 
which, artificial neural networks.  Besides, and to conclude, since 
it is the era of big data; chaos must imperatively be in the 
perspectives of deep learning techniques in artificial neural 
network models’ analytics. 
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