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 DNN implementation and deployment is quite a challenge within a resource constrained 
environment on real-time embedded platforms. To attain the goal of DNN tailor made 
architecture deployment on a real-time embedded platform with limited hardware resources 
(low computational and memory resources) in comparison to a CPU or GPU based system, 
High Performance SqueezeNext (HPS) architecture was proposed. We propose and tailor 
made this architecture to be successfully deployed on Bluexbox 2.0 by NXP and also to be a 
DNN based on pytorch framework. High Performance SqueezeNext was inspired by 
SqueezeNet and SqueezeNext along with motivation derived from MobileNet architectures. 
High Performance SqueezeNext (HPS) achieved a model accuracy of 92.5% with 2.62MB 
model size at 16 seconds per epoch model using a NVIDIA based GPU system for training. 
It was trained and tested on various datasets such as CIFAR-10 and CIFAR-100 with no 
transfer learning. Thereafter, successfully deploying the proposed architecture on Bluebox 
2.0, a real-time system developed by NXP with the assistance of RTMaps Remote Studio. The 
model accuracy results achieved were better than the existing CNN/DNN architectures 
model accuracies such as alexnet_tf (82% model accuracy), Maxout networks (90.65%), 
DCNN (89%), modified SqueezeNext (92.25%), Squeezed CNN (79.30%), MobileNet 
(76.7%) and an enhanced hybrid MobileNet (89.9%) with better model size. It was 
developed, modified and improved with the help of different optimizer implementations, 
hyper parameter tuning, tweaking, using no transfer learning approach and using in-place 
activation functions while maintaining decent accuracy. 
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1. Introduction   

The dream of achieving a true human experience lies within 
the domain of cybernetics, machine learning, deep learning and 
AI. AI is currently responsible for transcending hard coded 
application based programmed machines to artificially intelligent 
machines with some situational awareness.  

All the existing CNN or DNN models trained and tested on 
large datasets occupy extensive computational and memory 
resources. In the last couple of years, with the introduction of new 
CNN or DNN based macro architectures such as ViT [1], CaiT, 
BiT [2], EfficientNetv2 [3], LaNet [4,5], GPipe [6], enhanced 
MobileNets [7], SqueezeNet [8], SqueezeNext [9], etc., deep 
learning became better and more efficient in terms of CNN/DNN 
model performance than the traditional ones [10,11]. The model 

efficiency, model performance and its ability to be deployed on 
limited resource constraint [12] real-time platform was attenuated 
majorly due to following factors such as design space exploration 
(DSE) of DNNs [13], hyper parameter tuning and tweaking, 
different optimizers [14], and activation functions implementation, 
regularization methods, and powerful hardware accelerators. 
These existing architectures were never tailor made for 
deployment on real-time embedded systems with limited 
resources. This research also makes an effort to develop a new 
architecture with an impressive model size under 5 MB while 
maintaining an impressive model accuracy.   

 In this research, a new architecture called High Performance 
SqueezeNext [15] was developed in order to attenuate the 
succeeding various deployment problems of DNN based 
architectures such as DNN deployment on resource constrained 
real-time platforms [16,17], DNN model compression, over fitting,  
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maintaining a competitive model accuracy without major 
compromises and developing a hardware aware DNN architecture. 
This DNN based architecture was inspired and derived from the 
valuable insights of SqueezeNext and SqueezeNet architectures. 
The fundamental blocks of High Performance SqueezeNext 
architecture were derived from the fire modules of SqueezeNet 
[8,18] and bottleneck modules of SqueezeNext architectures [9]. 

    This architecture tries to attenuate the SqueezeNext 
architecture problems namely model compression, deploy ability 
on a real-time embedded platform, efficiently working with 
resource constraint embedded platforms rather than GPUs or 
CPUs, incorporating newly developed leaning rate techniques 
such as cosine annealing, step-based decay, cyclic, and cosine 
annealing warm restarts. Baseline SqueezeNext architecture was 
a Caffe based architecture and was not able to utilize the power 
Pytorch based libraries and functions such as the above-
mentioned learning rate decay functions, newly introduced 
optimizers such as Adaboost, Adabound, in-place activation 
functions and also some new activation functions in contrast to 
High Performance SqueezeNext architecture [15] that was 
developed entirely on a Pytorch based framework.  

    After strenuous training and testing of High Performance 
SqueezeNext architecture on multiple datasets such as CIFAR-10 
[19] and CIFAR-100 [19], implementing several optimizers, 
activation functions, incorporating and replacing regular 
operations with in-place operations, reducing stride in subsequent 
layers, using preliminary data augmentation and some model 
compression, it achieved impressive model performance. Also, 
one of several important factors contributing to the success of this 
architecture was training and testing High Performance 
SqueezeNext [15] without any form of transfer learning along 
with some model compression. Finally, High Performance 
SqueezeNext was deployed on a real time embedded system, 
Bluebox 2.0 [16] with the assistance of RTMaps software 
platform.   

This research was focused to deploy the proposed High 
Performance SqueezeNext [15] comprehensively on real-time 
embedded platform, Bluebox 2.0 [16] by NXP, explore the major 
hyperparameter tuning with no transfer learning [13,18], develop 
a Pytorch framework DNN in order to be deployed on Bluebox 
2.0 and compare the proposed architecture with several other 
pytorch based CNN/DNN based architecture. 

