

www.astesj.com 62

A New Technique to Accelerate the Learning Process in Agents based on Reinforcement Learning

Noureddine El Abid Amrani 1,2*, Ezzrhari Fatima Ezzahra1, Mohamed Youssfi1, Sidi Mohamed Snineh1, Omar Bouattane1

12IACS LAB, ENSET, Hassan II University of Casablanca, Morocco

2Institut supérieur du Génie Appliqué (IGA), Casablanca, Morocco

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 08 January, 2022
Accepted: 01 May, 2022
Online: 25 May, 2022

 The use of decentralized reinforcement learning (RL) in the context of multi-agent systems
(MAS) poses some difficult problems. The speed of the learning process for example.
Indeed, if the convergence of these algorithms has been widely studied and mathematically
proven, they suffer from being very slow. In this context, we propose to use RL in MAS in
an intelligent way to speed up the learning process in these systems. The idea is to consider
the MAS as a new environment to be explored and the communication, between the agents,
is limited to the exchange of knowledge about the environment. The last agent to explore
the environment has to communicate the new knowledge to the other agents, and the latter
have to build their knowledge bases taking into account this knowledge. To validate our
method, we chose to evaluate it in a grid environment. Agents must exchange their tables
(Qtables) to facilitate better exploration. The simulation results show that the proposed
method accelerates the learning process. Moreover, it allows each agent to reach its goal
independently.

Keywords:
Markov Decision Process
Multi-agent System
Q-Learning
Reinforcement Learning

1. Introduction

In the literature, an agent is defined according to the type of
application for which it is designed. In [1]-[3], the authors define
an agent is an entity that can be considered as perceiving its
environment by means of sensors and acting on this environment
by means of effectors.

In this paper, we have chosen to limit the communication
between agents to the exchange of knowledge because we are
interested in the autonomy of the agent. In [4], [5], the authors
specify that the autonomy of the agent is related to its structure: for
example, for a cognitive agent that plans to reach its goals, we can
talk about autonomy by planning.

For an agent deployed in a MAS, the agent's autonomy depends
on the objective to be achieved, which is:

• Global: this requires cooperation with other agents and limits
the agent's decision-making and behavior and makes the RA
algorithm difficult.

• Individual (agent-specific): in this case, the agent can achieve
his objectives alone. He does not need to cooperate with other

agents. And if it decides to do so, it is to enrich its knowledge
base. In this context, the authors of [6] propose characteristics
of the autonomous agent:

o An autonomous agent has its objectives;

o He can make decisions about his objectives;

o It can decide autonomously when to adopt the objectives of
other agents;

o He sees cooperation with other agents as a way to enrich his
knowledge base to achieve his objectives;

In this context, and concerning our problem and the aspect we
want to address, we adopt for our agents the properties proposed
by the authors of [6].

The structure of this paper is as follows: after establishing the
necessary background and notation in Section 1, we briefly
introduce in Section 2 some approaches that use Q-Learning on
non-Markovian environments. Then, in Section 3, we give a brief
overview of Markov decision process. In Section 4, we give an
overview of the mathematical formulas used in reinforcement
learning. We then describe our new technique for accelerating the
agent learning process based on reinforcement learning in Section
5. Finally, we present some conclusions and suggestions for future
work in Section 6.

ASTESJ

ISSN: 2415-6698

Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 62-69 (2022)

www.astesj.com

* Corresponding Author: Noureddine El Abid Amrani, Morocco,
+212673551661, noureddine.elabid@iga.ac.ma

https://dx.doi.org/10.25046/aj070307

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj070307

N.A. Amrani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 62-69 (2022)

www.astesj.com 63

2. Related Work

In MAS, interaction with the environment, both for perception
and action operations and for message sending operations, is
synchronous for the agent. On the other hand, the communication
between agents remains asynchronous, preventing any assumption
on the state of an agent following the sending of a message. The
main disadvantage of this domain is that the behavior of an agent
will depend on the other agents and thus, we go out of the classical
framework of reinforcement learning. This is a problem that has
been raised by several researchers:

In [7], the authors show that Q-Learning cannot converge for
non-Markovian problems. Indeed, in theory, the convergence of
Q-Learning is only possible if the policy used is fixed during the
exploration phase of the environment. This policy can be
stochastic, but it must be fixed: for a given state, the probability of
choosing an action must be constant. This is generally not the case
with classical methods. If the exploration policy is fixed, the Q-
Learning algorithm converges to the utility estimate of the fixed
policy used. This requires the introduction of new techniques in
the reinforcement learning algorithm. Several solutions have been
proposed:

In [8], the authors present a hybrid Q-learning algorithm named
CE-NNR which is springed form the CE-Q learning and NNR Q-
learning is presented. The algorithm is then well extended to
RoboCup soccer simulation system.

