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 The use of decentralized reinforcement learning (RL) in the context of multi-agent systems 
(MAS) poses some difficult problems. The speed of the learning process for example. 
Indeed, if the convergence of these algorithms has been widely studied and mathematically 
proven, they suffer from being very slow.  In this context, we propose to use RL in MAS in 
an intelligent way to speed up the learning process in these systems. The idea is to consider 
the MAS as a new environment to be explored and the communication, between the agents, 
is limited to the exchange of knowledge about the environment. The last agent to explore 
the environment has to communicate the new knowledge to the other agents, and the latter 
have to build their knowledge bases taking into account this knowledge. To validate our 
method, we chose to evaluate it in a grid environment. Agents must exchange their tables 
(Qtables) to facilitate better exploration. The simulation results show that the proposed 
method accelerates the learning process. Moreover, it allows each agent to reach its goal 
independently. 
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1. Introduction  

In the literature, an agent is defined according to the type of 
application for which it is designed. In [1]-[3], the authors define 
an agent is an entity that can be considered as perceiving its 
environment by means of sensors and acting on this environment 
by means of effectors. 

In this paper, we have chosen to limit the communication 
between agents to the exchange of knowledge because we are 
interested in the autonomy of the agent. In [4], [5], the authors 
specify that the autonomy of the agent is related to its structure: for 
example, for a cognitive agent that plans to reach its goals, we can 
talk about autonomy by planning. 

For an agent deployed in a MAS, the agent's autonomy depends 
on the objective to be achieved, which is: 

• Global: this requires cooperation with other agents and limits 
the agent's decision-making and behavior and makes the RA 
algorithm difficult.  

• Individual (agent-specific): in this case, the agent can achieve 
his objectives alone. He does not need to cooperate with other 

agents. And if it decides to do so, it is to enrich its knowledge 
base. In this context, the authors of [6] propose characteristics 
of the autonomous agent: 

o An autonomous agent has its objectives; 

o He can make decisions about his objectives; 

o It can decide autonomously when to adopt the objectives of 
other agents; 

o He sees cooperation with other agents as a way to enrich his 
knowledge base to achieve his objectives; 

In this context, and concerning our problem and the aspect we 
want to address, we adopt for our agents the properties proposed 
by the authors of [6]. 

The structure of this paper is as follows: after establishing the 
necessary background and notation in Section 1, we briefly 
introduce in Section 2 some approaches that use Q-Learning on 
non-Markovian environments. Then, in Section 3, we give a brief 
overview of Markov decision process. In Section 4, we give an 
overview of the mathematical formulas used in reinforcement 
learning. We then describe our new technique for accelerating the 
agent learning process based on reinforcement learning in Section 
5. Finally, we present some conclusions and suggestions for future 
work in Section 6. 
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2. Related Work 

In MAS, interaction with the environment, both for perception 
and action operations and for message sending operations, is 
synchronous for the agent. On the other hand, the communication 
between agents remains asynchronous, preventing any assumption 
on the state of an agent following the sending of a message. The 
main disadvantage of this domain is that the behavior of an agent 
will depend on the other agents and thus, we go out of the classical 
framework of reinforcement learning. This is a problem that has 
been raised by several researchers: 

In [7], the authors show that Q-Learning cannot converge for 
non-Markovian problems. Indeed, in theory, the convergence of 
Q-Learning is only possible if the policy used is fixed during the 
exploration phase of the environment. This policy can be 
stochastic, but it must be fixed: for a given state, the probability of 
choosing an action must be constant. This is generally not the case 
with classical methods. If the exploration policy is fixed, the Q-
Learning algorithm converges to the utility estimate of the fixed 
policy used. This requires the introduction of new techniques in 
the reinforcement learning algorithm. Several solutions have been 
proposed: 

In [8], the authors present a hybrid Q-learning algorithm named 
CE-NNR which is springed form the CE-Q learning and NNR Q-
learning is presented. The algorithm is then well extended to 
RoboCup soccer simulation system. 