2. Literature Review 

Deep learning transformed the artificial and machine learning 
domain with the introduction of deep convolutional neural 
networks. CNNs/DNNs are tweaked and tuned with the hyper 
parameters, newly introduced large datasets, powerful hardware, 
model compression, and data augmentation [20] to attain better 
results. Also, batch normalization [21] is observed to be a major 
contributor for improving DNN performance. Other prominent 
factors include use of skip connections [9], data preprocessing 
techniques, regularization, and number of pooling layers. 
CNNs/DNNs are used to develop image classifiers [10,22,23], 
object detectors, object recognizers and object segmentation. In 
order to solve the problem of real time embedded system DNN 
deployment with limited resources, a requirement for CNN/DNN 

architectures is introduced. Recently introduced macro 
architectures such as SqueezeNet, SqueezeNext, and Shallow 
SqueezeNext [17] were successfully able to overcome 
computation and memory resources limitations of CNNs and 
DNNs.  

    The research in this paper is heavily oriented on the following 
discussed architectures in detail: SqueezeNet [8] and 
SqueezeNext [9] architectures. Some motivation is also derived 
from MobileNet architecture [24]-[26]. Other techniques used are 
hyperparameter tuning and tweaking, implementation of different 
optimizers [14], activation functions and regularization, data 
augmentation and some data compression (width and depth wise 
compression) that was introduced within SqueezeNext 
architecture [9]. High Performance SqueezeNext [15] architecture 
is majorly based on SqueezeNext followed by SqueezeNet 
architecture. The fundamental blocks and block structures of High 
Performance SqueezeNext of the proposed architecture were 
inspired by fire modules (figure 1), basic blocks (figure 6) of 
various architectures, and bottleneck modules [9], respectively. 
The proposed architecture, HPS, was modified and improved with 
the help of no transfer learning approach, use of in-place functions 
that helped to reduce mathematical operations being performed 
with each layer and blocks of the architecture.  

2.1. SqueezeNet 

The first baseline CNN architecture, baseline SqueezeNet [8] 
was utilized in this research for inspiration of High Performance 
SqueezeNext architecture [15]. SqueezeNet baseline architecture 
is made up of 1x1 and 3x3 convolutions, fire modules, max 
pooling layers, Relu and Relu in place activation layers, softmax 
activation, and kaiming uniform initialization. 

 
Figure 1. Fire module 

Fire module [8] (figure 1.) is the main component of this 
architecture that consists of one squeeze layer, s2 (1x1), two 
expand layers, e1 (1x1) and e3 (3x3). This architecture consists of 
following highlighted factors such as 3x3 convolutions replaced 
with 1x1 convolutions, number of input channels decreased to 3x3 
convolutions, and down sampling max pooling late down the 
CNN.  
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Fire module (figure 1.) is the main component of this 
architecture that consists of one squeeze layer, s2 (1x1), two 
expand layers, e1 (1x1) and e3 (3x3). This architecture consists of 
following highlighted factors such as 3x3 convolutions replaced 
with 1x1 convolutions, number of input channels decreased to 3x3 
convolutions, and down sampling max pooling late down the 
CNN.    

 
Figure 2. SqueezeNet baseline architecture 

SqueezeNet provides some valuable insights relevant to fire 
modules in accordance with design significance of the 
fundamental building blocks of CNNs/DNNs and its effect on the 
entire architecture itself affecting a DNN architecture 
performance. Squeezed CNN [18] was compared in this research 
with the proposed High Performance SqueezeNext [15] 
architecture. Squeezed CNN is an architecturally compressed 
version of SqueezeNet based CNN architecture that was 
previously successfully deployed on the Bluebox 2.0 real time 
embedded platform. 

2.2. SqueezeNext 

SqueezeNext baseline architecture [9], another architecture 
used for major development and laying the foundation of High 
Performance SqueezeNext architecture. It is also used for 
comparison with the proposed architecture called High 

Performance SqueezeNext. Key factors of the SqueezeNext 
baseline architecture: 

• Aggressive channel reduction by a two-stage squeeze 
module. 

• Use of separable 3x3 convolutions. 
• Use of an element-wise addition skip connection.  

       In SqueezeNext architecture, two stage squeeze model 
channel reduction, 3x3 separable convolution, and an element-
wise skip connection [9] techniques are used to drastically reduce 
the total number of parameters and computation resource usage. 
Baseline SqueezeNext architecture comprises of bottleneck 
modules [9] with four stage implementation (figure 3.), batch 
normalization layers [21], Relu and Relu (in-place) nonlinear 
activation layers, max pooling and average pooling layers, Xavier 
uniform initialization, a spatial resolution layer and a fully 
connected layer. All these techniques are also utilized in High 
Performance SqueezeNext architecture.  

 
Figure 3. SqueezeNext baseline architecture basic block with [6,6,8,1] four 

stage implementation configurations trained and tested on CIFAR-10 
dataset with no transfer learning [15]. 

Bottleneck modules [9] are responsible for huge parameters 
reduction. The consecutive different colored blocks: dark blue, 
blue, orange, and yellow blocks after the first convolution 
represent the four-stage configuration implementation referring to 
a low level (dark blue), medium level (blue and orange), and high-
level features (yellow), respectively. Green block represents 
spatial resolution layer. The baseline SqueezeNext architecture 
achieves 112x fewer parameters than the AlexNet top-5 
performance and 31x fewer parameters than VGG-19 
performance. 