In [9], the authors propose a decentralized progressive
reinforcement learning that, based on classical RL (Reinforcement
Learning) techniques, allows to endow agents with stochastic
reactive behaviors. Indeed, with these stochastic behaviors, the
agents will be more efficient in this framework of partial
perceptions of the global system.

In [10], the authors first present the principles of multi-agent
systems and their contribution to the solution of certain problems.
They then propose an algorithm that allows to solve in a distributed
way a problem posed globally to the community of agents based
on reinforcement learning in the multi-agent framework.

In [11], the authors present a new algorithm for independent
agents that allows learning the optimal joint action in games where
coordination is difficult. The approach is motivated by the
decentralized character of this algorithm which does not require
any communication between agents and Q-tables of size
independent of the number of agents. Conclusive tests are also
performed on repeated cooperative games, as well as on a chase
game.

In [12], the authors of this article propose an algorithm called
adaptive Q-learning to judge whether the strategy of a particular
agent affects the benefit of the corresponding joint action
depending on the TD error. In a multi-agent environment, this
algorithm makes it possible to adjust the dynamic learning rate
between the agents, the coordination of the strategies of the agents
can be carried out.

3. Markov Decision Process (MDP)

The problem of learning [13]-[17], like planning, is to control
the behavior of an agent. We, therefore, need to model this agent
in its environment. The model used considers on the one hand the

possible states of the system (=agent + environment) and on the
other hand the possible actions of the agent in its environment.

Since the environment is uncertain, it is easy to think of
stochastic modeling of the system. The basic tool that will be used
for the learning and the general functioning of the agents is the
Markov Decision Process (MDP) and its derivatives. This is a class
of Markov models, themselves belonging to stochastic processes.

Figure 1: Evolution of the models [18]

The starting idea of a stochastic process is to use as a
representation a graph in which the nodes are the possible states of
the system and the arcs (oriented and annotated) give the
probabilities of passage from one state to another.

3.1. Stochastic process

Any family of random variables 𝑋𝑋𝑡𝑡 is called a stochastic
process or random process. This means that to any 𝑡𝑡 ∈ 𝑇𝑇 is
associated a random variable taking its values in a numerical set
𝐸𝐸. We denote the process 𝑋𝑋𝑡𝑡. If T is countable, we say that the
process is discrete; if 𝑇𝑇 is an interval, we say that the process is
permanent.

3.2. Markov Model

In the Markov model, at state t, X(t) depends only on the n
previous states (memory of the process in a model of order n). At
order 1, as it is often the case:

𝑷𝑷(𝑿𝑿(𝒕𝒕) = 𝒔𝒔𝒔𝒔|𝑿𝑿(𝒕𝒕 − 𝟏𝟏) = 𝒔𝒔𝒔𝒔,𝑿𝑿(𝒕𝒕 − 𝟐𝟐) = 𝒔𝒔𝒔𝒔, …) = 𝑷𝑷(𝑿𝑿(𝒕𝒕) =
𝒔𝒔𝒔𝒔|𝑿𝑿(𝒕𝒕 − 𝟏𝟏) = 𝒔𝒔𝒔𝒔) (1)

The Markov model is said to be stationary if the transition
probability between two states does not vary with time:

∀𝐭𝐭,𝐤𝐤 𝐏𝐏(𝐗𝐗(𝐭𝐭) = 𝐬𝐬𝐬𝐬|𝐗𝐗(𝐭𝐭 − 𝟏𝟏) = 𝐬𝐬𝐬𝐬) = 𝐏𝐏(𝐗𝐗(𝐭𝐭 + 𝐤𝐤) = 𝐬𝐬𝐬𝐬|𝐗𝐗(𝐭𝐭 +
𝐤𝐤 − 𝟏𝟏) = 𝐬𝐬𝐬𝐬) (2)

This leads to define a transition probability matrix A = [aij]
where the aij are defined by:

𝒂𝒂𝒂𝒂𝒂𝒂 = 𝑷𝑷(𝑿𝑿(𝒕𝒕) = 𝒔𝒔𝒔𝒔|𝑿𝑿(𝒕𝒕 − 𝟏𝟏) = 𝒔𝒔𝒔𝒔) 𝟏𝟏 ≤ 𝒊𝒊 ≤ 𝑵𝑵,𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝑵𝑵 (3)
The matrix A being stochastic, i.e. verifies:

∀𝐢𝐢, 𝐣𝐣 𝐚𝐚𝐚𝐚𝐚𝐚 ≥ 𝟎𝟎,∀𝐢𝐢 ∑ 𝒂𝒂𝒂𝒂𝒂𝒂 = 𝟏𝟏𝑵𝑵
𝒋𝒋=𝟏𝟏 (4)

where N is the number of states of the system.

http://www.astesj.com/

N.A. Amrani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 62-69 (2022)

www.astesj.com 64

Figure 2: Graph of a Markov model [18].

aij = transition probability of X(i) → X(j).
The agents will be immersed in a world where, starting from a

given state, the same action does not always lead to the same state.
This may be because the state is only incompletely known (only a
partial observation is known), or that simultaneous actions of other
agents may take place. Markov models allow modeling such
situations.

The different actions performed and the different states
encountered will bring any agent again or a cost. The agents must
therefore try to act in the best way. Their policies can be diverse
depending on whether they consider the more or less long term,
different estimates of the expected future gain being possible.

One last point to note is that an agent may not know at the
beginning the laws governing its environment. It will then have to
learn them more or less directly to improve its chances of winning.

A Markov decision process is a quadruple (𝑺𝑺, 𝑨𝑨, 𝑷𝑷𝒂𝒂, 𝑹𝑹𝒂𝒂),
where:

• 𝑺𝑺 is a set of states called state space,

• 𝑨𝑨 is a set of actions called action space (alternatively, 𝑨𝑨𝒔𝒔 is
the set of actions available from state 𝑺𝑺),

• 𝑷𝑷𝒂𝒂(𝒔𝒔, 𝒔𝒔′) = 𝑷𝑷𝒓𝒓 (𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝒔𝒔′ | 𝒔𝒔𝒕𝒕 = 𝒔𝒔, 𝒂𝒂𝒕𝒕 = 𝒂𝒂) is the
probability that action 𝒂𝒂 in state 𝒔𝒔 at time 𝒕𝒕 will lead to state
𝒔𝒔′ at time 𝒕𝒕 + 𝟏𝟏,

• 𝑹𝑹𝒂𝒂(𝒔𝒔, 𝒔𝒔′) is the immediate reward (or expected immediate
reward) received after the transition from state 𝒔𝒔 to state 𝒔𝒔′,
due to action 𝒂𝒂

Example:

Figure 3: An example of a Markov decision process [18]

3.3. Use

Starting points: The aim is to maximize the reward in the more
or less long term. It is, therefore, necessary to measure the
expectation of gain, by taking less and less account of the future
(less confidence, thanks to the coefficient: γ ϵ [0, 1]):

𝑬𝑬(∑ 𝜸𝜸𝒕𝒕𝒓𝒓𝒕𝒕∞
𝒕𝒕=𝟎𝟎) (5)

Other calculation methods are possible, but only the previous
formula will be used in the following.

In each state, it will be necessary to determine the optimal
action to take. We thus define a policy p:

𝒑𝒑:𝑺𝑺 → 𝑨𝑨 (6)

Values used: the expectation of gain will depend on the chosen
policy. We can thus define, for a fixed policy p, the utility of a
state:

Vp(St) = E�γkE�r�St+k, p(St+k)���|(St = s) (7)

For an optimal policy: V* (s) = Supp Vp(s), the utility of an
optimal policy can be written recursively as the Bellman equation:

𝑽𝑽∗(𝒔𝒔) = 𝐦𝐦𝐦𝐦𝐦𝐦
𝒂𝒂𝒂𝒂𝒂𝒂

(𝑬𝑬𝒓𝒓×𝝅𝝅(𝒔𝒔,𝒂𝒂)[𝒓𝒓(𝒔𝒔,𝒂𝒂) + 𝜸𝜸𝑽𝑽∗(𝒔𝒔′)]) (8)

We obtain an optimal deterministic policy by looking for the
action for which we obtain this maximum.