In [9], the authors propose a decentralized progressive 
reinforcement learning that, based on classical RL (Reinforcement 
Learning) techniques, allows to endow agents with stochastic 
reactive behaviors. Indeed, with these stochastic behaviors, the 
agents will be more efficient in this framework of partial 
perceptions of the global system. 

In [10], the authors first present the principles of multi-agent 
systems and their contribution to the solution of certain problems. 
They then propose an algorithm that allows to solve in a distributed 
way a problem posed globally to the community of agents based 
on reinforcement learning in the multi-agent framework. 

In [11], the authors present a new algorithm for independent 
agents that allows learning the optimal joint action in games where 
coordination is difficult. The approach is motivated by the 
decentralized character of this algorithm which does not require 
any communication between agents and Q-tables of size 
independent of the number of agents. Conclusive tests are also 
performed on repeated cooperative games, as well as on a chase 
game. 

In [12], the authors of this article propose an algorithm called 
adaptive Q-learning to judge whether the strategy of a particular 
agent affects the benefit of the corresponding joint action 
depending on the TD error. In a multi-agent environment, this 
algorithm makes it possible to adjust the dynamic learning rate 
between the agents, the coordination of the strategies of the agents 
can be carried out. 

3. Markov Decision Process (MDP) 

The problem of learning [13]-[17], like planning, is to control 
the behavior of an agent. We, therefore, need to model this agent 
in its environment. The model used considers on the one hand the 

possible states of the system (=agent + environment) and on the 
other hand the possible actions of the agent in its environment. 

Since the environment is uncertain, it is easy to think of 
stochastic modeling of the system. The basic tool that will be used 
for the learning and the general functioning of the agents is the 
Markov Decision Process (MDP) and its derivatives. This is a class 
of Markov models, themselves belonging to stochastic processes. 

 
Figure 1: Evolution of the models [18] 

The starting idea of a stochastic process is to use as a 
representation a graph in which the nodes are the possible states of 
the system and the arcs (oriented and annotated) give the 
probabilities of passage from one state to another. 

3.1. Stochastic process 

Any family of random variables 𝑋𝑋𝑡𝑡  is called a stochastic 
process or random process. This means that to any 𝑡𝑡 ∈ 𝑇𝑇  is 
associated a random variable taking its values in a numerical set 
𝐸𝐸. We denote the process 𝑋𝑋𝑡𝑡. If T is countable, we say that the 
process is discrete; if 𝑇𝑇 is an interval, we say that the process is 
permanent. 

3.2. Markov Model 

In the Markov model, at state t, X(t) depends only on the n 
previous states (memory of the process in a model of order n). At 
order 1, as it is often the case: 

𝑷𝑷(𝑿𝑿(𝒕𝒕) = 𝒔𝒔𝒔𝒔|𝑿𝑿(𝒕𝒕 − 𝟏𝟏) = 𝒔𝒔𝒔𝒔,𝑿𝑿(𝒕𝒕 − 𝟐𝟐) = 𝒔𝒔𝒔𝒔, … ) = 𝑷𝑷(𝑿𝑿(𝒕𝒕) =
𝒔𝒔𝒔𝒔|𝑿𝑿(𝒕𝒕 − 𝟏𝟏) = 𝒔𝒔𝒔𝒔)            (1) 

 

The Markov model is said to be stationary if the transition 
probability between two states does not vary with time: 

∀𝐭𝐭,𝐤𝐤 𝐏𝐏(𝐗𝐗(𝐭𝐭) = 𝐬𝐬𝐬𝐬|𝐗𝐗(𝐭𝐭 − 𝟏𝟏) = 𝐬𝐬𝐬𝐬) = 𝐏𝐏(𝐗𝐗(𝐭𝐭 + 𝐤𝐤) = 𝐬𝐬𝐬𝐬|𝐗𝐗(𝐭𝐭 +
𝐤𝐤 − 𝟏𝟏) = 𝐬𝐬𝐬𝐬)            (2) 

 

This leads to define a transition probability matrix A = [aij] 
where the aij are defined by: 