2.2.1.   Modified SqueezeNext 

Modified baseline SqueezeNext is a modified form of the above 
baseline SqueezeNext architecture. It is derived and modified in 
order to make a fair comparison with the proposed architecture, 
High Performance SqueezeNext [13,15] based on a pytorch 
framework instead of caffe framework. Modified SqueezeNext 
architecture is trained and tested on CIFAR-10 [19] from scratch 
and is developed to be implemented with the Pytorch framework. 

The fundamental block of baseline SqueezeNext architecture is 
made up of a convolution layer followed by batch normalization 
in place, scale in place and ReLU in place layers. In contrast to a 
fundamental building block of modified SqueezeNext 
architecture that consists of a convolution layer, batch 
normalization and a ReLU layer.  

The basic blocks depict each of the first individual blocks of 
the four-stage configuration within the SqueezeNext architectures 
(the  first  dark  blue,  blue,  orange  and  the  last  
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Figure 4: Modified SqueezeNext baseline architecture block structure 1 & block structure 2. 

yellow block of the four-stage configuration). All the five 
SqueezeNext Block modules inside both of the block structures 
(Figure 4.) are exactly the same fundamental building blocks 
(convolution layer, batch norm and an activation function layer) 
described in the previous paragraph.  

The efficient organization of these two block structures within 
a DNN architecture makes a better and efficient DNN. This 
modified SqueezeNext architecture is trained and tested with 
datasets such as CIFAR-10 [19] and CIFAR-100 [19]. It was 
also modified with the help of data augmentation, data 
compression and different optimizer functions [14] are 
implemented in order to improve the performance of the 
modified SqueezeNext architecture [13]. 

3. Hardware & Software Used 

• Intel i9 8th generation processor with 32 GB RAM. 
• Required memory for dataset and results: 4GB. 
• NVIDIA RTX 2080Ti GPU. 
• Spyder version 3.7.1. 
• Pytorch version 1.1. 
• RTMaps Remote Studio 
• Linux BSP 
• SD card 8GB minimum 
• RTMaps Embedded 

4. Bluebox 2.0 real-time embedded platform  

Bluebox 2.0 [16] is a real time development platform by 
NXP for developing self-driving car applications. It delivers the 

performance required to analyze ADAS systems or 
environments. ASIL-B and ASIL-D compliant real time 
embedded hardware. 

 
Figure 5. Real time embedded platform, Bluebox 2.0 by NXP 

 It includes three independent SoCs that are S32V234: a 
vision processor, LS2084A: a compute processor, and S32R274: 
a radar microcontroller. This research paper was also a way to 
analyze and test the capability of Bluebox 2.0 as an autonomous 
embedded platform system for real-time autonomous 
applications. It can be used or utilized for implementing Level 
1- Level 3 autonomous applications. The detailed description of 
all SoCs is discussed in the following subsections. 

4.1.  Vision Processor (S32V234) 

    S32V234 [24] is a micro processing unit consisting of an ISP, 
powerful 3D GPU, automotive-grade reliability, dual APEX-2 
vision accelerators, and functional safety. It provides good 
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computation support for ADAS, NCAP front camera, object 
detection and recognition, image processing, machine and deep 
learning, and sensor fusion applications. The 32-bit based Arm 
Cortex-A53 S32V processors are supported by S32 Design 
Studio IDE for development. The software platform studio 
includes a compiler, debugger, linux BSP vision SDK, and 
graph tools. 

It is a vision-based processor that comprises ISP available on 
all MIPI-CSI camera inputs. It supports and provides the 
functionality to integrate multiple cameras. APEX-2 vision 
accelerators, GPU along with vision accelerators, four ARM 
Cortex-A53 cores, and an arm M4 core are used for embedded 
related applications and computer vision functions. It operates 
on linux BSP, Ubuntu 16.04 LTS and NXP vision SDK. The 
processor boots up from the SD card with the help of linux BSP.  

4.2.    LS-2084A 

LS2 processor [13,16] embedded in bluebox 2.0 is a high-
performance computing processor platform. It comprises ARM 
Cortex-A72 cores, 10 Gb Ethernet ports, DDR4 memory, and a 
PCIe expansion slot. It is also a convenient platform to develop 
the arm-based application or features.  

It makes use of an SD card interface enabling its processor 
to run linux BSP, Ubuntu 16.04 LTS on the platform. The 
software enablement on the LS2084A and S32V234 SoC is 
done with the help of Linux BSP. It is a complete, developer-
supported system with eight core QorIQ LS2084A and the four 
core LS2044A. This multi-core processors-based system offers 
advanced, high-performance data path and network peripheral 
interfaces required for networking, datacom, wireless 
infrastructure, military, and aerospace applications. 

4.3.    Real-time Multisensor applications (RTMaps) 

RTMaps [13,17] is an efficient and easy-to-use framework 
for fast and robust developments. It is a high-performance 
platform that is the easiest way to develop, test, validate, 
benchmark, and execute applications. It is used for fusing the 
data streams in real-time. It consists of several independent 
modules that can be used in different scenarios. It is described 
as follows: 

• RTMaps Runtime Engine is an easily deployable, multi-
threaded, highly optimized module that is designed to be 
integrated with third-party applications. It is also 
accountable for all base services such as component 
registration, buffer management, time stamping threading, 
and priorities. 

• RTMaps Component Library consists of the software 
module that can be easily interfaced with the automotive 
and other related sensors and packages responsible for the 
development of an ADAS application. 