In planning, the algorithms called Value Iteration and Policy
Iteration allow, starting from any function V, to converge to V*
and thus to find an optimal policy.

Another greatness [15], Q (s, a), can be used, obtained from V
(s). It will provide the "quality" of the action performed in the state:

𝑸𝑸(𝒔𝒔,𝒂𝒂) = 𝑬𝑬𝒓𝒓×𝝅𝝅(𝒔𝒔,𝒂𝒂)[𝒓𝒓(𝒔𝒔,𝒂𝒂) + 𝜸𝜸𝑽𝑽∗(𝒔𝒔′)] (9)

3.4. Others models

From the Markov model, variants are defined which are used
in pattern recognition as well as in planning (like MDPs). The
general goal is to guess the present or future state of a system. Here
are some derived Markovian models:

• HMM: in a Hidden Markov Model, the state of the system is
not known. On the other hand, we have an observation that is
linked to the states by probabilistic laws. We cannot be sure
of a state with a perception of the external world, but a series
of perceptions can refine a judgment. This is the main tool for
pattern recognition based on Markov models.

• MMDPs (Multiple MDPs) is a variant of MDPs adapted to the
case of multi-agent systems, as are DEC-MDPs (decentralized
MDPs) and Markov games.

• SMDP: the model, called Semi-Markovian, aims at improving
time management, considering that the passage in a state can
be of variable duration (according to stochastic laws).

POMDP: this is a mixture of HMMs and MDPs, these Partially
Observable MDPs add the idea that an agent has only a partial
perception of its environment so that it knows only an observation
and not a complete state.

http://www.astesj.com/

N.A. Amrani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 62-69 (2022)

www.astesj.com 65

4. Reinforcement learning

4.1. Principle

Reinforcement learning is one of the most widely used
machine learning methods in the world of data science. This
technique allows the computer to perform complex tasks on its
own. The machine learns from its experiences through a system of
penalties or rewards. Reinforcement learning involves an
algorithm with great potential: Q-learning. This algorithm focuses
on learning a policy that maximizes the total reward. Q-learning
focuses on the usefulness of the action to be performed to obtain a
reward. The Markov Decision Process is the formal model used for
reinforcement learning [19], [20].

A MDP is a tuple(𝑺𝑺,𝑨𝑨,𝑷𝑷,𝑹𝑹) with:

• 𝑺𝑺 is a finite set of states,

• 𝑨𝑨 is a set of actions,

• P:𝑺𝑺 × 𝑨𝑨 × 𝑺𝑺 → [𝟎𝟎,𝟏𝟏], The probability that the agent moves
from one state to another is called the transition probability.

• 𝑹𝑹:𝑺𝑺 × 𝑨𝑨 → 𝑹𝑹, the reward function.

A very important assumption of reinforcement learning, called
the Markov property, is defined on the transition function of the
environment states. An environment is Markovian if the transition
function to a state depends only on the previous state.

Remember that the agent's objective is to maximize the total
rewards received. In this context, we introduce the notion of a
discount coefficient, denoted γ, which allows us to give more
importance to nearby rewards rather than to more distant ones. The
sum of the rewards is then: 𝑹𝑹𝒕𝒕 = ∑ 𝜸𝜸k𝑬𝑬(𝒓𝒓𝒕𝒕+𝒌𝒌+𝟏𝟏)T

𝒌𝒌=𝟎𝟎 , with
𝜸𝜸𝜸𝜸[𝟎𝟎,𝟏𝟏[. In the special case where 𝜸𝜸 = 𝟎𝟎, the agent maximizes the
immediate reward, whereas when 𝜸𝜸 → 𝟏𝟏, the agent increasingly
considers long-term rewards. 𝑇𝑇 represents the duration of an
episode that corresponds to a sub-sequence of interaction between
the agent and the environment.