𝒂𝒂𝒔𝒔𝒔𝒔 = 𝑷𝑷(𝑿𝑿(𝒕𝒕) = 𝒔𝒔𝒔𝒔|𝑿𝑿(𝒕𝒕 − 𝟏𝟏) = 𝒔𝒔𝒔𝒔) 𝟏𝟏 ≤ 𝒔𝒔 ≤ 𝑵𝑵,𝟏𝟏 ≤ 𝒔𝒔 ≤ 𝑵𝑵   (3) 
The matrix A being stochastic, i.e. verifies: 

∀𝐬𝐬, 𝐬𝐬 𝐚𝐚𝐬𝐬𝐬𝐬 ≥ 𝟎𝟎,∀𝐬𝐬 ∑ 𝒂𝒂𝒔𝒔𝒔𝒔 = 𝟏𝟏𝑵𝑵
𝒔𝒔=𝟏𝟏             (4) 

 

where N is the number of states of the system. 
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Figure 2: Graph of a Markov model [18]. 

aij = transition probability of X(i) → X(j). 
The agents will be immersed in a world where, starting from a 

given state, the same action does not always lead to the same state. 
This may be because the state is only incompletely known (only a 
partial observation is known), or that simultaneous actions of other 
agents may take place. Markov models allow modeling such 
situations. 

The different actions performed and the different states 
encountered will bring any agent again or a cost. The agents must 
therefore try to act in the best way. Their policies can be diverse 
depending on whether they consider the more or less long term, 
different estimates of the expected future gain being possible. 

One last point to note is that an agent may not know at the 
beginning the laws governing its environment. It will then have to 
learn them more or less directly to improve its chances of winning. 

A Markov decision process is a quadruple (𝑺𝑺, 𝑨𝑨, 𝑷𝑷𝒂𝒂, 𝑹𝑹𝒂𝒂), 
where: 

• 𝑺𝑺 is a set of states called state space, 

• 𝑨𝑨 is a set of actions called action space (alternatively,  𝑨𝑨𝒔𝒔  is 
the set of actions available from state 𝑺𝑺), 

• 𝑷𝑷𝒂𝒂(𝒔𝒔, 𝒔𝒔′) = 𝑷𝑷𝒓𝒓 ( 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝒔𝒔′ | 𝒔𝒔𝒕𝒕 = 𝒔𝒔,  𝒂𝒂𝒕𝒕 = 𝒂𝒂)  is the 
probability that action 𝒂𝒂 in state 𝒔𝒔 at time 𝒕𝒕 will lead to state 
𝒔𝒔′ at time 𝒕𝒕 + 𝟏𝟏, 

• 𝑹𝑹𝒂𝒂(𝒔𝒔, 𝒔𝒔′)  is the immediate reward (or expected immediate 
reward) received after the transition from state 𝒔𝒔 to state 𝒔𝒔′, 
due to action 𝒂𝒂 

Example: 

 

Figure 3: An example of a Markov decision process [18] 

3.3. Use 

Starting points: The aim is to maximize the reward in the more 
or less long term. It is, therefore, necessary to measure the 
expectation of gain, by taking less and less account of the future 
(less confidence, thanks to the coefficient: γ ϵ [0, 1]): 

𝑬𝑬(∑ 𝜸𝜸𝒕𝒕𝒓𝒓𝒕𝒕∞
𝒕𝒕=𝟎𝟎 )            (5) 

 

Other calculation methods are possible, but only the previous 
formula will be used in the following. 

In each state, it will be necessary to determine the optimal 
action to take. We thus define a policy p: 

𝒑𝒑:𝑺𝑺 → 𝑨𝑨            (6) 
 

Values used: the expectation of gain will depend on the chosen 
policy. We can thus define, for a fixed policy p, the utility of a 
state: 

Vp(St) = E�γkE�r�St+k, p(St+k)���|(St = s)            (7) 
 

For an optimal policy: V* (s) = Supp Vp(s), the utility of an 
optimal policy can be written recursively as the Bellman equation: 

𝑽𝑽∗(𝒔𝒔) = 𝐦𝐦𝐚𝐚𝐦𝐦
𝒂𝒂𝒂𝒂𝑨𝑨

(𝑬𝑬𝒓𝒓×𝝅𝝅(𝒔𝒔,𝒂𝒂)[𝒓𝒓(𝒔𝒔,𝒂𝒂) + 𝜸𝜸𝑽𝑽∗(𝒔𝒔′)])            (8) 
 

We obtain an optimal deterministic policy by looking for the 
action for which we obtain this maximum. 