• RTMaps Remote Studio is a graphical modeling 
environment with the functionality of programming using 
Python packages. It is available for both, windows and 
ubuntu based operating system platforms. Applications are 
developed by using the modules and packages available 
from the RTMaps component library. 

• RTMaps Embedded is a framework consisting of a 
component library and the runtime engine with the 
capability of running on an embedded x86 or ARM capable 
platform.  

    The connection between the computer running RTMaps 
Remote Studio and Bluebox 2.0 platform can be accessed via a 
static TCP/IP. The detailed approach of High Performance 
SqueezeNext deployment is explained in the following section 
6. 

5. High Performance SqueezeNext 

    High Performance SqueezeNext architecture [15] is a 
compact DNN, heavily inspired from architectures such as 
baseline SqueezeNet and baseline SqueezeNext with some 
insights taken from MobileNet architecture [24]. The basic 
block shown in figure 6 (extreme right) consists of a 
convolution layer, Relu in place layer, and batch normalization 
layer forms the building blocks of the High Performance 
SqueezeNext. This basic block in figure 6 are the blocks in 
figure 7 that form a bottleneck module. 

This bottleneck module forms the blocks, arranged together 
in a four-stage implementation configuration along with a 
dropout layer. It is concluded with the descriptions of the two-
model shrinking hyper parameters such as the width multiplier 
and resolution multiplier which are explained below towards 
the end of this section. 

 
Figure 6: Comparison of baseline SqueezeNext block, Modified SqueezeNext 

block, High Performance SqueezeNext block, in left to right sequence. 

High Performance SqueezeNext is based on the following 
strategies: 

• Using resolution and width multipliers.  
• Using only in place operations sandwiching ReLU in-place 

between convolutional and batch normalization layers. 
• An element-wise addition skip connection. 
• Adding a drop out after the average pooling layer. 
• Minimizing use of any pooling layers. 

   In detail, the proposed High Performance SqueezeNext 
architecture comprises bottleneck modules (basic blocks 
arranged in four stage configuration), a spatial resolution layer, 
average pooling layer and a fully connected layer. In order to 
fine tune and tweak the hyperparameters [13] of the proposed 
architecture different optimizers are implemented.  

   Modified bottleneck module, shown in the figure 7, comprises 
a 1x1 convolution, second 1x1 convolution, 3x1 convolution, 
1x3 convolution, and then a 1x1 convolution for the proposed 
High Performance SqueezeNext architecture forms the High 
Performance SqueezeNext block module. In figure 7, the blocks 
in figure refer to adaptive forms of High Performance 
SqueezeNext basic building blocks (right most block in figure 
6) that depict the first basic block with 1x1 convolution is High 
Performance SqueezeNext (HPS) basic building block with 1x1 
convolution as a first layer, then, another 1x1 convolution based 
second HPS basic building block, a third similar block but with 
first 1x3 convolution layer instead of 1x1 convolution layer. 
Followed by a similar 3x1 convolution HPS basic building 
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block and in the end again a 1x1 convolution based HPS 
building block. 

    Figure 8 illustrates High Performance SqueezeNext 
architecture with block structure-1 (top left), four stage 
implementation and block structure-2 (bottom left). This block 
structure-1 is responsible for feature extraction from the initial 
input blocks with the different colors of the four stage 
implementation of this proposed architecture. Figure 8 
illustrates block structure-2 (bottom left) of the proposed High 
Performance SqueezeNext architecture. These block structures 
form the rest of the colored feature blocks of the four-stage 
implementation of the High Performance SqueezeNext. 

 
Figure 7. Modified bottleneck module for High Performance SqueezeNext 

architecture.  

5.1. Resolution Multiplier 

This hyper-parameter, resolution multiplier [9,13], is used 
to reduce the computational cost of deep neural networks 
(DNN). It reduces the computational cost and number of 
parameters. 

5.2. Width Multiplier  

Width multiplier [9,13] is used to construct compact and less 
computationally expensive models. It is used to thin DNN at 
each layer, further reducing the number of parameters to 
roughly twice the power of the width multiplier term. 

5.3. Architecture optimization  

Other few factors which contributed towards the improvement 
of the proposed High Performance SqueezeNext architecture 
[15] are: 

• Rectified Linear Units (ReLU) in place and ELU in place 
function operations: In place operations activation 
functions help to reduce the number of parameters by 

performing in place element wise operations. It changes the 
content of a given linear operator without actually making 
a copy of it.   

• Different optimizers implementations for training: In this 
research, different optimizers were implemented in order to 
find a tuned and tweaked proposed architecture. The 
different optimizers implemented here are SGD, SGD with 
nesterov and momentum, Adabound, Adagrad, Adamax, 
Adam, Rprop, and RMSprop. 

• Dataset specific training with no transfer learning: 
According to this approach, we do not use any transfer 
model using Python pickle module bound to the specific 
classes and the exact directory structure used when the 
model is saved. It saves a path file containing the class.  

• Use of adaptive average pooling would help set stride and 
kernel-size, especially in adaptive pooling the stride and 
kernel size are set automatically. 

• Real-time embedded platform deployment, Bluebox 2.0 
[24, 27]. 

Specifically, we train data on a powerful GPU based system 
generating a checkpoint file for testing. This testing file is further 
used within Bluebox 2.0 for deployment of the DNN 
architecture. 

