

www.astesj.com 70

High Performance SqueezeNext: Real time Deployment on Bluebox 2.0 by NXP

Jayan Kant Duggal*, Mohamed El-Sharkawy

Department of Electrical and Computer Engineering, IoT Collaboratory, Purdue School of Engineering and Technology, IUPUI,
Indianapolis, INDIANA, USA

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 13 February, 2022
Accepted: 04 May, 2022
Online: 25 May, 2022

 DNN implementation and deployment is quite a challenge within a resource constrained
environment on real-time embedded platforms. To attain the goal of DNN tailor made
architecture deployment on a real-time embedded platform with limited hardware resources
(low computational and memory resources) in comparison to a CPU or GPU based system,
High Performance SqueezeNext (HPS) architecture was proposed. We propose and tailor
made this architecture to be successfully deployed on Bluexbox 2.0 by NXP and also to be a
DNN based on pytorch framework. High Performance SqueezeNext was inspired by
SqueezeNet and SqueezeNext along with motivation derived from MobileNet architectures.
High Performance SqueezeNext (HPS) achieved a model accuracy of 92.5% with 2.62MB
model size at 16 seconds per epoch model using a NVIDIA based GPU system for training.
It was trained and tested on various datasets such as CIFAR-10 and CIFAR-100 with no
transfer learning. Thereafter, successfully deploying the proposed architecture on Bluebox
2.0, a real-time system developed by NXP with the assistance of RTMaps Remote Studio. The
model accuracy results achieved were better than the existing CNN/DNN architectures
model accuracies such as alexnet_tf (82% model accuracy), Maxout networks (90.65%),
DCNN (89%), modified SqueezeNext (92.25%), Squeezed CNN (79.30%), MobileNet
(76.7%) and an enhanced hybrid MobileNet (89.9%) with better model size. It was
developed, modified and improved with the help of different optimizer implementations,
hyper parameter tuning, tweaking, using no transfer learning approach and using in-place
activation functions while maintaining decent accuracy.

Keywords:
Bluebox 2.0
Convolution Neural Networks
(CNNs)
Deep Learning
Deep Neural Networks (DNNs)
Modified SqueezeNext
Real-time deployment
SqueezeNext

1. Introduction

The dream of achieving a true human experience lies within
the domain of cybernetics, machine learning, deep learning and
AI. AI is currently responsible for transcending hard coded
application based programmed machines to artificially intelligent
machines with some situational awareness.

All the existing CNN or DNN models trained and tested on
large datasets occupy extensive computational and memory
resources. In the last couple of years, with the introduction of new
CNN or DNN based macro architectures such as ViT [1], CaiT,
BiT [2], EfficientNetv2 [3], LaNet [4,5], GPipe [6], enhanced
MobileNets [7], SqueezeNet [8], SqueezeNext [9], etc., deep
learning became better and more efficient in terms of CNN/DNN
model performance than the traditional ones [10,11]. The model

efficiency, model performance and its ability to be deployed on
limited resource constraint [12] real-time platform was attenuated
majorly due to following factors such as design space exploration
(DSE) of DNNs [13], hyper parameter tuning and tweaking,
different optimizers [14], and activation functions implementation,
regularization methods, and powerful hardware accelerators.
These existing architectures were never tailor made for
deployment on real-time embedded systems with limited
resources. This research also makes an effort to develop a new
architecture with an impressive model size under 5 MB while
maintaining an impressive model accuracy.

 In this research, a new architecture called High Performance
SqueezeNext [15] was developed in order to attenuate the
succeeding various deployment problems of DNN based
architectures such as DNN deployment on resource constrained
real-time platforms [16,17], DNN model compression, over fitting,

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Lu Xiong, Email: lu.xiong@mtsu.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 70-81 (2022)

www.astesj.com

https://dx.doi.org/10.25046/aj070308

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj070308

J.K. Duggal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 70-81 (2022)

www.astesj.com 71

maintaining a competitive model accuracy without major
compromises and developing a hardware aware DNN architecture.
This DNN based architecture was inspired and derived from the
valuable insights of SqueezeNext and SqueezeNet architectures.
The fundamental blocks of High Performance SqueezeNext
architecture were derived from the fire modules of SqueezeNet
[8,18] and bottleneck modules of SqueezeNext architectures [9].

 This architecture tries to attenuate the SqueezeNext
architecture problems namely model compression, deploy ability
on a real-time embedded platform, efficiently working with
resource constraint embedded platforms rather than GPUs or
CPUs, incorporating newly developed leaning rate techniques
such as cosine annealing, step-based decay, cyclic, and cosine
annealing warm restarts. Baseline SqueezeNext architecture was
a Caffe based architecture and was not able to utilize the power
Pytorch based libraries and functions such as the above-
mentioned learning rate decay functions, newly introduced
optimizers such as Adaboost, Adabound, in-place activation
functions and also some new activation functions in contrast to
High Performance SqueezeNext architecture [15] that was
developed entirely on a Pytorch based framework.

 After strenuous training and testing of High Performance
SqueezeNext architecture on multiple datasets such as CIFAR-10
[19] and CIFAR-100 [19], implementing several optimizers,
activation functions, incorporating and replacing regular
operations with in-place operations, reducing stride in subsequent
layers, using preliminary data augmentation and some model
compression, it achieved impressive model performance. Also,
one of several important factors contributing to the success of this
architecture was training and testing High Performance
SqueezeNext [15] without any form of transfer learning along
with some model compression. Finally, High Performance
SqueezeNext was deployed on a real time embedded system,
Bluebox 2.0 [16] with the assistance of RTMaps software
platform.

This research was focused to deploy the proposed High
Performance SqueezeNext [15] comprehensively on real-time
embedded platform, Bluebox 2.0 [16] by NXP, explore the major
hyperparameter tuning with no transfer learning [13,18], develop
a Pytorch framework DNN in order to be deployed on Bluebox
2.0 and compare the proposed architecture with several other
pytorch based CNN/DNN based architecture.

