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 Building detection in aerial or satellite imagery is one of the most challenging tasks due to 
the variety of shapes, sizes, colors, and textures of man-made objects. To this end, in this 
paper, we propose a novel approach to extracting buildings in high-resolution images 
based on prior knowledge of the shadow position. Firstly, the image is split into superpixel 
patches; the colors and texture features are extracted for those patches. Then using the 
machine learning method (SVM), four classes are made: buildings, roads, trees, and 
shadows. According to the prior knowledge of shadows position, a seed point initial has 
been defined along with an adaptive regional growth method to determine the approximate 
building location. Finally, applying a contouring process included an open morphological 
operation to extract the final shape of buildings. The performance is tested on aerial images 
from New Zealand area. The proposed approach demonstrated higher detection rate 
precision than other related works, exceeding 97% despite the complexity of scenes. 
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1. Introduction 

Detecting and Identifying building locations is vital for 
varieties of applications such as mapping, military situations 
(active engagement of forces, counter-terrorism and peacekeeping 
measures), natural disaster management (flooding, earthquakes, 
and landslides), environmental preparation, and urban planning 
[1–6]. It is feasible to distinguish buildings from the images; 
however, this can be a time-consuming or difficult operation. 
Therefore, Automatic building extraction from aerial or satellite 
images is a highly needed and challenging problem due to its 
complexity. Moreover, with the advanced technology of capturing 
very high spatial resolution imagery and the increasing need for 
map revision without the high cost and time-consuming as a 
consequence of the rapidly growing urbanization. Automatic 
building detection becomes possible as the ground resolution size 
of the pixels is much smaller than the average size of objects in 
those images. During the past decade, many studies have been 
carried out on building extraction [7–9]. However, it is still 

difficult to detect buildings in urban areas because of their variety 
of shapes, sizes, colors, textures, and the similarity between 
building and non-building objects.  

In the field of building detection, most methods have been 
based on artificial features; like in work [10], due to low-quality 
RGB geophotos and to reduce the problem of characteristics 
extracted from those images, they used the Haar feature method to 
be able to apply machine learning techniques on it. As for work 
[11], it integrates a set of algorithms inspired by the human visual 
system with a combination of classical and modern approaches for 
extracting image descriptors. Then, the feature descriptors are 
processed with machine learning to identify buildings. 

 Moreover, Deep learning-based approaches have been 
proposed recently. Including, In [12] focused on three different 
ways to use convolutional neural networks for remote sensing 
imagery. The authors suggested [13]a set of convolutional neural 
networks for township building identification that can be applied 
to a pixel-level classification framework. In [14] proposed a 
general framework for convolutional neural network-based 
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classification. In [15], a building extraction framework is proposed 
based on a convolutional neural network (CNN), edge detection 
algorithm, and building structure. The masked R-CNN Fusion 
Sobe framework was used to extract the building from high-
resolution remote sensing images. But the results showed that it 
works poorly to extract edges and preserve the building instances' 
integrity.  

However, These studies are not without their limitations, 
especially since CNN cannot successfully learn the features of the 
hierarchical contextual image due to the lack of data sets, and 
increasing the number of layers in the deep model leads to more 
significant training mistakes. CNNs' prediction abilities with less 
computation come at the cost of reduced output accuracy. 

This paper focuses on building detection from 2D aerial (or 
satellite) imagery. Therefore a novel approach addresses two main 
issues: (a) the problem with the particular colors for some 
buildings with a similar color to other objects in urban images, and 
(b) the difference in color shades on building's rooftops. The paper 
is organized in the following way: The related work section 
categorizes and presents works that tackle the issue of building 
detection. Section 3, details the steps that have been applied to 
classify the image into four classes. Then in section 4, we describe 
how to accurate buildings positions. And section 5, shows the 
results provided by our experiments and a comparison with some 
other works. Finally, conclusions and perspectives for future work 
are in section 6. 