6. Bluebox 2.0 architecture deployment 

    The proposed architecture High Performance SqueezeNext 
[15] is initially, trained on system with RTX 2080ti equipped 
gpu. After successfully testing on an average of three times for 
a model, generate a checkpoint file using save and load 
checkpoint method for pytorch. For testing, the python-based 
module is connected to a real-time embedded system, Bluebox 
2.0 with the help of RTMaps Remote studio connector. 

   RTMaps Remote studio and RTMaps Embedded provide 
support for the pytorch framework that currently is empowered 
by a huge collection of libraries for machine learning and deep 
learning support. Figure 9 represents the process of High 
Performance SqueezeNext architecture deployment on the real-
time embedded system platform, Bluebox 2.0 by NXP. RTMaps 
studio initiates a connection to the execution engine using 
TCP/IP that runs the software on Linux BSP and then, installed 
on Bluebox 2.0. RTMaps provides a python block to create and 
deploy python Pytorch code.  

   Python code for RTMaps comprises three function definitions: 
birth (), core (), and death (). Due to organized structure, and 
flexibility within RTMaps, it makes it easy to develop a 
modular code. LS2084A processor is used for the maximum 
utilization of available 8 ARM Cortex-A72 cores to run 
RTMaps. The deployment process for High Performance 
SqueezeNext on the real time platform, Bluebox 2.0 by NXP. 

Birth (): It is executed once, initially, for setting up and 
initializing the python environment.  

Core (): It is an infinite loop function to keep the code running 
continuously.  

Death (): It is used to perform cleanups and memory release 
after the python code terminates. 
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Figure 8. High Performance SqueezeNext block structure 1, High Performance SqueezeNext four stage implementation and HPS block structure 2. 

 
Figure 9: Bluebox 2.0 deployment process for High Performance SqueezeNext architecture overview. 
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7. Results 

7.1. High Performance SqueezeNext Results 

High Performance SqueezeNext architecture is implemented 
with the development and optimization approaches mentioned 
in the section 5. This research led to different variants of High 
Performance SqueezeNext models. Also, it leads to another 
compressed and shallow depth based DNN architecture called 
Shallow SqueezeNext [17,25,26].  

The High Performance SqueezeNext model size ranges from 
10.8MB to a small size of 370KB as shown in Table1 and 
Table2 with model accuracy between 70% to 93% and model 
speed of approximately under 25 seconds per epoch for the 
experimental models. In the following tables, only a few of the 
several better model’s results were shown out of the total 500 
models or experiments.  

The nomenclature for the proposed High Performance 
SqueezeNext model in all the tables in section 7 illustrates the 
proposed High Performance SqueezeNext architecture version 
name followed by width and resolution multiplier, and version 
number. 

7.1.1   Model Accuracy Improvement 

We can infer from Table 1. that a better High Performance 
SqueezeNext model accuracy is achieved that is 92.50% with a 
model size of 2.6 MB and 18 seconds per epoch. 

High Performance SqueezeNext -21-1x-v3 model has 12.91% 
and 14.95% better accuracy along with little decrease of 
0.399MB and 0.347MB model size with respect to baseline 
SqueezeNet- v1.0 and baseline SqueezeNet-v1.1, respectively. 
High Performance SqueezeNext -21-1x-v3 model has 3.35% 
and 2.02% better accuracy with respect to baseline 
SqueezeNext-1x-v1 and baseline SqueezeNext-2x-v1, 
respectively. All the results obtained in this paper were 
implemented with the following common hyper parameter 
values: LR: 0.1, batch size: 128, weight decay: 5e-4, total 
number of epochs: 200, standard cross entropy loss function and 
livelossplot package. 

Other existing algorithms and methodologies have attained 
better accuracy than the baseline SqueezeNet and SqueezeNext 
architecture. However, all the other machine learning or deep 
learning algorithms use transfer learning techniques, in that the 
respective model is first trained on a large dataset maybe such 
as ImageNet and then a pre-trained model is fine-tuned on a 
smaller datasets like CIFAR-10 [19], CIFAR-100 [19]. Also, 
these architectures are deeper [10,11,22] and expensive in terms 
of computation and memory resources [12,13]. Table 1, figure 
10 (a), (b) and (c) compares the DNN results for baseline 
SqueezeNet, baseline SqueezeNext, modified SqueezeNext and 
High Performance SqueezeNext. 

Table 1: High Performance SqueezeNext accuracy improvement 

Model type 
Model 
Acc.% 

Model 
size (MB) 

Model 
speed 
(sec) 

Baseline SqueezeNet-v1.0  79.59 3.013 04 
Baseline SqueezeNet-v1.1  77.55 2.961 04 
Baseline SqueezeNext-23-
1x-v1  87.15 2.586 19 

Baseline SqueezeNext-23-
2x-v1  90.48 9.525 22 

High Performance 
SqueezeNext -21-1x-v3 

 92.50 2.614 18 

High Performance 
SqueezeNext -23-1x 

 92.25 5.14 29 

High Performance 
SqueezeNext -21-1x-v2.0 

 92.05 2.60 16 

High Performance 
SqueezeNext -06-0.5x-v1 

 82.44 0.37 07 

High Performance 
SqueezeNext -06-1x 

 86.82 1.24 08 

+Model Acc. – Model Accuracy 

    These graphs depict that the overfitting problem is reduced 
and becomes less problematic from baseline SqueezeNet 
architecture [8] to baseline SqueezeNext architecture [9]. Then, 
again, the overfitting problem got reduced and became better 
further from modified SqueezeNext architecture in comparison 
to proposed High Performance SqueezeNext. Due to this reason, 
we can infer that High Performance SqueezeNext [15] is 
amongst the better DNN architecture by overcoming the 
overfitting problem of DNNs along with better resource usage 
and a competitive accuracy of 92.50%. 
7.1.2.  Model Size and Model Speed Improvement 

The model speed in this paper refers to the time taken per 
epoch to train and further test the DNN architecture. High 
Performance SqueezeNext architecture is initially trained with 
the help of powerful GPUs (GTX 1080 and RTX 2080 Ti).  