2. Literature Review

Deep learning transformed the artificial and machine learning
domain with the introduction of deep convolutional neural
networks. CNNs/DNNs are tweaked and tuned with the hyper
parameters, newly introduced large datasets, powerful hardware,
model compression, and data augmentation [20] to attain better
results. Also, batch normalization [21] is observed to be a major
contributor for improving DNN performance. Other prominent
factors include use of skip connections [9], data preprocessing
techniques, regularization, and number of pooling layers.
CNNs/DNNs are used to develop image classifiers [10,22,23],
object detectors, object recognizers and object segmentation. In
order to solve the problem of real time embedded system DNN
deployment with limited resources, a requirement for CNN/DNN

architectures is introduced. Recently introduced macro
architectures such as SqueezeNet, SqueezeNext, and Shallow
SqueezeNext [17] were successfully able to overcome
computation and memory resources limitations of CNNs and
DNNs.

 The research in this paper is heavily oriented on the following
discussed architectures in detail: SqueezeNet [8] and
SqueezeNext [9] architectures. Some motivation is also derived
from MobileNet architecture [24]-[26]. Other techniques used are
hyperparameter tuning and tweaking, implementation of different
optimizers [14], activation functions and regularization, data
augmentation and some data compression (width and depth wise
compression) that was introduced within SqueezeNext
architecture [9]. High Performance SqueezeNext [15] architecture
is majorly based on SqueezeNext followed by SqueezeNet
architecture. The fundamental blocks and block structures of High
Performance SqueezeNext of the proposed architecture were
inspired by fire modules (figure 1), basic blocks (figure 6) of
various architectures, and bottleneck modules [9], respectively.
The proposed architecture, HPS, was modified and improved with
the help of no transfer learning approach, use of in-place functions
that helped to reduce mathematical operations being performed
with each layer and blocks of the architecture.

2.1. SqueezeNet

The first baseline CNN architecture, baseline SqueezeNet [8]
was utilized in this research for inspiration of High Performance
SqueezeNext architecture [15]. SqueezeNet baseline architecture
is made up of 1x1 and 3x3 convolutions, fire modules, max
pooling layers, Relu and Relu in place activation layers, softmax
activation, and kaiming uniform initialization.

Figure 1. Fire module

Fire module [8] (figure 1.) is the main component of this
architecture that consists of one squeeze layer, s2 (1x1), two
expand layers, e1 (1x1) and e3 (3x3). This architecture consists of
following highlighted factors such as 3x3 convolutions replaced
with 1x1 convolutions, number of input channels decreased to 3x3
convolutions, and down sampling max pooling late down the
CNN.

http://www.astesj.com/

J.K. Duggal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 70-81 (2022)

www.astesj.com 72

Fire module (figure 1.) is the main component of this
architecture that consists of one squeeze layer, s2 (1x1), two
expand layers, e1 (1x1) and e3 (3x3). This architecture consists of
following highlighted factors such as 3x3 convolutions replaced
with 1x1 convolutions, number of input channels decreased to 3x3
convolutions, and down sampling max pooling late down the
CNN.

Figure 2. SqueezeNet baseline architecture

SqueezeNet provides some valuable insights relevant to fire
modules in accordance with design significance of the
fundamental building blocks of CNNs/DNNs and its effect on the
entire architecture itself affecting a DNN architecture
performance. Squeezed CNN [18] was compared in this research
with the proposed High Performance SqueezeNext [15]
architecture. Squeezed CNN is an architecturally compressed
version of SqueezeNet based CNN architecture that was
previously successfully deployed on the Bluebox 2.0 real time
embedded platform.

2.2. SqueezeNext

SqueezeNext baseline architecture [9], another architecture
used for major development and laying the foundation of High
Performance SqueezeNext architecture. It is also used for
comparison with the proposed architecture called High

Performance SqueezeNext. Key factors of the SqueezeNext
baseline architecture:

• Aggressive channel reduction by a two-stage squeeze
module.

• Use of separable 3x3 convolutions.
• Use of an element-wise addition skip connection.

 In SqueezeNext architecture, two stage squeeze model
channel reduction, 3x3 separable convolution, and an element-
wise skip connection [9] techniques are used to drastically reduce
the total number of parameters and computation resource usage.
Baseline SqueezeNext architecture comprises of bottleneck
modules [9] with four stage implementation (figure 3.), batch
normalization layers [21], Relu and Relu (in-place) nonlinear
activation layers, max pooling and average pooling layers, Xavier
uniform initialization, a spatial resolution layer and a fully
connected layer. All these techniques are also utilized in High
Performance SqueezeNext architecture.

Figure 3. SqueezeNext baseline architecture basic block with [6,6,8,1] four

stage implementation configurations trained and tested on CIFAR-10
dataset with no transfer learning [15].

Bottleneck modules [9] are responsible for huge parameters
reduction. The consecutive different colored blocks: dark blue,
blue, orange, and yellow blocks after the first convolution
represent the four-stage configuration implementation referring to
a low level (dark blue), medium level (blue and orange), and high-
level features (yellow), respectively. Green block represents
spatial resolution layer. The baseline SqueezeNext architecture
achieves 112x fewer parameters than the AlexNet top-5
performance and 31x fewer parameters than VGG-19
performance.

2.2.1. Modified SqueezeNext

Modified baseline SqueezeNext is a modified form of the above
baseline SqueezeNext architecture. It is derived and modified in
order to make a fair comparison with the proposed architecture,
High Performance SqueezeNext [13,15] based on a pytorch
framework instead of caffe framework. Modified SqueezeNext
architecture is trained and tested on CIFAR-10 [19] from scratch
and is developed to be implemented with the Pytorch framework.

The fundamental block of baseline SqueezeNext architecture is
made up of a convolution layer followed by batch normalization
in place, scale in place and ReLU in place layers. In contrast to a
fundamental building block of modified SqueezeNext
architecture that consists of a convolution layer, batch
normalization and a ReLU layer.

The basic blocks depict each of the first individual blocks of
the four-stage configuration within the SqueezeNext architectures
(the first dark blue, blue, orange and the last

http://www.astesj.com/

J.K. Duggal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 70-81 (2022)

www.astesj.com 73

Figure 4: Modified SqueezeNext baseline architecture block structure 1 & block structure 2.

yellow block of the four-stage configuration). All the five
SqueezeNext Block modules inside both of the block structures
(Figure 4.) are exactly the same fundamental building blocks
(convolution layer, batch norm and an activation function layer)
described in the previous paragraph.