2. Related Work 

As we said before, building detection is one of the most 
difficult challenges to solve since they have so many different 
properties. Numerous building detection techniques have been 
presented throughout the years, having their efficacy measured in 
various ways. In this section, we review works that attempt to solve 
those challenges. Most of those researches can be classified 
according to whether they are supervised or automatic, extract 
geometric features, or are area-based [16]. Another classification 
is based on the use of the height data, the simple 2D imagery, or a 
hybrid [17].  

In [8], the authors proposed an automatic approach using level 
set segmentation constrained by priors known shape models of 
buildings. In [18], the authors presented a supervised model using 
the active contour method combined with local texture and edge 
information by initial seed points on one of the buildings. The 
authors [16] have developed an automatic tertiary classifier to 
identify vegetation, buildings, and non-buildings objects using 
Nadir Aerial Image with one condition that the building has a 
convex rooftop. They reduce the colors from 255 for each RGB 
channel to 17. Then, using segmentation and thresholding on the 
green color channel to identify the vegetation regions and on the 
difference between the blue and green color channels to identify 
shadows. Finally, buildings and non-building are detected by 
measuring the solidity of their regions using the entropy filtering 
and watershed segmentation. In [19], the authors present an 
automatic technique using LIDAR data and multispectral imagery. 
Buildings and trees are separated from other low objects using 
thresholding for height. After that, they eliminate the trees with the 
normalized difference vegetation index method from an 
orthorectified multispectral image. The authors proposed [20] an 

automatic approach using a digital surface model and multispectral 
orthophoto. Initially, they created a building mask from the 
normalized digital surface model that included only areas where 
the possible locations for buildings. Then, the vegetation was 
separated from the building mask using a modified vegetation 
index based on the use of the near-infrared orthophoto and the 
correction of the vegetation index using the shadow index and the 
texture analysis. Finally, using Radon transform, they extract the 
building position. In [21], the authors implement an object-based 
classification for urban areas using spot height vector data. After 
the segmentation of the image, they had classifier the obtained 
result into five class vegetation, shadows, parking lots, roads, and 
buildings based on the analysis of the combined spectral, textural, 
morphological, contextual, and class-related features to assign a 
class membership degree to each segment (object) based on 
membership functions or the thresholds. In [22], the authors 
implemented an automatic method based on the similarity between 
building roofs using a previously defined reference set to generate 
a grayscale image with an enhanced potential for building location. 
Then, they assign pixels to possible buildings or nonbuilding 
locations using the hit-or-miss transform morphology. Finally, 
after defining the shadow areas, they verified the final location of 
the buildings. In [23], the authors developed a supervised approach 
based on shadow position using segmentation and classification of 
color features. First, they split the image into superpixel patches 
with the segmentation algorithm. After that, using Linear 
discriminate analysis (LDA) color features and support vector 
machines (SVM) with a previous set of chosen patches for three 
classes: buildings, non-buildings, and shadow. Finally, from the 
prior knowledge of the shadows' position, they define a seed point 
location, and with the regional growth method, they determine the 
positions of the buildings. In [24], the authors proposed an 
automatic approach based on the rectangle form of the buildings. 
They enhance the edge contrast using a developed bilateral filter. 
Then, they apply a line segment detector to extract lines. Finally, a 
perceptual grouping approach groups previously detected lines 
into candidate rectangular buildings. In 2016 [25], the authors 
provided an ontology-based system for slum identification based 
on the built environment's morphology. In this technique, a 
segmentation is followed by hierarchical classification utilizing 
object-oriented image analysis. For each object, spectral values, 
form, texture, size, and contextual connections are all computed 
based on the purpose of the classification. In [26] adopt a new 
object-based filter consisting at first of splitting the image into 
homogeneous objects using multi-scale segmentation and at the 
same time extracting their features vector. Considering that each 
splitter object is in the center of his surrounding adjacent objects 
and a part of a fully real existing object in the image. Then, there 
are two possibilities of his location, either in the interior or in the 
real object. Hence, it has similar features to its surrounding 
adjacent objects or in the boundary with no similarity between 
them.  Therefore, topology and feature constraints are proposed to 
select the considered adjacent objects. Finally, the feature of the 
central object is smoothed by calculating the average of the 
selected object's feature. In [27], detecting buildings by 
determining them using a one-class SVM, They proceed with the 
texture segmentation technique using a conditional threshold value 
to extract buildings of different colors and shapes. Buildings are 
identified from the rest of the roads and vegetation regarding the 
angle of shadows. In [28], the Building Detection with Shadow 
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Verification (BDSV) approach was introduced, integrating 
multiple features such as color, shape, and shadow to detect 
buildings. Because some roofs can be extracted with color features 
only, such as for buildings with sloped roof tiles, while Non-tile 
flat roofs depend on the shape features. The shadow properties 
were also incorporated, (Candidate buildings with close shadows 
will be considered as actual buildings). 