The value function 𝑽𝑽𝝅𝝅(𝒔𝒔) represents the quality of state s in
terms of the expected reward from following policy π. Formally,
this value function is defined by:

𝑽𝑽𝝅𝝅(𝒔𝒔) = �𝜸𝜸′𝑬𝑬(𝒓𝒓𝒕𝒕|𝝅𝝅, 𝒔𝒔𝒕𝒕)
∞

𝒕𝒕=𝟎𝟎

 (10)

Similarly, we define the value function 𝑄𝑄𝝅𝝅(𝑠𝑠,𝑎𝑎) as the
expectation of the reward if the agent prefers the action in state s
and follows the policy π thereafter. Finding a solution to a
reinforcement learning problem comes down to finding a policy
that maximizes the sum of long-run rewards. Bellman's optimal
equation for 𝑽𝑽∗(𝒔𝒔) describes the fact that the optimal value of a
state is equal to the expected reward for the best action in that state.
More formally:

𝑽𝑽∗(𝒔𝒔) = 𝒎𝒎𝒎𝒎𝒎𝒎𝒂𝒂∈𝑨𝑨{𝒓𝒓 + 𝜸𝜸�𝒑𝒑(𝒔𝒔′|𝒔𝒔,𝒂𝒂)𝑽𝑽(𝒔𝒔′,𝝅𝝅′)
𝒔𝒔′𝝐𝝐𝝐𝝐

} (11)

The relationship between 𝑽𝑽(𝒔𝒔) and 𝑸𝑸(𝒔𝒔,𝒂𝒂) is represented by
the equation 𝑽𝑽∗(𝒔𝒔) = 𝒎𝒎𝒎𝒎𝒎𝒎𝒂𝒂𝑸𝑸∗(𝒔𝒔,𝒂𝒂) . From the optimal value
function 𝑸𝑸∗(𝒔𝒔,𝒂𝒂) , we define the optimal policy as 𝝅𝝅∗(𝒔𝒔) =
𝒂𝒂𝒂𝒂𝒂𝒂 𝒎𝒎𝒎𝒎𝒎𝒎𝒂𝒂𝑸𝑸∗(𝒔𝒔,𝒂𝒂). If the dynamics of the system is known, it is
possible to solve the problem using dynamic programming to find
the optimal policy. In cases where the dynamics of the system are

not known, one must either use estimation or use a set of methods,
called time-difference learning (TD-Learning), which are able to
evaluate the optimal policy through the experiences generated by
an interaction with the system. One of the main algorithms for
computing the optimal policy, Q-Learning, uses the Q-value
function. This algorithm works by interacting with the
environment in the following way: in each episode, the agent
chooses an action 𝑎𝑎 based on a policy 𝝅𝝅 derived from the current
values of 𝑄𝑄. It executes action 𝑎𝑎, receives the reward, and observes
the next state. Then it updates the values of 𝑸𝑸(𝒔𝒔,𝒂𝒂) by the formula:

𝑸𝑸(𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕) = 𝑸𝑸(𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕) + (𝟏𝟏 − α)(𝒓𝒓𝒕𝒕 + 𝛄𝛄𝐦𝐦𝐦𝐦𝐦𝐦
𝒂𝒂

𝑸𝑸(𝒔𝒔𝒕𝒕+𝟏𝟏,𝒂𝒂𝒕𝒕) −
𝑸𝑸(𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕)) (12)

where 𝑟𝑟 is the immediate reward, 𝑠𝑠′ is the new state, 𝛼𝛼 is the
learning rate. The convergence of this algorithm to the optimal
value function has been demonstrated in [21]. The choice of action
at each step is made using exploration functions. Among these
methods we can mention the voracious, e-voracious and softmax
approach which choose an action at random according to a certain
probability. For a more exhaustive description of exploration
functions, one can refer to[8], [22].

Hence the algorithm:

Algorithm 1: Q-Learning
Initialize Q0 (s,a) arbitrarily;
Choose a starting point s0;
while the policy is not good enough {
 Choose at as a function of Qt (St,.);
 In return: st+1 and rt
 𝑄𝑄𝑡𝑡+1(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) = (1 − 𝛼𝛼𝑡𝑡)𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) + 𝛼𝛼𝑡𝑡(𝑟𝑟𝑡𝑡 + 𝛾𝛾 ∗

𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎∈𝐴𝐴𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡+1,𝑎𝑎′) ;
}

The coefficient α should then be adjusted to gradually fix the
learned policy. γ allows for its part to modulate the importance of
expected future rewards.

4.2. Implementation

Two factors must be defined to apply the Q-learning algorithm:
first, the learning factor 𝛼𝛼, which determines to what extent the
newly calculated information outperforms the old one. The latter
must be between 0 and 1, and decrease towards 0 because if 𝛼𝛼 =
0, the agent learns nothing. On the other hand, if 𝛼𝛼 = 1, the agent
always ignores everything it has learned and will only consider the
most recent information. Second, the discount factor 𝛾𝛾 determines
the magnitude of future rewards. A factor of 0 would make the
agent myopic considering only current rewards, while a factor
close to 1 would also imply more distant rewards. In our approach,
we chose: 𝛼𝛼 = 0.1 and 𝛾𝛾 = 0.9.