The efficient organization of these two block structures within
a DNN architecture makes a better and efficient DNN. This
modified SqueezeNext architecture is trained and tested with
datasets such as CIFAR-10 [19] and CIFAR-100 [19]. It was
also modified with the help of data augmentation, data
compression and different optimizer functions [14] are
implemented in order to improve the performance of the
modified SqueezeNext architecture [13].

3. Hardware & Software Used

• Intel i9 8th generation processor with 32 GB RAM.
• Required memory for dataset and results: 4GB.
• NVIDIA RTX 2080Ti GPU.
• Spyder version 3.7.1.
• Pytorch version 1.1.
• RTMaps Remote Studio
• Linux BSP
• SD card 8GB minimum
• RTMaps Embedded

4. Bluebox 2.0 real-time embedded platform

Bluebox 2.0 [16] is a real time development platform by
NXP for developing self-driving car applications. It delivers the

performance required to analyze ADAS systems or
environments. ASIL-B and ASIL-D compliant real time
embedded hardware.

Figure 5. Real time embedded platform, Bluebox 2.0 by NXP

 It includes three independent SoCs that are S32V234: a
vision processor, LS2084A: a compute processor, and S32R274:
a radar microcontroller. This research paper was also a way to
analyze and test the capability of Bluebox 2.0 as an autonomous
embedded platform system for real-time autonomous
applications. It can be used or utilized for implementing Level
1- Level 3 autonomous applications. The detailed description of
all SoCs is discussed in the following subsections.

4.1. Vision Processor (S32V234)

 S32V234 [24] is a micro processing unit consisting of an ISP,
powerful 3D GPU, automotive-grade reliability, dual APEX-2
vision accelerators, and functional safety. It provides good

http://www.astesj.com/

J.K. Duggal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 70-81 (2022)

www.astesj.com 74

computation support for ADAS, NCAP front camera, object
detection and recognition, image processing, machine and deep
learning, and sensor fusion applications. The 32-bit based Arm
Cortex-A53 S32V processors are supported by S32 Design
Studio IDE for development. The software platform studio
includes a compiler, debugger, linux BSP vision SDK, and
graph tools.

It is a vision-based processor that comprises ISP available on
all MIPI-CSI camera inputs. It supports and provides the
functionality to integrate multiple cameras. APEX-2 vision
accelerators, GPU along with vision accelerators, four ARM
Cortex-A53 cores, and an arm M4 core are used for embedded
related applications and computer vision functions. It operates
on linux BSP, Ubuntu 16.04 LTS and NXP vision SDK. The
processor boots up from the SD card with the help of linux BSP.

4.2. LS-2084A

LS2 processor [13,16] embedded in bluebox 2.0 is a high-
performance computing processor platform. It comprises ARM
Cortex-A72 cores, 10 Gb Ethernet ports, DDR4 memory, and a
PCIe expansion slot. It is also a convenient platform to develop
the arm-based application or features.

It makes use of an SD card interface enabling its processor
to run linux BSP, Ubuntu 16.04 LTS on the platform. The
software enablement on the LS2084A and S32V234 SoC is
done with the help of Linux BSP. It is a complete, developer-
supported system with eight core QorIQ LS2084A and the four
core LS2044A. This multi-core processors-based system offers
advanced, high-performance data path and network peripheral
interfaces required for networking, datacom, wireless
infrastructure, military, and aerospace applications.

4.3. Real-time Multisensor applications (RTMaps)

RTMaps [13,17] is an efficient and easy-to-use framework
for fast and robust developments. It is a high-performance
platform that is the easiest way to develop, test, validate,
benchmark, and execute applications. It is used for fusing the
data streams in real-time. It consists of several independent
modules that can be used in different scenarios. It is described
as follows:

• RTMaps Runtime Engine is an easily deployable, multi-
threaded, highly optimized module that is designed to be
integrated with third-party applications. It is also
accountable for all base services such as component
registration, buffer management, time stamping threading,
and priorities.

• RTMaps Component Library consists of the software
module that can be easily interfaced with the automotive
and other related sensors and packages responsible for the
development of an ADAS application.

• RTMaps Remote Studio is a graphical modeling
environment with the functionality of programming using
Python packages. It is available for both, windows and
ubuntu based operating system platforms. Applications are
developed by using the modules and packages available
from the RTMaps component library.

• RTMaps Embedded is a framework consisting of a
component library and the runtime engine with the
capability of running on an embedded x86 or ARM capable
platform.

 The connection between the computer running RTMaps
Remote Studio and Bluebox 2.0 platform can be accessed via a
static TCP/IP. The detailed approach of High Performance
SqueezeNext deployment is explained in the following section
6.

5. High Performance SqueezeNext

 High Performance SqueezeNext architecture [15] is a
compact DNN, heavily inspired from architectures such as
baseline SqueezeNet and baseline SqueezeNext with some
insights taken from MobileNet architecture [24]. The basic
block shown in figure 6 (extreme right) consists of a
convolution layer, Relu in place layer, and batch normalization
layer forms the building blocks of the High Performance
SqueezeNext. This basic block in figure 6 are the blocks in
figure 7 that form a bottleneck module.

This bottleneck module forms the blocks, arranged together
in a four-stage implementation configuration along with a
dropout layer. It is concluded with the descriptions of the two-
model shrinking hyper parameters such as the width multiplier
and resolution multiplier which are explained below towards
the end of this section.

Figure 6: Comparison of baseline SqueezeNext block, Modified SqueezeNext

block, High Performance SqueezeNext block, in left to right sequence.

High Performance SqueezeNext is based on the following
strategies:

• Using resolution and width multipliers.
• Using only in place operations sandwiching ReLU in-place

between convolutional and batch normalization layers.
• An element-wise addition skip connection.
• Adding a drop out after the average pooling layer.
• Minimizing use of any pooling layers.

 In detail, the proposed High Performance SqueezeNext
architecture comprises bottleneck modules (basic blocks
arranged in four stage configuration), a spatial resolution layer,
average pooling layer and a fully connected layer. In order to
fine tune and tweak the hyperparameters [13] of the proposed
architecture different optimizers are implemented.