In planning, the algorithms called Value Iteration and Policy 
Iteration allow, starting from any function V, to converge to V* 
and thus to find an optimal policy. 

Another greatness [15], Q (s, a), can be used, obtained from V 
(s). It will provide the "quality" of the action performed in the state: 

𝑸𝑸(𝒔𝒔,𝒂𝒂) = 𝑬𝑬𝒓𝒓×𝝅𝝅(𝒔𝒔,𝒂𝒂)[𝒓𝒓(𝒔𝒔,𝒂𝒂) + 𝜸𝜸𝑽𝑽∗(𝒔𝒔′)]            (9) 

3.4. Others models 

From the Markov model, variants are defined which are used 
in pattern recognition as well as in planning (like MDPs). The 
general goal is to guess the present or future state of a system. Here 
are some derived Markovian models: 

• HMM: in a Hidden Markov Model, the state of the system is 
not known. On the other hand, we have an observation that is 
linked to the states by probabilistic laws. We cannot be sure 
of a state with a perception of the external world, but a series 
of perceptions can refine a judgment. This is the main tool for 
pattern recognition based on Markov models. 

• MMDPs (Multiple MDPs) is a variant of MDPs adapted to the 
case of multi-agent systems, as are DEC-MDPs (decentralized 
MDPs) and Markov games. 

• SMDP: the model, called Semi-Markovian, aims at improving 
time management, considering that the passage in a state can 
be of variable duration (according to stochastic laws). 

POMDP: this is a mixture of HMMs and MDPs, these Partially 
Observable MDPs add the idea that an agent has only a partial 
perception of its environment so that it knows only an observation 
and not a complete state. 
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4. Reinforcement learning 

4.1. Principle 

Reinforcement learning is one of the most widely used 
machine learning methods in the world of data science. This 
technique allows the computer to perform complex tasks on its 
own. The machine learns from its experiences through a system of 
penalties or rewards. Reinforcement learning involves an 
algorithm with great potential: Q-learning. This algorithm focuses 
on learning a policy that maximizes the total reward. Q-learning 
focuses on the usefulness of the action to be performed to obtain a 
reward. The Markov Decision Process is the formal model used for 
reinforcement learning [19], [20]. 

A MDP is a tuple(𝑺𝑺,𝑨𝑨,𝑷𝑷,𝑹𝑹) with: 

• 𝑺𝑺 is a finite set of states, 

• 𝑨𝑨 is a set of actions,  

• P:𝑺𝑺 × 𝑨𝑨 × 𝑺𝑺 → [𝟎𝟎,𝟏𝟏], The probability that the agent moves 
from one state to another is called the transition probability. 

• 𝑹𝑹:𝑺𝑺 × 𝑨𝑨 → 𝑹𝑹, the reward function.  

A very important assumption of reinforcement learning, called 
the Markov property, is defined on the transition function of the 
environment states. An environment is Markovian if the transition 
function to a state depends only on the previous state. 

Remember that the agent's objective is to maximize the total 
rewards received. In this context, we introduce the notion of a 
discount coefficient, denoted γ, which allows us to give more 
importance to nearby rewards rather than to more distant ones. The 
sum of the rewards is then: 𝑹𝑹𝒕𝒕 = ∑ 𝜸𝜸k𝑬𝑬(𝒓𝒓𝒕𝒕+𝒔𝒔+𝟏𝟏)T

𝒔𝒔=𝟎𝟎 , with 
𝜸𝜸𝒂𝒂[𝟎𝟎,𝟏𝟏[. In the special case where 𝜸𝜸 = 𝟎𝟎, the agent maximizes the 
immediate reward, whereas when 𝜸𝜸 → 𝟏𝟏, the agent increasingly 
considers long-term rewards. 𝑇𝑇  represents the duration of an 
episode that corresponds to a sub-sequence of interaction between 
the agent and the environment. 