It remains to choose the actions to be carried out according to
the knowledge acquired.

5. Proposed approach

In our proposed approach, the agent can achieve its goals alone.
The cooperation with other agents is limited to the exchange of
Qtable learning tables to enrich its knowledge base. To do so, after
each new exploration, the agent has to communicate its learning
table Qtable to the other agents, and the latter have to build their
knowledge bases taking into account this Qtable. And each agent
that wants to explore the environment again must use its
knowledge base, i.e. the values of the last Qtable communicated

http://www.astesj.com/

N.A. Amrani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 62-69 (2022)

www.astesj.com 66

by the environment, as initial values of its Qtable. This allows the
agent to gain a large exploration step and subsequently accelerate
the speed of the learning process.

5.1. The class diagram

In the class diagram shown in Figure 4, agents are autonomous
entities hosted in a graphical environment. Each node of this graph
represents a state, and the links between these nodes represent the
transitions between these states. There are three types of states in
this environment: with penalties, without penalties and obstacles.

In this case, reinforcement learning is applied as follows:

• The transition that allows access to the final state (the
goal) is represented by a reward equal to 100.

• The transition that leads to an obstacle is represented by
a reward equal to -1.

• The transition that allows access to other states: -10 for
states with penalties and 0 for normal states.

The agent must maximize its rewards which allows it to reach
the optimal path to the final state.

In the learning phase, the experience of agents who have
already explored the environment can be used to improve the speed
of the adaptation and learning process of other agents. Indeed,
before the start of learning, the function is initialized by the Q
values of the last agent having explored the environment. After
learning, the agent shares the new Q-values with the other agents
in order to use them as initialized values for a new exploration.

Figure 4: The class diagram of our approach

Figure 5: An example of the environment generated in the simulator we have developed.

http://www.astesj.com/

N.A. Amrani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 62-69 (2022)

www.astesj.com 67

5.2. Experiment

We have chosen a maze-like environment to test our model.
The number of rows and the number of columns of this
environment are chosen randomly using the following function:

Algorithm 2:
this.map=new char[rows][cols];
for (int i = 0; i < rows; i++){
for (int j = 0; j < cols; j++) {
 double rnd=Math.random();
 if (rnd<0.75)

 this.map[i][j]='0';
 else{

 this.map[i][j] = (Math.random() > 0.5) ? 'P' : 'W';}
}
}

To test our application, we choose our environment as a maze
where 75% of the cells represent normal states and the rest
represent obstacle and penalty states (see Figure 5).

To build the rewards table, the application calls the
buildRewardTable function as follows:

Algorithm 3:
public void buildRTable(){
 for (int k = 0; k < statesCount; k++) {
 int row=k/gridWidth;
 int col=k%gridWidth;
 for (int s = 0; s < statesCount; s++) {
 System.out.println(s+"->"+k);
 R[k][s]=-1;

}
 if (map[row][col]!='F'){
 for(int[] d :directions){
 int c=col+d[1];
 int r=row+d[0];
 if ((c>=0 && c<gridWidth)&&(r>=0 &&

r<gridHeight)){
 int st=r*gridWidth+c;
 if (map[r][c]=='0')
 R[k][st]=0;
 else if (map[r][c]=='W')
 R[k][st]=-1;
 else if (map[r][c]=='F')
 R[k][st]=EnvGrid.REWARD;
 else if (map[r][c]=='P')
 R[k][st]=EnvGrid.PENALT

Y;

 }
 }
 }
 }

}

The learning of the agents is described by the code below; it
allows the construction of the learning table Qtable. The values of
this table are computed as follows:

• The agent tries at each learning period to find a solution to
achieve the objective.

• Each time, the agent repeats random movements between the
states by performing the possible actions.

• For each transition, the value of the Qtable is calculated.