In general, more powerful hardware (better GPU or multiple 
GPUs), architecture pruning, and other methods can be 
implemented to improve the performance of a DNN. To train 
and test the High Performance SqueezeNext DNN in a better 
manner, we train and test the proposed DNN on CIFAR-10, 
CIFAR-100 datasets [13] that are quite small as compared to 
ImageNet dataset. For better performance of proposed High 
Performance SqueezeNext architecture model depth as well as 
model width are modified.  

High Performance SqueezeNext architecture is implemented 
with resolution multiplier and width multiplier, in-place 
operations [13], and no max-pooling layers used after the four 
stage implementation but only one adaptive average pooling 
layer just before the fully connected convolutional layer. This 
architecture is tuned using hyper parameters such as SGD 
optimizer with momentum and nesterov values, a step learning 
rate decay schedule with an exponential learning rate update. 
We observe in table 2, when High Performance SqueezeNext is 
trained and tested on CIFAR-10 dataset with no transfer 
learning approach with a nesterov based SGD optimizer. HPS 
attains a model accuracy of 92.50% with a decent 2.614MB 
model size. The results published in table 2 were derived with 
the help of a gpu based system. Each result entry in table 2 is an 
average run of three training and validation cycles here. 

Table 2: High Performance SqueezeNext Model Speed and Model Size 
Improvement for CIFAR-10 

Model type Mod 
Acc.% 

Mod. 
Size 
(MB) 

Mod. 
speed 
(sec) 

Resol. Width 

Baseline 
SqueezeNet-v1.0  79.59 3.013 04 - - 

Baseline 
SqueezeNet-v1.1  77.55 2.961 04 - - 

Baseline 
SqueezeNext-23-
1x-v1 

 87.15 2.586 19 6 6 8 1 1.0 

Baseline 
SqueezeNext-23-
2x-v1 

 90.48 9.525 22 6 6 8 1  2.0 
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High Performance 
SqueezeNext -06-
0.5x 

 82.44 0.37 07 1 1 1 1 0.5 

High Performance 
SqueezeNext -06-
1x 

 86.82 1.24 08 1 1 1 1 1.0 

High Performance 
SqueezeNext -06-
0.75x 

 82.86 1.20 08 1 1 1 1 0.75 

High Performance 
SqueezeNext -08-
0.5x 

 87.37 1.41 09 1 2 2 1 0.5 

High Performance 
SqueezeNext -14-
1.5x 

 89.86 3.24 18 1 2 8 1 1.5 

High Performance 
SqueezeNext -21-
1x-v2 

 92.05 2.60 16 2 2 14 1 1.0 

High Performance 
SqueezeNext -21-
1x-v3 

 92.50 2.614 18 2 4 12 1 1.0 

High Performance 
SqueezeNext -23-
1x 

 92.25 5.14 29 2 2 16 1 1.0 

*Mod. Acc.: Model Accuracy; Mod. Size: Model Size; Mod. Speed: Model 
Speed, Resol: Resolution multiplier, and Width: Width multiplier. 

Table 3: High Performance SqueezeNext Model Speed and Model Size 
Improvement for CIFAR-100 

Model type 
Mod 
Acc.
% 

Mod. 
Size 
(MB) 

Mod. 
speed 
(sec) 

Resol. Width 

Baseline SqueezeNet-
v1.0  51.27 6.40 04 - - 

Baseline 
SqueezeNext-23-1x-
v1 

 60.37 5.26 19 6 6 8 1 1.0 

High Performance 
SqueezeNext -06-
0.4x 

 55.89 0.95 06 1 1 1 1 0.4 

High Performance 
SqueezeNext -06-
0.575x 

 60.68 0.95 07 1 1 1 1 0.575 

High Performance 
SqueezeNext -09-
0.5x 

 62.72 1.10 08 1 1 4 1 0.5 

High Performance 
SqueezeNext -14-1x  68.46 5.00 14 1 2 8 1 1.0 

High Performance 
SqueezeNext -14-
1.5x 

 69.70 10.80 18 1 2 8 1 1.5 

High Performance 
SqueezeNext -23-1x  68.20 7.70 25 2 2 16 1 1.0 

High Performance 
SqueezeNext -25-1x  70.10 7.80 25 2 4 16 1 1.0 

*Mod.Acc.: Accuracy; Mod. Size: Model Size; Mod. Speed: Model Speed, 
Resol: Resolution multiplier, and Width: Width multiplier.  

In this paper validation is used interchangeably between 
testing and validation because CIFAR-10 and CIFAR-100 
datasets are in comparison small datasets to imagenet. Testing 
along with training and validation cycles provides inconclusive 
and non-reliable results.  

Therefore, the whole research in this paper only performs 
training and testing (referred as validation in case of graphs in 
Figure 10). It also reflects the significance of resolution and 
width multiplier used in the proposed architecture. 