 Modified bottleneck module, shown in the figure 7, comprises
a 1x1 convolution, second 1x1 convolution, 3x1 convolution,
1x3 convolution, and then a 1x1 convolution for the proposed
High Performance SqueezeNext architecture forms the High
Performance SqueezeNext block module. In figure 7, the blocks
in figure refer to adaptive forms of High Performance
SqueezeNext basic building blocks (right most block in figure
6) that depict the first basic block with 1x1 convolution is High
Performance SqueezeNext (HPS) basic building block with 1x1
convolution as a first layer, then, another 1x1 convolution based
second HPS basic building block, a third similar block but with
first 1x3 convolution layer instead of 1x1 convolution layer.
Followed by a similar 3x1 convolution HPS basic building

http://www.astesj.com/

J.K. Duggal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 70-81 (2022)

www.astesj.com 75

block and in the end again a 1x1 convolution based HPS
building block.

 Figure 8 illustrates High Performance SqueezeNext
architecture with block structure-1 (top left), four stage
implementation and block structure-2 (bottom left). This block
structure-1 is responsible for feature extraction from the initial
input blocks with the different colors of the four stage
implementation of this proposed architecture. Figure 8
illustrates block structure-2 (bottom left) of the proposed High
Performance SqueezeNext architecture. These block structures
form the rest of the colored feature blocks of the four-stage
implementation of the High Performance SqueezeNext.

Figure 7. Modified bottleneck module for High Performance SqueezeNext

architecture.

5.1. Resolution Multiplier

This hyper-parameter, resolution multiplier [9,13], is used
to reduce the computational cost of deep neural networks
(DNN). It reduces the computational cost and number of
parameters.

5.2. Width Multiplier

Width multiplier [9,13] is used to construct compact and less
computationally expensive models. It is used to thin DNN at
each layer, further reducing the number of parameters to
roughly twice the power of the width multiplier term.

5.3. Architecture optimization

Other few factors which contributed towards the improvement
of the proposed High Performance SqueezeNext architecture
[15] are:

• Rectified Linear Units (ReLU) in place and ELU in place
function operations: In place operations activation
functions help to reduce the number of parameters by

performing in place element wise operations. It changes the
content of a given linear operator without actually making
a copy of it.

• Different optimizers implementations for training: In this
research, different optimizers were implemented in order to
find a tuned and tweaked proposed architecture. The
different optimizers implemented here are SGD, SGD with
nesterov and momentum, Adabound, Adagrad, Adamax,
Adam, Rprop, and RMSprop.

• Dataset specific training with no transfer learning:
According to this approach, we do not use any transfer
model using Python pickle module bound to the specific
classes and the exact directory structure used when the
model is saved. It saves a path file containing the class.

• Use of adaptive average pooling would help set stride and
kernel-size, especially in adaptive pooling the stride and
kernel size are set automatically.

• Real-time embedded platform deployment, Bluebox 2.0
[24, 27].

Specifically, we train data on a powerful GPU based system
generating a checkpoint file for testing. This testing file is further
used within Bluebox 2.0 for deployment of the DNN
architecture.

6. Bluebox 2.0 architecture deployment

 The proposed architecture High Performance SqueezeNext
[15] is initially, trained on system with RTX 2080ti equipped
gpu. After successfully testing on an average of three times for
a model, generate a checkpoint file using save and load
checkpoint method for pytorch. For testing, the python-based
module is connected to a real-time embedded system, Bluebox
2.0 with the help of RTMaps Remote studio connector.

 RTMaps Remote studio and RTMaps Embedded provide
support for the pytorch framework that currently is empowered
by a huge collection of libraries for machine learning and deep
learning support. Figure 9 represents the process of High
Performance SqueezeNext architecture deployment on the real-
time embedded system platform, Bluebox 2.0 by NXP. RTMaps
studio initiates a connection to the execution engine using
TCP/IP that runs the software on Linux BSP and then, installed
on Bluebox 2.0. RTMaps provides a python block to create and
deploy python Pytorch code.

 Python code for RTMaps comprises three function definitions:
birth (), core (), and death (). Due to organized structure, and
flexibility within RTMaps, it makes it easy to develop a
modular code. LS2084A processor is used for the maximum
utilization of available 8 ARM Cortex-A72 cores to run
RTMaps. The deployment process for High Performance
SqueezeNext on the real time platform, Bluebox 2.0 by NXP.

Birth (): It is executed once, initially, for setting up and
initializing the python environment.

Core (): It is an infinite loop function to keep the code running
continuously.

Death (): It is used to perform cleanups and memory release
after the python code terminates.

http://www.astesj.com/

J.K. Duggal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 70-81 (2022)

www.astesj.com 76

Figure 8. High Performance SqueezeNext block structure 1, High Performance SqueezeNext four stage implementation and HPS block structure 2.

Figure 9: Bluebox 2.0 deployment process for High Performance SqueezeNext architecture overview.

http://www.astesj.com/

J.K. Duggal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 70-81 (2022)

www.astesj.com 77

7. Results

7.1. High Performance SqueezeNext Results

High Performance SqueezeNext architecture is implemented
with the development and optimization approaches mentioned
in the section 5. This research led to different variants of High
Performance SqueezeNext models. Also, it leads to another
compressed and shallow depth based DNN architecture called
Shallow SqueezeNext [17,25,26].

The High Performance SqueezeNext model size ranges from
10.8MB to a small size of 370KB as shown in Table1 and
Table2 with model accuracy between 70% to 93% and model
speed of approximately under 25 seconds per epoch for the
experimental models. In the following tables, only a few of the
several better model’s results were shown out of the total 500
models or experiments.

The nomenclature for the proposed High Performance
SqueezeNext model in all the tables in section 7 illustrates the
proposed High Performance SqueezeNext architecture version
name followed by width and resolution multiplier, and version
number.

7.1.1 Model Accuracy Improvement

We can infer from Table 1. that a better High Performance
SqueezeNext model accuracy is achieved that is 92.50% with a
model size of 2.6 MB and 18 seconds per epoch.