The value function 𝑽𝑽𝝅𝝅(𝒔𝒔) represents the quality of state s in 
terms of the expected reward from following policy π. Formally, 
this value function is defined by: 

𝑽𝑽𝝅𝝅(𝒔𝒔) = �𝜸𝜸′𝑬𝑬(𝒓𝒓𝒕𝒕|𝝅𝝅, 𝒔𝒔𝒕𝒕)
∞

𝒕𝒕=𝟎𝟎

            (10) 

Similarly, we define the value function 𝑄𝑄𝝅𝝅(𝑠𝑠,𝑎𝑎)  as the 
expectation of the reward if the agent prefers the action in state s 
and follows the policy π thereafter. Finding a solution to a 
reinforcement learning problem comes down to finding a policy 
that maximizes the sum of long-run rewards. Bellman's optimal 
equation for 𝑽𝑽∗(𝒔𝒔) describes the fact that the optimal value of a 
state is equal to the expected reward for the best action in that state. 
More formally: 

𝑽𝑽∗(𝒔𝒔) = 𝒎𝒎𝒂𝒂𝒎𝒎𝒂𝒂∈𝑨𝑨{𝒓𝒓 + 𝜸𝜸�𝒑𝒑(𝒔𝒔′|𝒔𝒔,𝒂𝒂)𝑽𝑽(𝒔𝒔′,𝝅𝝅′)
𝒔𝒔′𝒂𝒂𝑺𝑺

}            (11) 

The relationship between 𝑽𝑽(𝒔𝒔) and 𝑸𝑸(𝒔𝒔,𝒂𝒂) is represented by 
the equation 𝑽𝑽∗(𝒔𝒔) = 𝒎𝒎𝒂𝒂𝒎𝒎𝒂𝒂𝑸𝑸∗(𝒔𝒔,𝒂𝒂) . From the optimal value 
function 𝑸𝑸∗(𝒔𝒔,𝒂𝒂) , we define the optimal policy as 𝝅𝝅∗(𝒔𝒔) =
𝒂𝒂𝒓𝒓𝒂𝒂 𝒎𝒎𝒂𝒂𝒎𝒎𝒂𝒂𝑸𝑸∗(𝒔𝒔,𝒂𝒂).  If the dynamics of the system is known, it is 
possible to solve the problem using dynamic programming to find 
the optimal policy. In cases where the dynamics of the system are 

not known, one must either use estimation or use a set of methods, 
called time-difference learning (TD-Learning), which are able to 
evaluate the optimal policy through the experiences generated by 
an interaction with the system. One of the main algorithms for 
computing the optimal policy, Q-Learning, uses the Q-value 
function. This algorithm works by interacting with the 
environment in the following way: in each episode, the agent 
chooses an action 𝑎𝑎 based on a policy 𝝅𝝅 derived from the current 
values of 𝑄𝑄. It executes action 𝑎𝑎, receives the reward, and observes 
the next state. Then it updates the values of 𝑸𝑸(𝒔𝒔,𝒂𝒂) by the formula: 

𝑸𝑸(𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕) = 𝑸𝑸(𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕) + (𝟏𝟏 − α)(𝒓𝒓𝒕𝒕 + 𝛄𝛄𝐦𝐦𝐚𝐚𝐦𝐦
𝒂𝒂

𝑸𝑸(𝒔𝒔𝒕𝒕+𝟏𝟏,𝒂𝒂𝒕𝒕) −
𝑸𝑸(𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕))             (12) 

where 𝑟𝑟  is the immediate reward, 𝑠𝑠′  is the new state, 𝛼𝛼  is the 
learning rate. The convergence of this algorithm to the optimal 
value function has been demonstrated in [21]. The choice of action 
at each step is made using exploration functions. Among these 
methods we can mention the voracious, e-voracious and softmax 
approach which choose an action at random according to a certain 
probability. For a more exhaustive description of exploration 
functions, one can refer to[8], [22]. 

