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  In Al0.35Ga0.65As/GaAs/Al0.25Ga0.75As quantum wells, the hole-confined polar optical 
phonon interaction is investigated. To calculate the valence band structure, we use the 
Luttinger-Kohn Hamiltonian with the k.p method. Within the dielectric continuum model, 
the hole-confined phonon scattering rates of intrasubband heavy holes in quantum well are 
calculated. It is found that the scattering rates are governed by an overlap integral and the 
density of states. Moreover, the scattering rates are reduced under compressive hydrostatic 
strain for low hole energy. The anisotropic effect on hole-confined phonon interaction is 
also studied. 
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1. Introduction  

In  physics, electron-phonon interaction plays an important role  
such as spin relaxation [1], superconductivity [2], quantum laser 
[3], mobility [4], Carrier thermalization [5]. Over the past decade, 
there has been an increasing interest of GaAs/AlxGa1-xAs 
heterostructures with a variety of structures such as heterojunction 
[6], quantum well [7], quantum wire [8], quantum dot [9], 
multiquantum well [10], superlattice [11]. It is well known that 
phonons are confined in quantum well which has proven 
experimentally [12–14]. Furthermore, to describe the optical 
phonons in quantum well there are several models such as  the 
dielectric continuum model (DCM) in [15], the hydrodynamic 
model in [16], the microscopic model in [17], and the hybrid 
model of  in [18]. In the case of  other  structures such as periodic 
soliton we use  the new generalized (𝐺𝐺′/𝐺𝐺)-expansion method 
[19]. 

 
In this paper, we calculate the valence band structure using the 

6x6 Luttinger-Kohn Hamiltonian, taking into account the warping 
in Al0.35Ga0.65As/GaAs/Al0.25Ga0.75As asymmetric quantum well 
[20,21] within the k.p method due to its simplicity and accuracy 
[22], whereas to describe the phonons in the quantum well, we use 
the dielectric continuum model which has been used by several 
authors [23–27], and given excellent results compared to the 
experimental results  [28, 29]. In addition, we investigate hole 
confined phonon scattering rates for different quantum well 

widths and the results are discussed.  We also study the scattering 
rates under compressive hydrostatic strain using the theory of 
Luttinger–Kohn and Bir–Pikus [30]. 

2. Theory 

In our work, we consider an asymmetric quantum well grown 
along the z direction. The 6x6 Luttinger Hamiltonian is 
transformed into two 3×3 matrixes [31,32], we calculate the hole 
band structure, by solving the Schrödinger equation including the 
heavy hole (HH), light hole (LH), and spin-orbit split-off 
subbands. 

With the dielectric continuum  model, the Frohlich 
Hamiltonian is written as [25] 

𝐻𝐻ℎ−𝑝𝑝ℎ   =  ��𝑒𝑒𝛷𝛷𝑚𝑚(𝑧𝑧)
𝑚𝑚𝑞𝑞

(𝑎𝑎𝑚𝑚(𝑞𝑞)   +   𝑎𝑎𝑚𝑚+ (−𝑞𝑞)) 𝑒𝑒𝑖𝑖𝒒𝒒.𝒓𝒓  (1) 

here 𝑎𝑎𝑚𝑚+ (−𝑞𝑞) is the phonon creation operator,  am(q)    is the 
phonon annihilation operator, Φm(z)   is the normalized phonon 
potential,  r  is  the position vector in the xy plane, m denotes the 
LO mode order index and  q is the in-plane phonon wave vector. 
 

Using the Fermi’s golden rule, the hole-confined phonon 
scattering rates from the initial hole state with the  wave vector ki 
within subband i to the final hole states in subband f with wave 
vector kf  are calculated as [33] 
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here, Nf  is the number of final states, Ei  is the initial hole state 
energie, Ef  is  the final hole state energie,   M ( f , i ) is the function  
connecting between the initial and the final hole states. Equation 
(2) yields 
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where Nq is the phonon occupation number, fiΓ  is the function of 
the hole wave function and the phonon potential, which is written 
as  

)4(,)(,
2
θddzkizekf

m
imffi ∑ ∫ ∫ Φ=Γ  

In Equation (4) the integration is done numerically where 
momentum and energy are conserved. The phonon potential 

)(zmΦ   is provided by  [25]  
 
            𝛷𝛷𝑚𝑚(𝑧𝑧) = 𝐴𝐴𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 (𝑚𝑚𝑚𝑚𝑚𝑚

𝐿𝐿
)       m=1,3,5,..                     (5) 

             
              𝛷𝛷𝑚𝑚(𝑧𝑧) = 𝐴𝐴𝐶𝐶sin (𝑚𝑚𝑚𝑚𝑚𝑚

𝐿𝐿
)         m=2,4,6,..                      (6) 

           
here L  is quantum well width,  AC is the normalization constant 
[25].   