High Performance SqueezeNext -21-1x-v3 model has 12.91%
and 14.95% better accuracy along with little decrease of
0.399MB and 0.347MB model size with respect to baseline
SqueezeNet- v1.0 and baseline SqueezeNet-v1.1, respectively.
High Performance SqueezeNext -21-1x-v3 model has 3.35%
and 2.02% better accuracy with respect to baseline
SqueezeNext-1x-v1 and baseline SqueezeNext-2x-v1,
respectively. All the results obtained in this paper were
implemented with the following common hyper parameter
values: LR: 0.1, batch size: 128, weight decay: 5e-4, total
number of epochs: 200, standard cross entropy loss function and
livelossplot package.

Other existing algorithms and methodologies have attained
better accuracy than the baseline SqueezeNet and SqueezeNext
architecture. However, all the other machine learning or deep
learning algorithms use transfer learning techniques, in that the
respective model is first trained on a large dataset maybe such
as ImageNet and then a pre-trained model is fine-tuned on a
smaller datasets like CIFAR-10 [19], CIFAR-100 [19]. Also,
these architectures are deeper [10,11,22] and expensive in terms
of computation and memory resources [12,13]. Table 1, figure
10 (a), (b) and (c) compares the DNN results for baseline
SqueezeNet, baseline SqueezeNext, modified SqueezeNext and
High Performance SqueezeNext.

Table 1: High Performance SqueezeNext accuracy improvement

Model type
Model
Acc.%

Model
size (MB)

Model
speed
(sec)

Baseline SqueezeNet-v1.0 79.59 3.013 04
Baseline SqueezeNet-v1.1 77.55 2.961 04
Baseline SqueezeNext-23-
1x-v1 87.15 2.586 19

Baseline SqueezeNext-23-
2x-v1 90.48 9.525 22

High Performance
SqueezeNext -21-1x-v3

 92.50 2.614 18

High Performance
SqueezeNext -23-1x

 92.25 5.14 29

High Performance
SqueezeNext -21-1x-v2.0

 92.05 2.60 16

High Performance
SqueezeNext -06-0.5x-v1

 82.44 0.37 07

High Performance
SqueezeNext -06-1x

 86.82 1.24 08

+Model Acc. – Model Accuracy

 These graphs depict that the overfitting problem is reduced
and becomes less problematic from baseline SqueezeNet
architecture [8] to baseline SqueezeNext architecture [9]. Then,
again, the overfitting problem got reduced and became better
further from modified SqueezeNext architecture in comparison
to proposed High Performance SqueezeNext. Due to this reason,
we can infer that High Performance SqueezeNext [15] is
amongst the better DNN architecture by overcoming the
overfitting problem of DNNs along with better resource usage
and a competitive accuracy of 92.50%.
7.1.2. Model Size and Model Speed Improvement

The model speed in this paper refers to the time taken per
epoch to train and further test the DNN architecture. High
Performance SqueezeNext architecture is initially trained with
the help of powerful GPUs (GTX 1080 and RTX 2080 Ti).

In general, more powerful hardware (better GPU or multiple
GPUs), architecture pruning, and other methods can be
implemented to improve the performance of a DNN. To train
and test the High Performance SqueezeNext DNN in a better
manner, we train and test the proposed DNN on CIFAR-10,
CIFAR-100 datasets [13] that are quite small as compared to
ImageNet dataset. For better performance of proposed High
Performance SqueezeNext architecture model depth as well as
model width are modified.

High Performance SqueezeNext architecture is implemented
with resolution multiplier and width multiplier, in-place
operations [13], and no max-pooling layers used after the four
stage implementation but only one adaptive average pooling
layer just before the fully connected convolutional layer. This
architecture is tuned using hyper parameters such as SGD
optimizer with momentum and nesterov values, a step learning
rate decay schedule with an exponential learning rate update.
We observe in table 2, when High Performance SqueezeNext is
trained and tested on CIFAR-10 dataset with no transfer
learning approach with a nesterov based SGD optimizer. HPS
attains a model accuracy of 92.50% with a decent 2.614MB
model size. The results published in table 2 were derived with
the help of a gpu based system. Each result entry in table 2 is an
average run of three training and validation cycles here.

Table 2: High Performance SqueezeNext Model Speed and Model Size
Improvement for CIFAR-10

Model type Mod
Acc.%

Mod.
Size
(MB)

Mod.
speed
(sec)

Resol. Width

Baseline
SqueezeNet-v1.0 79.59 3.013 04 - -

Baseline
SqueezeNet-v1.1 77.55 2.961 04 - -

Baseline
SqueezeNext-23-
1x-v1

 87.15 2.586 19 6 6 8 1 1.0

Baseline
SqueezeNext-23-
2x-v1

 90.48 9.525 22 6 6 8 1 2.0

http://www.astesj.com/

J.K. Duggal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 70-81 (2022)

www.astesj.com 78

High Performance
SqueezeNext -06-
0.5x

 82.44 0.37 07 1 1 1 1 0.5

High Performance
SqueezeNext -06-
1x

 86.82 1.24 08 1 1 1 1 1.0

High Performance
SqueezeNext -06-
0.75x

 82.86 1.20 08 1 1 1 1 0.75

High Performance
SqueezeNext -08-
0.5x

 87.37 1.41 09 1 2 2 1 0.5

High Performance
SqueezeNext -14-
1.5x

 89.86 3.24 18 1 2 8 1 1.5

High Performance
SqueezeNext -21-
1x-v2

 92.05 2.60 16 2 2 14 1 1.0

High Performance
SqueezeNext -21-
1x-v3

 92.50 2.614 18 2 4 12 1 1.0

High Performance
SqueezeNext -23-
1x

 92.25 5.14 29 2 2 16 1 1.0

*Mod. Acc.: Model Accuracy; Mod. Size: Model Size; Mod. Speed: Model
Speed, Resol: Resolution multiplier, and Width: Width multiplier.