Hence the algorithm: 

Algorithm 1: Q-Learning 
Initialize Q0 (s,a) arbitrarily; 
Choose a starting point s0; 
while the policy is not good enough { 
  Choose at as a function of Qt (St,.); 
   In return: st+1 and rt 
 𝑄𝑄𝑡𝑡+1(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) = (1 − 𝛼𝛼𝑡𝑡)𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) + 𝛼𝛼𝑡𝑡(𝑟𝑟𝑡𝑡 + 𝛾𝛾 ∗

𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎∈𝐴𝐴𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡+1,𝑎𝑎′) ; 
}    

The coefficient α should then be adjusted to gradually fix the 
learned policy. γ allows for its part to modulate the importance of 
expected future rewards. 

4.2. Implementation 

Two factors must be defined to apply the Q-learning algorithm: 
first, the learning factor 𝛼𝛼, which determines to what extent the 
newly calculated information outperforms the old one. The latter 
must be between 0 and 1, and decrease towards 0 because if 𝛼𝛼 =
0, the agent learns nothing. On the other hand, if 𝛼𝛼 = 1, the agent 
always ignores everything it has learned and will only consider the 
most recent information. Second, the discount factor 𝛾𝛾  determines 
the magnitude of future rewards. A factor of 0 would make the 
agent myopic considering only current rewards, while a factor 
close to 1 would also imply more distant rewards. In our approach, 
we chose: 𝛼𝛼 = 0.1 and 𝛾𝛾 = 0.9. 

It remains to choose the actions to be carried out according to 
the knowledge acquired. 

5. Proposed approach 

In our proposed approach, the agent can achieve its goals alone. 
The cooperation with other agents is limited to the exchange of 
Qtable learning tables to enrich its knowledge base. To do so, after 
each new exploration, the agent has to communicate its learning 
table Qtable to the other agents, and the latter have to build their 
knowledge bases taking into account this Qtable. And each agent 
that wants to explore the environment again must use its 
knowledge base, i.e. the values of the last Qtable communicated 
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by the environment, as initial values of its Qtable. This allows the 
agent to gain a large exploration step and subsequently accelerate 
the speed of the learning process. 

5.1. The class diagram 

In the class diagram shown in Figure 4, agents are autonomous 
entities hosted in a graphical environment. Each node of this graph 
represents a state, and the links between these nodes represent the 
transitions between these states. There are three types of states in 
this environment: with penalties, without penalties and obstacles. 

In this case, reinforcement learning is applied as follows: 

• The transition that allows access to the final state (the 
goal) is represented by a reward equal to 100. 

• The transition that leads to an obstacle is represented by 
a reward equal to -1. 

• The transition that allows access to other states: -10 for 
states with penalties and 0 for normal states. 

The agent must maximize its rewards which allows it to reach 
the optimal path to the final state. 

In the learning phase, the experience of agents who have 
already explored the environment can be used to improve the speed 
of the adaptation and learning process of other agents. Indeed, 
before the start of learning, the function is initialized by the Q 
values of the last agent having explored the environment. After 
learning, the agent shares the new Q-values with the other agents 
in order to use them as initialized values for a new exploration. 

 
Figure 4: The class diagram of our approach 

 
Figure 5: An example of the environment generated in the simulator we have developed. 
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5.2. Experiment 

We have chosen a maze-like environment to test our model. 
The number of rows and the number of columns of this 
environment are chosen randomly using the following function: 

Algorithm 2:  
this.map=new char[rows][cols]; 
for (int i = 0; i < rows; i++){ 
for (int j = 0; j < cols; j++) { 
  double rnd=Math.random(); 
   if (rnd<0.75)   

      this.map[i][j]='0'; 
     else{ 

            this.map[i][j] = (Math.random() > 0.5) ? 'P' : 'W';} 
} 
} 

   

To test our application, we choose our environment as a maze 
where 75% of the cells represent normal states and the rest 
represent obstacle and penalty states (see Figure 5).  