Table 3. refers to the set of results obtained in the case of 
training and testing of High Performance SqueezeNext on 
CIFAR-100 dataset with no transfer learning. Again, each result 
entry in table 3 is an average run of three training and validation 
cycles here. It also reflects the importance of width and 
resolution multipliers and its effect on the proposed High 
Performance SqueezeNext architecture.  

We can also observe the model accuracy significantly drops 
by 20% on average regardless of any architecture deployment, 
therefore, verifying that the small datasets do perform poorly 
with a CNN/DNN based architecture with no transfer learning. 

7.2. Bluebox 2.0 Results 

    High Performance SqueezeNext architecture is deployed on the 
BlueBox 2.0 platform by NXP. For real-time DNN deployment on 
Bluebox 2.0 [13,16], DNN parameters are saved and loaded using 
Pytorch method from a checkpoint file generated during training of 
DNN with GPU. Then, this saved checkpoint file is loaded with the 
help of RTMaps on the Bluebox 2.0 using the BSP Linux OS 
dependencies. 

 
Figure 10: (a) SqueezeNet baseline architecture training and validation 

(testing) graph representation implemented on CIFAR-10 dataset. 

 
Figure 10: (b) Graph comparison between SqueezeNext baseline architecture and High Performance SqueezeNext architecture training and validation implemented 

on CIFAR-10 dataset. 
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Figure 10: (c) Graph comparison between Modified SqueezeNext baseline architecture and High Performance SqueezeNext architecture training and validation 

implemented on CIFAR-10 dataset. 

 
Figure 11: High Performance SqueezeNext architecture deployment on Bluebox 2.0 by NXP with the help of RTMaps Remote Studio. 

Table 4: High Performance SqueezeNext deployment results on Bluebox 2.0 

Model type 
Mod. 
Acc.
% 

Mod. 
Size 
(MB) 

Mod. 
Speed 
(sec) 

Squeezed CNN (Baseline 
SqueezeNet based CNN) 79.30 12.90 11 

Modified SqueezeNext architecture 92.25 5.14 28 
High Performance SqueezeNext-
21-1x-v3 92.50 2.62 16 

High Performance SqueezeNext-
06-1.0x 86.82 1.24 08 

High Performance SqueezeNext-
06-0.50x 

82.44 0.37 06 

*Mod. Acc.: Model Accuracy; Mod. Size: Model Size; Mod. Speed: Model 
Speed. 

Table 4 illustrates the results obtained for the proposed High 
Performance SqueezeNext architecture, baseline SqueezeNext 
and squeezed CNN architecture [18] representing that the 

proposed High Performance SqueezeNext performs better and 
more efficiently. Table 4 illustrates that High Performance 
SqueezeNext-21-1x-v3 has 92.50% accuracy that is 13.20% 
better accuracy than Squeezed CNN (SqueezeNet 
Implementation for Pytorch framework) and 0.25% better 
accuracy than modified SqueezeNext-23-1x. Further, High 
Performance SqueezeNext-21-1x is 5x better than Squeezed 
CNN (SqueezeNet Implementation) and 2x better than modified 
SqueezeNet. 

Also, High Performance SqueezeNext-06-0.5x model 
attained 0.37MB with 6 seconds per epoch, minimum model 
size and model speed in comparison to squeezed CNN [18] and 
modified SqueezeNext models deployed on the Bluebox 2.0 by 
NXP. All models are trained initially on GPU and then tested 
on real time platform Bluebox2.0 by NXP with datasets such as 
CIFAR-10 and CIFAR-100, individually. 

Table 5: High Performance SqueezeNext Architecture composition 

Layer name 
Input Size 

(Wi x Hi x Ci) 

Padding 

(Pw x Ph) 
Stride 

Filter size 

(Kw x Kh) 

Output size 

(W0 x H0 x C0) 