Table 3: High Performance SqueezeNext Model Speed and Model Size
Improvement for CIFAR-100

Model type
Mod
Acc.
%

Mod.
Size
(MB)

Mod.
speed
(sec)

Resol. Width

Baseline SqueezeNet-
v1.0 51.27 6.40 04 - -

Baseline
SqueezeNext-23-1x-
v1

 60.37 5.26 19 6 6 8 1 1.0

High Performance
SqueezeNext -06-
0.4x

 55.89 0.95 06 1 1 1 1 0.4

High Performance
SqueezeNext -06-
0.575x

 60.68 0.95 07 1 1 1 1 0.575

High Performance
SqueezeNext -09-
0.5x

 62.72 1.10 08 1 1 4 1 0.5

High Performance
SqueezeNext -14-1x 68.46 5.00 14 1 2 8 1 1.0

High Performance
SqueezeNext -14-
1.5x

 69.70 10.80 18 1 2 8 1 1.5

High Performance
SqueezeNext -23-1x 68.20 7.70 25 2 2 16 1 1.0

High Performance
SqueezeNext -25-1x 70.10 7.80 25 2 4 16 1 1.0

*Mod.Acc.: Accuracy; Mod. Size: Model Size; Mod. Speed: Model Speed,
Resol: Resolution multiplier, and Width: Width multiplier.

In this paper validation is used interchangeably between
testing and validation because CIFAR-10 and CIFAR-100
datasets are in comparison small datasets to imagenet. Testing
along with training and validation cycles provides inconclusive
and non-reliable results.

Therefore, the whole research in this paper only performs
training and testing (referred as validation in case of graphs in
Figure 10). It also reflects the significance of resolution and
width multiplier used in the proposed architecture.

Table 3. refers to the set of results obtained in the case of
training and testing of High Performance SqueezeNext on
CIFAR-100 dataset with no transfer learning. Again, each result
entry in table 3 is an average run of three training and validation
cycles here. It also reflects the importance of width and
resolution multipliers and its effect on the proposed High
Performance SqueezeNext architecture.

We can also observe the model accuracy significantly drops
by 20% on average regardless of any architecture deployment,
therefore, verifying that the small datasets do perform poorly
with a CNN/DNN based architecture with no transfer learning.

7.2. Bluebox 2.0 Results

 High Performance SqueezeNext architecture is deployed on the
BlueBox 2.0 platform by NXP. For real-time DNN deployment on
Bluebox 2.0 [13,16], DNN parameters are saved and loaded using
Pytorch method from a checkpoint file generated during training of
DNN with GPU. Then, this saved checkpoint file is loaded with the
help of RTMaps on the Bluebox 2.0 using the BSP Linux OS
dependencies.

Figure 10: (a) SqueezeNet baseline architecture training and validation

(testing) graph representation implemented on CIFAR-10 dataset.

Figure 10: (b) Graph comparison between SqueezeNext baseline architecture and High Performance SqueezeNext architecture training and validation implemented

on CIFAR-10 dataset.

http://www.astesj.com/

J.K. Duggal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 70-81 (2022)

www.astesj.com 79

Figure 10: (c) Graph comparison between Modified SqueezeNext baseline architecture and High Performance SqueezeNext architecture training and validation

implemented on CIFAR-10 dataset.

Figure 11: High Performance SqueezeNext architecture deployment on Bluebox 2.0 by NXP with the help of RTMaps Remote Studio.

Table 4: High Performance SqueezeNext deployment results on Bluebox 2.0

Model type
Mod.
Acc.
%

Mod.
Size
(MB)

Mod.
Speed
(sec)

Squeezed CNN (Baseline
SqueezeNet based CNN) 79.30 12.90 11

Modified SqueezeNext architecture 92.25 5.14 28
High Performance SqueezeNext-
21-1x-v3 92.50 2.62 16

High Performance SqueezeNext-
06-1.0x 86.82 1.24 08

High Performance SqueezeNext-
06-0.50x

82.44 0.37 06

*Mod. Acc.: Model Accuracy; Mod. Size: Model Size; Mod. Speed: Model
Speed.

Table 4 illustrates the results obtained for the proposed High
Performance SqueezeNext architecture, baseline SqueezeNext
and squeezed CNN architecture [18] representing that the

proposed High Performance SqueezeNext performs better and
more efficiently. Table 4 illustrates that High Performance
SqueezeNext-21-1x-v3 has 92.50% accuracy that is 13.20%
better accuracy than Squeezed CNN (SqueezeNet
Implementation for Pytorch framework) and 0.25% better
accuracy than modified SqueezeNext-23-1x. Further, High
Performance SqueezeNext-21-1x is 5x better than Squeezed
CNN (SqueezeNet Implementation) and 2x better than modified
SqueezeNet.

Also, High Performance SqueezeNext-06-0.5x model
attained 0.37MB with 6 seconds per epoch, minimum model
size and model speed in comparison to squeezed CNN [18] and
modified SqueezeNext models deployed on the Bluebox 2.0 by
NXP. All models are trained initially on GPU and then tested
on real time platform Bluebox2.0 by NXP with datasets such as
CIFAR-10 and CIFAR-100, individually.

Table 5: High Performance SqueezeNext Architecture composition

Layer name
Input Size

(Wi x Hi x Ci)

Padding

(Pw x Ph)
Stride

Filter size

(Kw x Kh)

Output size

(W0 x H0 x C0)

Parameters Repeat

Convolution 1 32 x 32 x 3 0 x 0 1 3 x 3 30 x 30 x 64 1792 1
Convolution 2 30 x 30 x 64 0 x 0 1 1 x 1 30 x 30 x 16 1040 1
Convolution 3 30 x 30 x 16 0 x 0 1 1 x 1 30 x 30 x 8 136 1
Convolution 4 30 x 30 x 8 0 x 1 1 1 x 3 30 x 30 x 16 400 1
Convolution 5 30 x 30 x 16 1 x 0 1 3 x 1 30 x 30 x 16 784 1
Convolution 6 30 x 30 x 16 0 x 0 1 1 x 1 30 x 30 x 32 544 1
Convolution 32 30 x 30 x 32 0 x 0 2 1 x 1 30 x 30 x 32 1056 1
Convolution 33 15 x 15 x 32 0 x 0 1 1 x 1 15 x 15 x 16 528 1
Convolution 34 15 x 15 x 16 0 x 1 1 1 x 3 15 x 15 x 32 1528 1
Convolution 35 15 x 15 x 32 1 x 0 1 3 x 1 15 x 15 x 32 3104 1
Convolution 36 15 x 15 x 32 0 x 0 1 1 x 1 15 x 15 x 64 2112 1
Convolution 37 15 x 15 x 64 0 x 0 1 1 x 1 15 x 15 x 32 2080 1
Convolution 38 15 x 15 x 32 0 x 0 1 1 x 1 15 x 15 x 16 528 1