Algorithm 4:

public void train(){

 Random random=new Random();

 for (int i = 0; i <1000 ; i++) {

 this.currentStat=random.nextInt(envGrid.statesCou
nt);

 while (!isTerminalState()){

 int[]

 possibleActionsFromState=possibleActionsFro
mState(currentStat);

 int
index=random.nextInt(possibleActionsFromState.l
ength);

 int
nextState=possibleActionsFromState[index];

 double q=Q[currentStat][nextState];

 double maxQNextState=maxQ(nextState);

 double r=envGrid.R[currentStat][nextState];

 double
value=q+alpha*(r+gamma*maxQNextState-q);

 Q[currentStat][nextState]=value;

 currentStat=nextState;

 }

 }}

public int[] possibleActionsFromState(int state){

 List<Integer> states=new ArrayList<>();

 for (int i = 0; i <envGrid.statesCount ; i++) {

 if(envGrid.R[state][i]!=-1) states.add(i);

 }

 return states.stream().mapToInt(i->i).toArray();

 }

5.3. Result

The graph in Figure 6 shows the evolution of an agent's
learning process that started with a randomly defined knowledge
base and no experience:

This agent must communicate his experience (his Qtable) to
the other agents. The latter will use it as an initial Qtable for new
exploration.

The graph in figure 7 shows the evolution of the learning
process of an agent who used the experience of another agent who
had already explored the environment, i.e. he initially used the
latter's Qtable as a knowledge base.

http://www.astesj.com/

N.A. Amrani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 62-69 (2022)

www.astesj.com 68

Figure 6: Number of learning path states for the first 100 epochs of an agent with

an empty knowledge base (initial Qtable).

Figure 7:Number of learning path states for the first 100 epochs of an agent

Figure 8 show the paths taken by the last agent for three trials
at different initial positions. We see that the agent correctly takes
the optimal path with sometimes the preference to cross a penalty
point in a minimum number of moves.

Figure 8: Execution.

6. Conclusion and Future Work

In this paper, we have proposed an approach based on
reinforcement learning to solve the problem of cooperation
between agents in multi-agent systems. To do so, we proposed in
the agent structure that cooperation is limited to the exchange of
new knowledge. Indeed, an agent who has just explored the
environment must send the new knowledge collected to the other
agents, and the latter use this knowledge for new exploration. To
validate our method, we chose to evaluate it in a grid environment.

Agents must exchange their tables (Qtables) to facilitate better
exploration. According to the results, the experiences of the agents
that have already explored the environment help to accelerate the
reinforcement learning process in MAS. This allows the agent to
take an important exploration step and then reach its goal faster.

Ensuring communication between agents in different
environments is the goal of our future work. Ontologies can meet
this need, that is to enrich the knowledge base of agents with new
knowledge provided by other environments. And this requires
migrating to other environments, our idea is to use a mobile agent
that can migrate to other environments to collect new knowledge
and share it with other agents. The mobile agent receives rewards
in return.

References

[1] N. Carlési, F. Michel, B. Jouvencel, J. Ferber, “Generic architecture for
multi-AUV cooperation based on a multi-agent reactive organizational
approach,” IEEE International Conference on Intelligent Robots and
Systems, 5041–5047, 2011, doi:10.1109/IROS.2011.6048686.

[2] P. Ciancarini, M. Wooldridge, “Agent-oriented software engineering,”
Proceedings - International Conference on Software Engineering, 816–817,
2000.

[3] Z. Papp, H.J. Hoeve, “Multi-agent based modeling and execution framework
for complex simulation, control and measuring tasks,” Conference Record -
IEEE Instrumentation and Measurement Technology Conference, 3(section
2), 1561–1566, 2000, doi:10.1109/imtc.2000.848734.

[4] X. Yang, Z. Feng, G. Xu, “An active model of agent mind: The model of
agent’s lived experience,” Proceedings - 2009 International Conference on
Information Engineering and Computer Science, ICIECS 2009, 3–5, 2009,
doi:10.1109/ICIECS.2009.5364300.

[5] A. Kumar, A. Tayal, S.R.K. Kumar, B.S. Bindhumadhava, “Multi-Agent
autonomic architecture based agent-Web services,” Proceedings of the 2008
16th International Conference on Advanced Computing and
Communications, ADCOM 2008, 329–333, 2008,
doi:10.1109/ADCOM.2008.4760469.

[6] M. Huang, P.E. Caines, R.P. Malhamé, “A locality generalization of the
NCE (Mean Field) principle: Agent specific cost interactions,” Proceedings
of the IEEE Conference on Decision and Control, 5539–5544, 2008,
doi:10.1109/CDC.2008.4738976.