3. Results and discussions  

In our work, we use the material parameters  listed in Table 
[34–36]  

 
Table 1: Parameters used in our work 

Parameter Unit GaAs AlAs 
γ1  6.85 3.69 
γ2  2.1 0.79 
γ3  2.9 1.4 
∆ eV 0.341 0.28 
Eg eV 1.424 2.671 
av eV -1.16 -2.47 

ħωLO 
 

eV 0.03625 0.05009 

 

Figure 1 shows the valence band structure of a 25 Å 
Al0.35Ga0.65As/GaAs/Al0.25Ga0.75As  asymmetric quantum well in 
the kx - ky  plane showing a great nonparabolicity with lifted spin 
degeneracy. Because of the coupling between the heavy hole and 
light hole subbands, our results exhibit a strong anisotropy along 
the [10] and [11] directions. We note here that the heavy hole 
subband is more anisotropic than the light hole subband in 
particular for high energies. 

 
 

 
 

Figure 1:  Heavy hole subband and light hole subband structures as a function of 
wave vector k in the kx – ky plane for L = 25 Å and for clarity, the split off 

subband is not shown. 
 
Figure 2.a shows the intrasubband heavy holes scattering 

rates    of the confined optical phonon absorption as 
function of initial hole energy for different well widths, whereas 
the function Гi f  is shown in (b).   

 

 
Figure 2 :    a) Intrasubband scattering rates of heavy hole for different well 
widths respectively 70 Å, 80 Å , 110 Å, 170 Å  b) The function

 fiΓ  

HH→γ
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The scattering rates depend on the density of states and the 
function  Гi f. Therefore, to understand our results, we plot in 
Figure 3 the dependence of the density of states on the hole 
energies. 

 
Figure 3:  Density of states D(E) of  heavy hole   as function of  hole energy  and 

for different well widths. 
 
One can see that for low hole energy scattering rates increase 

rapidly with increasing hole energy to reach its maximum value. 
However, for high hole energies although the density of states 
increases with increasing hole energy, scattering rates show a very 
slight decrease. This indicates that the scattering rate shows only 
a weak dependence on the density of states. The maximum value 
of the scattering rate is 1.39x1012 s-1   for  L = 70 Å while the 
scattering rate reaches  its highest value    2.045 x1012 s-1  for L = 
170 Å 

 
It is well known that under hydrostatic strain valence band 

structure is altered, which leads to a significant change in the 
scattering rate.  In order to study the scattering rates under strain, 
we show in figure 4 a) Heavy hole scattering rates for the confined 
optical phonon absorption  as function of the initial hole energy 
for two quantum well widths 70 Å and 170 Å   b) The overlap 
integral Гi f. The dashed lines depict the scattering rates for 2 % of 
compressive hydrostatic pressure, whereas the solid lines for the 
results in the absence of strain.  For low hole energy and for 
quantum well width  L = 70 Å ( L = 170 Å ) scattering rates under 
strain are reduced by about  46.5 % (  64 % ), on the other hand, 
for high hole energy and for L = 70 Å ( L = 170 Å )   scattering 
rates  are increased by about 2.8 %  ( 2.3 % ). This behavior is 
similar to the function  Гi f. 

 
Figure 5 shows the  scattering rate for the confined optical phonon 
as a function of the initial two dimensional wave vector k with 
including the warping in the valence  subband structure. For 
clarity, we also plot in Figure 6 and 7 the scattering rates for 
confined phonon absorption as a function of the initial hole wave 
vector k in polar coordinates for two well widths L = 25 Å and L 
= 170 Å respectively.  One can see that for the quantum well width 
L = 25 Å   our results exhibit significant anisotropic behavior for 
high hole energies between the directions [0 1] and [1 1], in which 
scattering rates increase by 14.7 %. However, for the quantum 

well width L = 170 Å scattering rates decrease by 54.5  %. This 
anisotropy is due to the strong valence subband anisotropy. 

 

 
Figure 4:    a Scattering rates within heavy hole subband for the confined optical 
phonon  absorption and for two different well widths 70 Å and 170 Å b) The 
overlap integral Гi f. The solid lines and dashed lines stand for the results without 
a strain with 2 % compressive hydrostatic pressure respectively. 

 
 
Figure 5:  Scattering rates within heavy hole subband for confined optical phonon 
absorption with including warping as a function of the initial hole wave vector k 
in the kx-ky plane and for L = 25 Å 
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Figure 6: Scattering rates within heavy hole subband for confined optical phonon 
absorption as a function of the initial hole wave vector k in polar coordinates and 
for L = 25 Å 

 
Figure 7: Scattering rates within heavy hole subband for confined optical phonon 
absorption as a function of the initial hole wave vector k in polar coordinates and 
for L = 170 Å 
 
4. Conclusion 

In summary, with the k.p method, the valence band structure is 
calculated including spin-orbit split-off subbands effect in the 
Al0.35Ga0.65As/GaAs/Al0.25Ga0.75As asymmetric quantum wells. 
Hole-confined polar optical phonon scattering rates are 
investigated using the dielectric continuum model. It is found that 
scattering rates increase with increasing quantum well width. 
Moreover, under compressive hydrostatic strain, the scattering 
rates are reduced, in particular for low hole energy. In addition, 
scattering rates follow mostly the behavior of the overlap integral 
and exhibit a strong anisotropy for high hole energy. This 
anisotropy increases with increasing quantum well width. Our 
results show the importance of the band structure engineering 
quantum well via strain and within the asymmetric quantum well 
to reduce scattering rates and, consequently, the mobility of 
carriers can be increased. In the future, we will extend our work to 
different quantum well growth directions. 
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