http://www.astesj.com/

J.K. Duggal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 70-81 (2022)

www.astesj.com 80

Convolution 39 15 x 15 x 16 1 x 0 1 3 x 1 15 x 15 x 32 1568 1
Convolution 40 15 x 15 x 32 0 x 1 1 1 x 3 15 x 15 x 32 3104 1
Convolution 41 15 x 15 x 32 0 x 0 1 1 x 1 15 x 15 x 64 2112 1
Convolution 62 15 x 15 x 64 0 x 0 2 1 x 1 15 x 15 x 64 4160 1
Convolution 63 8 x 8 x 64 0 x 0 1 1 x 1 8 x 8 x 32 2080 1
Convolution 64 8 x 8 x 32 1 x 0 1 3 x 1 8 x 8 x 64 6208 1
Convolution 65 8 x 8 x 64 0 x 1 1 1 x 3 8 x 8 x 64 12352 1
Convolution 66 8 x 8 x 64 0 x 0 1 1 x 1 8 x 8 x 128 8320 1
Convolution 67 8 x 8 x 128 0 x 0 1 1 x 1 8 x 8 x 64 57792 7
Convolution 68 8 x 8 x 64 0 x 0 1 1 x 1 8 x 8 x 32 14560 7
Convolution 69 8 x 8 x 32 1 x 0 1 3 x 1 8 x 8 x 64 43456 7
Convolution 70 8 x 8 x 64 0 x 1 1 1 x 3 8 x 8 x 64 86464 7
Convolution 71 8 x 8 x 64 0 x 0 1 1 x 1 8 x 8 x 128 58240 7
Convolution 102 8 x 8 x 128 0 x 0 2 1 x 1 8 x 8 x 128 16512 1
Convolution 103 4 x 4 x 128 0 x 0 1 1 x 1 4 x 4 x 64 8256 1
Convolution 104 4 x 4 x 64 0 x 1 1 1 x 3 4 x 4 x 128 24704 1
Convolution 105 4 x 4 x 128 1 x 0 1 3 x 1 4 x 4 x 128 49280 1
Convolution 106 4 x 4 x 256 0 x 0 1 1 x 1 4 x 4 x 256 65792 1
Convolution 107
Spatial Resolution

 4 x 4 x 256 0 x 0 1 1 x 1 4 x 4 x 128 32896 1

Adaptive Average
Pool

 4 x 4 x 256 - - - 4 x 4 x 256 - 1

FCC 1 x 1 x 128 0 x 0 1 1 x 1 1 x 1 x 10 1290 1
+First column Wi x Hi x Ci refer to input width x input height x input number of channels; Second column, Pw x Ph refer to width and height of padding; third
column refers to the number of stride used; fourth column, Kw x Kh refer to width and height of the kernel; fifth column, W0 x H0 x C0 refer to width, height and
number of channels for the output; sixth column represents number of parameters for the particular layer, and last column depicts the number of times a layer is
repeated in the four stage implementation configuration.

8. Conclusion

In this paper, the existing macro architectures such as
baseline SqueezeNet, baseline SqueezeNext and a family of
MobileNet architectures had laid foundation and motivated the
development of the proposed High Performance SqueezeNext.
Fine hyper parameter tuning and tweaking, compression using
width and resolution multipliers, implementing different
optimizers, step-based learning decay rate, data augmentation,
save and load method for python, dataset specific training with
no transfer learning approach and real-time embedded platform
deployment contributed towards the improvement of the
proposed DNN architecture. This research also initiated and
encouraged the DSE of DNNs with the help of experiments
implementing different activation functions and various
optimizers.

Hence, these insights helped to build a better understanding
of various optimizers, model compression, learning rate
scheduling methods, save and load checkpoint, dataset specific
training and testing. High Performance SqueezeNext
architecture is one of the several new CNNs/DNNs that have
been discovered while broadly exploring the DSE of DNN
architectures. Detailed composition of High Performance
SqueezeNext is shown in Table 5.

This architecture has 15x and 13x better model accuracy than
baseline SqueezeNet and baseline SqueezeNext, respectively. It
has a minimal 0.370MB model size, in other words, it is 8x and
7x smaller than baseline SqueezeNet and baseline SqueezeNext
baseline. All the results discussed in this paper demonstrate the
trade-off between model accuracy, model speed and model size
with different resolution and width multipliers. SGD with
momentum and nesterov is proposed as a suggested optimizer
to be implemented on any DNN architecture. It is expected that
with the incredibly small model size of 370KB for High
Performance SqueezeNext, referring to Table 2, with an

accuracy of 92.05%, referring to Table 1, High Performance
SqueezeNext model can be easily deployed on a real time
embedded platform.

The proposed, High Performance SqueezeNext architecture
is trained and tested from scratch on datasets such as CIFAR-
10 and CIFAR-100, individually without any transfer learning.
The proposed DNN was successfully deployed on Bluebox 2.0
by NXP with DNN model accuracy of 92.50%, 16 seconds per
epoch model speed and 2.62MB of model size.

High Performance SqueezeNext attains model accuracy 15.8%
better than MobileNet (76.7%), 13.2% better than Squeezed
CNN (79.30%), 10% better than alexnet_tf (82% model
accuracy), 3.50% better than DCNN (89%), 2.6% better than
enhanced hybrid MobileNet (89.9%), 1.85% better than Maxout
networks (90.65%), and 0.25% better than modified
SqueezeNext (92.25%) with better model size. Hopefully, this
research will inspire design space exploration (DSE) of DNNs
in a more intrinsic and aggressive manner.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

We would like to acknowledge all the IoT Collaboratory lab
members and other colleagues for their continuous support,
reviews and regular feedback.

References

[1] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T.
Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J.
Uszkoreit, N. Houlsby, “An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale,” in International Conference on Learning
Representations, 2021.