Parameters Repeat 

Convolution 1 32 x 32 x 3 0 x 0 1 3 x 3 30 x 30 x 64 1792 1 
Convolution 2 30 x 30 x 64 0 x 0 1 1 x 1 30 x 30 x 16 1040 1 
Convolution 3 30 x 30 x 16 0 x 0 1 1 x 1 30 x 30 x 8   136 1 
Convolution 4 30 x 30 x 8 0 x 1 1 1 x 3 30 x 30 x 16   400 1 
Convolution 5 30 x 30 x 16 1 x 0 1 3 x 1 30 x 30 x 16   784 1 
Convolution 6 30 x 30 x 16 0 x 0 1 1 x 1 30 x 30 x 32   544 1 
Convolution 32 30 x 30 x 32 0 x 0 2 1 x 1 30 x 30 x 32 1056  1 
Convolution 33 15 x 15 x 32 0 x 0 1 1 x 1 15 x 15 x 16   528 1 
Convolution 34 15 x 15 x 16 0 x 1 1 1 x 3 15 x 15 x 32  1528 1 
Convolution 35 15 x 15 x 32 1 x 0 1 3 x 1 15 x 15 x 32  3104 1 
Convolution 36 15 x 15 x 32 0 x 0 1 1 x 1 15 x 15 x 64  2112 1 
Convolution 37 15 x 15 x 64 0 x 0 1 1 x 1 15 x 15 x 32  2080 1 
Convolution 38 15 x 15 x 32 0 x 0 1 1 x 1 15 x 15 x 16    528 1 
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Convolution 39 15 x 15 x 16 1 x 0 1 3 x 1 15 x 15 x 32  1568 1 
Convolution 40 15 x 15 x 32 0 x 1 1 1 x 3 15 x 15 x 32  3104 1 
Convolution 41 15 x 15 x 32 0 x 0 1 1 x 1 15 x 15 x 64  2112 1 
Convolution 62 15 x 15 x 64 0 x 0 2 1 x 1 15 x 15 x 64  4160 1 
Convolution 63   8 x   8 x 64 0 x 0 1 1 x 1   8 x   8 x 32  2080 1 
Convolution 64   8 x   8 x 32 1 x 0 1 3 x 1   8 x   8 x 64  6208 1 
Convolution 65   8 x   8 x 64 0 x 1 1 1 x 3   8 x   8 x 64 12352 1 
Convolution 66   8 x   8 x 64 0 x 0 1 1 x 1   8 x   8 x 128  8320 1 
Convolution 67   8 x   8 x 128 0 x 0 1 1 x 1   8 x   8 x 64 57792 7 
Convolution 68   8 x   8 x 64 0 x 0 1 1 x 1   8 x   8 x 32 14560 7 
Convolution 69   8 x   8 x 32 1 x 0 1 3 x 1   8 x   8 x 64 43456 7 
Convolution 70   8 x   8 x 64 0 x 1 1 1 x 3   8 x   8 x 64 86464 7 
Convolution 71   8 x   8 x 64 0 x 0 1 1 x 1   8 x   8 x 128 58240 7 
Convolution 102   8 x   8 x 128 0 x 0 2 1 x 1   8 x   8 x 128 16512 1 
Convolution 103   4 x   4 x 128 0 x 0 1 1 x 1   4 x   4 x 64   8256 1 
Convolution 104   4 x   4 x   64 0 x 1 1 1 x 3   4 x   4 x 128 24704 1 
Convolution 105   4 x   4 x 128 1 x 0 1 3 x 1   4 x   4 x 128 49280 1 
Convolution 106   4 x   4 x 256 0 x 0 1 1 x 1   4 x   4 x 256 65792 1 
Convolution 107 
Spatial Resolution 

  4 x   4 x 256 0 x 0 1 1 x 1   4 x   4 x 128 32896 1 

Adaptive Average 
Pool 

  4 x   4 x 256 - - -   4 x   4 x 256  - 1 

FCC   1 x   1 x 128 0 x 0  1  1 x 1   1 x   1 x   10   1290 1 
+First column Wi x Hi x Ci refer to input width x input height x input number of channels; Second column, Pw x Ph refer to width and height of padding; third 
column refers to the number of stride used; fourth column, Kw x Kh refer to width and height of the kernel; fifth column, W0 x H0 x C0 refer to width, height and 
number of channels for the output; sixth column represents number of parameters for the particular layer, and last column depicts the number of times a layer is 
repeated in the four stage implementation configuration. 

8. Conclusion  

In this paper, the existing macro architectures such as 
baseline SqueezeNet, baseline SqueezeNext and a family of 
MobileNet architectures had laid foundation and motivated the 
development of the proposed High Performance SqueezeNext. 
Fine hyper parameter tuning and tweaking, compression using 
width and resolution multipliers, implementing different 
optimizers, step-based learning decay rate, data augmentation, 
save and load method for python, dataset specific training with 
no transfer learning approach and real-time embedded platform 
deployment contributed towards the improvement of the 
proposed DNN architecture. This research also initiated and 
encouraged the DSE of DNNs with the help of experiments 
implementing different activation functions and various 
optimizers.  

Hence, these insights helped to build a better understanding 
of various optimizers, model compression, learning rate 
scheduling methods, save and load checkpoint, dataset specific 
training and testing. High Performance SqueezeNext 
architecture is one of the several new CNNs/DNNs that have 
been discovered while broadly exploring the DSE of DNN 
architectures. Detailed composition of High Performance 
SqueezeNext is shown in Table 5. 

This architecture has 15x and 13x better model accuracy than 
baseline SqueezeNet and baseline SqueezeNext, respectively. It 
has a minimal 0.370MB model size, in other words, it is 8x and 
7x smaller than baseline SqueezeNet and baseline SqueezeNext 
baseline. All the results discussed in this paper demonstrate the 
trade-off between model accuracy, model speed and model size 
with different resolution and width multipliers. SGD with 
momentum and nesterov is proposed as a suggested optimizer 
to be implemented on any DNN architecture. It is expected that 
with the incredibly small model size of 370KB for High 
Performance SqueezeNext, referring to Table 2, with an 

accuracy of 92.05%, referring to Table 1, High Performance 
SqueezeNext model can be easily deployed on a real time 
embedded platform.  

The proposed, High Performance SqueezeNext architecture 
is trained and tested from scratch on datasets such as CIFAR-
10 and CIFAR-100, individually without any transfer learning. 
The proposed DNN was successfully deployed on Bluebox 2.0 
by NXP with DNN model accuracy of 92.50%, 16 seconds per 
epoch model speed and 2.62MB of model size. 

High Performance SqueezeNext attains model accuracy 15.8% 
better than MobileNet (76.7%), 13.2% better than Squeezed 
CNN (79.30%), 10% better than alexnet_tf (82% model 
accuracy), 3.50% better than DCNN (89%), 2.6% better than 
enhanced hybrid MobileNet (89.9%), 1.85% better than Maxout 
networks (90.65%), and 0.25% better than modified 
SqueezeNext (92.25%) with better model size. Hopefully, this 
research will inspire design space exploration (DSE) of DNNs 
in a more intrinsic and aggressive manner. 
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