To build the rewards table, the application calls the 
buildRewardTable function as follows: 

Algorithm 3:  
public void buildRTable(){ 
 for (int k = 0; k < statesCount; k++) { 
  int row=k/gridWidth; 
  int col=k%gridWidth; 
  for (int s = 0; s < statesCount; s++) { 
   System.out.println(s+"->"+k); 
   R[k][s]=-1; 

} 
  if (map[row][col]!='F'){ 
   for(int[] d :directions){ 
    int c=col+d[1]; 
    int r=row+d[0]; 
    if ((c>=0 && c<gridWidth)&&(r>=0 && 

r<gridHeight)){ 
     int st=r*gridWidth+c; 
     if (map[r][c]=='0') 
      R[k][st]=0; 
     else if (map[r][c]=='W') 
       R[k][st]=-1; 
      else if (map[r][c]=='F') 
        R[k][st]=EnvGrid.REWARD; 
       else if (map[r][c]=='P') 
         R[k][st]=EnvGrid.PENALT

Y; 
      
    }  
   }  
  }  
  } 

} 
 

The learning of the agents is described by the code below; it 
allows the construction of the learning table Qtable. The values of 
this table are computed as follows: 

• The agent tries at each learning period to find a solution to 
achieve the objective. 

• Each time, the agent repeats random movements between the 
states by performing the possible actions. 

• For each transition, the value of the Qtable is calculated. 

Algorithm 4:  

public void train(){ 

 Random random=new Random(); 

 for (int i = 0; i <1000 ; i++) { 

  this.currentStat=random.nextInt(envGrid.statesCou
nt); 

  while (!isTerminalState()){ 

   int[] 

   possibleActionsFromState=possibleActionsFro
mState(currentStat); 

   int 
index=random.nextInt(possibleActionsFromState.l
ength); 

   int 
nextState=possibleActionsFromState[index]; 

   double q=Q[currentStat][nextState]; 

   double maxQNextState=maxQ(nextState); 

   double r=envGrid.R[currentStat][nextState]; 

   double 
value=q+alpha*(r+gamma*maxQNextState-q); 

   Q[currentStat][nextState]=value; 

   currentStat=nextState; 

    } 

 }} 

public int[] possibleActionsFromState(int state){ 

   List<Integer> states=new ArrayList<>(); 

  for (int i = 0; i <envGrid.statesCount ; i++) { 

   if(envGrid.R[state][i]!=-1) states.add(i); 

    } 

   return states.stream().mapToInt(i->i).toArray(); 

  }  

5.3. Result 

The graph in Figure 6 shows the evolution of an agent's 
learning process that started with a randomly defined knowledge 
base and no experience: 

This agent must communicate his experience (his Qtable) to 
the other agents. The latter will use it as an initial Qtable for new 
exploration. 

The graph in figure 7 shows the evolution of the learning 
process of an agent who used the experience of another agent who 
had already explored the environment, i.e. he initially used the 
latter's Qtable as a knowledge base. 
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Figure 6: Number of learning path states for the first 100 epochs of an agent with 

an empty knowledge base (initial Qtable). 

 

Figure 7:Number of learning path states for the first 100 epochs of an agent 

Figure 8 show the paths taken by the last agent for three trials 
at different initial positions. We see that the agent correctly takes 
the optimal path with sometimes the preference to cross a penalty 
point in a minimum number of moves. 

 
Figure 8: Execution. 

6. Conclusion and Future Work 

In this paper, we have proposed an approach based on 
reinforcement learning to solve the problem of cooperation 
between agents in multi-agent systems. To do so, we proposed in 
the agent structure that cooperation is limited to the exchange of 
new knowledge. Indeed, an agent who has just explored the 
environment must send the new knowledge collected to the other 
agents, and the latter use this knowledge for new exploration. To 
validate our method, we chose to evaluate it in a grid environment. 

Agents must exchange their tables (Qtables) to facilitate better 
exploration. According to the results, the experiences of the agents 
that have already explored the environment help to accelerate the 
reinforcement learning process in MAS. This allows the agent to 
take an important exploration step and then reach its goal faster. 

Ensuring communication between agents in different 
environments is the goal of our future work. Ontologies can meet 
this need, that is to enrich the knowledge base of agents with new 
knowledge provided by other environments. And this requires 
migrating to other environments, our idea is to use a mobile agent 
that can migrate to other environments to collect new knowledge 
and share it with other agents. The mobile agent receives rewards 
in return. 
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