[2] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, N.
Houlsby, Big Transfer (BiT): General Visual Representation Learning,

http://www.astesj.com/

J.K. Duggal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 70-81 (2022)

www.astesj.com 81

ECCV 2020:, Springer, Cham, 2020, doi:10.1007/978-3-030-58558-7_29.
[3] M. Tan, Q. V. Le, “EfficientNetV2: Smaller Models and Faster Training,”

in International Conference on Machine Learning, PMLR: 10096–10106,
2021.

[4] L. Wang, S. Xie, T. Li, R. Fonseca, Y. Tian, “Sample-Efficient Neural
Architecture Search by Learning Action Space,” arXiv, 2019,
doi:10.48550/ARXIV.1906.06832.

[5] L. Wang, S. Xie, T. Li, R. Fonseca, Y. Tian, “Sample-Efficient Neural
Architecture Search by Learning Actions for Monte Carlo Tree Search,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 01, 1–
1, 2021, doi:10.1109/TPAMI.2021.3071343.

[6] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M.X. Chen, D. Chen, H. Lee, J.
Ngiam, Q. V. Le, Y. Wu, Z. Chen, “GPipe: Efficient Training of Giant
Neural Networks using Pipeline Parallelism,” NIPS’19: Proceedings of
the 33rd International Conference on Neural Information Processing
Systems: 103–112, 2019, doi:10.48550/ARXIV.1811.06965.

[7] H.Y. Chen, C.Y. Su, “An Enhanced Hybrid MobileNet,” in 9th
International Conference on Awareness Science and Technology, iCAST
2018, Institute of Electrical and Electronics Engineers Inc., Fukuoka:
308–312, 2018, doi:10.1109/ICAwST.2018.8517177.

[8] F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K.
Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size,” arXiv, 2016,
doi:10.48550/ARXIV.1602.07360.

[9] A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao, K.K. Eecs,
“SqueezeNext: Hardware-Aware Neural Network Design,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), IEEE: 1719–171909, 2018,
doi:10.1109/CVPRW.2018.00215.

[10] K. Simonyan, A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” in International Conference on Learning
Representations, 2014.

[11] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, “Rethinking the Inception
Architecture for Computer Vision,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE Computer
Society, Las Vegas: 2818–2826, 2016, doi:10.1109/CVPR.2016.308.

[12] K. He, J. Sun, “Convolutional Neural Networks at Constrained Time
Cost,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE Computer Society: 5353–5360, 2015,
doi:10.1109/CVPR.2015.7299173.

[13] J.K. Duggal, DESIGN SPACE EXPLORATION OF DNNS FOR
AUTONOMOUS SYSTEMS, Purdue University, 2019,
doi:https://doi.org/10.25394/PGS.8980463.v1.

[14] S. Ruder, “An overview of gradient descent optimization algorithms,” in
arXiv preprint arXiv:1609.04747, arXiv, 2016,
doi:10.48550/ARXIV.1609.04747.

[15] J.K. Duggal, M. El-Sharkawy, “High Performance SqueezeNext for
CIFAR-10,” in Proceedings of the IEEE National Aerospace Electronics
Conference, NAECON, Institute of Electrical and Electronics Engineers
Inc.: 285–290, 2019, doi:10.1109/NAECON46414.2019.9058217.

[16] S. Venkitachalam, S.K. Manghat, A.S. Gaikwad, N. Ravi, S.B.S. Bhamidi,
M. El-Sharkawy, “Realtime applications with rtmaps and bluebox 2.0,” in
Proceedings on the International Conference on Artificial Intelligence
(ICAI), The Steering Committee of The World Congress in Computer
Science, Computer: 137–140, 2018.

[17] J. Kant Duggal, M. El-Sharkawy, “Shallow SqueezeNext: Real Time
Deployment on Bluebox2.0 with 272KB Model Size,” Journal of
Electrical and Electronic Engineering, 8(6), 127, 2020,
doi:10.11648/j.jeee.20200806.11.

[18] D. Pathak, M. El-Sharkawy, “Architecturally Compressed CNN: An
Embedded Realtime Classifier (NXP Bluebox2.0 with RTMaps),” in 2019
IEEE 9th Annual Computing and Communication Workshop and
Conference (CCWC), 331–336, 2019, doi:10.1109/CCWC.2019.8666495.

[19] A. Krizhevsky, V. Nair, G. Hinton, “Cifar-10 (canadian institute for
advanced research),” 2019.

[20] T.B. Ludermir, A. Yamazaki, C. Zanchettin, “An optimization
methodology for neural network weights and architectures,” IEEE
Transactions on Neural Networks, 17(6), 1452–1459, 2006,
doi:10.1109/TNN.2006.881047.

[21] S. Ioffe, C. Szegedy, “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift,” in Proceedings of the
32nd International Conference on Machine Learning - Volume 37, PMLR:
448–456, 2015.

[22] B. Recht, R. Roelofs, L. Schmidt, V. Shankar, “Do CIFAR-10 Classifiers
Generalize to CIFAR-10?,” arXiv, 2018,
doi:10.48550/ARXIV.1806.00451.

[23] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, H. Jégou, “Going
deeper with Image Transformers,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 32–42, 2021.

[24] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, H. Adam, “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” arXiv, 2017,
doi:10.48550/ARXIV.1704.04861.

[25] J.K. Duggal, M. El-Sharkawy, “Shallow squeezenext: An efficient
shallow DNN,” in 2019 IEEE International Conference on Vehicular
Electronics and Safety, ICVES 2019, Institute of Electrical and
Electronics Engineers Inc., 2019, doi:10.1109/ICVES.2019.8906416.

[26] J.K. Duggal, M. El-Sharkawy, Shallow SqueezeNext Architecture
Implementation on Bluebox2. 0, Advances i, Springer, Cham, 2021.

http://www.astesj.com/

	2. Literature Review
	2.1. SqueezeNet
	2.2. SqueezeNext

	3. Hardware & Software Used
	4. Bluebox 2.0 real-time embedded platform
	5. High Performance SqueezeNext
	5.1. Resolution Multiplier
	5.2. Width Multiplier
	5.3. Architecture optimization

	6. Bluebox 2.0 architecture deployment
	7. Results
	7.1. High Performance SqueezeNext Results
	7.2. Bluebox 2.0 Results

	8. Conclusion
	Conflict of Interest
	Acknowledgment

	References