[7] S. Filippi, O. Cappé, A. Garivier, “Optimally sensing a single channel
without prior information: The Tiling Algorithm and regret bounds,” IEEE
Journal on Selected Topics in Signal Processing, 5(1), 68–76, 2011,
doi:10.1109/JSTSP.2010.2058091.

[8] W. Chen, J. Guo, X. Li, J. Wang, “Hybrid Q-learning algorithm about
cooperation in MAS,” 2009 Chinese Control and Decision Conference,
CCDC 2009, 3943–3947, 2009, doi:10.1109/CCDC.2009.5191990.

[9] Y. Xu, W. Zhang, W. Liu, F. Ferrese, “Multiagent-based reinforcement
learning for optimal reactive power dispatch,” IEEE Transactions on
Systems, Man and Cybernetics Part C: Applications and Reviews, 42(6),
1742–1751, 2012, doi:10.1109/TSMCC.2012.2218596.

[10] P. Zhou, H. Shen, “Multi-agent cooperation by reinforcement learning with
teammate modeling and reward allotment,” Proceedings - 2011 8th
International Conference on Fuzzy Systems and Knowledge Discovery,
FSKD 2011, 2(4), 1316–1319, 2011, doi:10.1109/FSKD.2011.6019729.

[11] L. Matignon, G.J. Laurent, N. Le Fort-Piat, “Hysteretic Q-Learning : An
algorithm for decentralized reinforcement learning in cooperative multi-
agent teams,” IEEE International Conference on Intelligent Robots and
Systems, 64–69, 2007, doi:10.1109/IROS.2007.4399095.

[12] M.L. Li, S. Chen, J. Chen, “Adaptive Learning: A New Decentralized
Reinforcement Learning Approach for Cooperative Multiagent Systems,”
IEEE Access, 8, 99404–99421, 2020, doi:10.1109/ACCESS.2020.2997899.

[13] R. Bellman, The Theory of Dynamic Programming, Bulletin of the American
Mathematical Society, 60(6), 503–515, 1954, doi:10.1090/S0002-9904-
1954-09848-8.

[14] D.P. Bertsekas, C.C. White, “Dynamic Programming and Stochastic
Control,” IEEE Transactions on Systems, Man, and Cybernetics, 7(10), 758–
759, 2008, doi:10.1109/tsmc.1977.4309612.

[15] R. ABellman R., and Kalaba, “Dynamic Programming and Modem Control
Theory,” Academic Press, New York; 1965., 4, 1–23, 2016.

[16] S.E. Dreyfus, “Dynamic Programming and the Calculus of Variations,”
Academic Press, New York, 1965.

http://www.astesj.com/

N.A. Amrani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 62-69 (2022)

www.astesj.com 69

[17] D.T. Greenwood, “Principles of Dynamics,” Prentice-Hall, Englewood
Cliffs, N. J., 1991.

[18] G. Mongillo, H. Shteingart, Y. Loewenstein, “The misbehavior of
reinforcement learning,” Proceedings of the IEEE, 102(4), 528–541, 2014,
doi:10.1109/JPROC.2014.2307022.

[19] A.O. Esogbue, “Fuzzy dynamic programming: Theory and applications to
decision and control,” Annual Conference of the North American Fuzzy
Information Processing Society - NAFIPS, 18–22, 1999,
doi:10.1109/nafips.1999.781644.

[20] E.F. Morales, J.H. Zaragoza, “An introduction to reinforcement learning,”
Decision Theory Models for Applications in Artificial Intelligence:
Concepts and Solutions, 63–80, 2011, doi:10.4018/978-1-60960-165-
2.ch004.

[21] F. Khenak, “V-learning,” 2010 International Conference on Computer
Information Systems and Industrial Management Applications, CISIM 2010,
292, 228–232, 2010, doi:10.1109/CISIM.2010.5643660.

[22] J. Fiala, F.H. Guenther, “Handbook of intelligent control: Neural, fuzzy, and
adaptive approaches,” Neural Networks, 7(5), 851–852, 1994,
doi:10.1016/0893-6080(94)90107-4.

http://www.astesj.com/

	2. Related Work
	3. Markov Decision Process (MDP)
	3.1. Stochastic process
	3.2. Markov Model
	3.3. Use
	3.4. Others models

	4. Reinforcement learning
	4.1. Principle
	4.2. Implementation

	5. Proposed approach
	5.1. The class diagram
	5.2. Experiment

	6. Conclusion and Future Work
	References