Nonetheless, many challenges remain to be overcome in 
building extraction. To begin with, some of the buildings have a 
particular color (green, red…), so the approaches based on color 
classification can't separate buildings from trees or lawns 
[16,17,19,20,23]. Rather than assume that buildings have a 
standard form like rectangles or use a predefined shape database to 
bring the results closer to a particular format [8,24], we can't cover 
all those possibilities of their forms. Furthermore, others use 
texture to solve the color problem. Yet, they only use it to calculate 
the entropy or the homogeneity of a single-pixel combined with 
the high data of objects or to detect the whole area of buildings 
without separating one from another [21,25]. Therefore, those 
methods can't give us the results we request without the high data 
or in a complex scene. That being the case, can we benefit from 
segmentation to a superpixel size unity by applying the texture 
methods on the entire superpixel, assuming that they are small-
sized objects rather than on a single pixel?. 

 
Figure 1. Diagram flow of the proposed algorithm. 

3. Classification of image data 

Most urban images have six kinds of land covers: trees, grass, 
shadows, roads, parking lots, and buildings. Trees and grass are 
usually green, but this depends on the type and the season the 
image was taken (they may be in red or yellow). Roads and parking 
lots have, in general, a gray color; unlike the shadows, areas are 
darker or completely black. And finally, buildings have different 
color rooftops based on the image's location (the diversity of 
culture, climatic nature…). In Figure 2, various structures, 
building patterns, lighting conditions, landscape characteristics, 
and complex buildings are located within the study area. Visual 

inspection can quickly discover complicated patterns in buildings, 
but machine learning cannot. 

Consequently, buildings may have a color similar to trees or 
roads and parking lots. Therefore, we relied on two things to solve 
this problem: (a) the shadow factor to separate buildings from 
roads and parking lots, and (b) for trees, the texture features can do 
the trick. As a result, according to color and texture, four classes 
pop up: the first one contains buildings, the second is trees and 
grass, the third are roads and parking lots, and finally shadows. So, 
to obtain those classes, three steps have been taken into account, 
We'll walk through them in detail: 

Figure 2: Aerial images of buildings in the study area New Zealand from various 
perspectives 

3.1. Superpixel Segmentation Using SLIC 

Superpixel segmentation divides an image into a group of 
connected pixels with similar colors. Instead of working with 
pixels in a big-sized image, we can reduce it into superpixel 
patches without losing too much information. The Simple Linear 
Iterative Clustering (SLIC) algorithm for superpixel segmentation 
proposed in [29] is a k-means-based local clustering of pixels in 
the 5-D space [l, a, b, x, y], where (l; a; b) is the CIELAB color 
space and (x; y) is pixel coordinates. SLIC adapts the k-means 
clustering approach to efficiently generate superpixels introducing 
a new distance measure Ds as described in Eq. [1]. 

where k and i are respectively the indices of the superpixels center 
and their surrounding pixels, m is a variable that allows controlling 
the compactness of superpixels, and S is the grid interval between 
them. 

In consideration of the foregoing, this step aims to have 
homogenous superpixels as much as possible with a sufficient size 
that allows us to extract texture features disregarding the shape of 
each one of the superpixels. Therefore, a high value of m makes 
the spatial distances outweigh the color factors giving more 
compacted set-sized superpixels that lead to disrespecting the 
boundaries of the objects in the image. The other way around for a 
lower value, this will produce small sizes superpixels. So, To get 

Ds = dlab + m S dxy⁄  (1) 

dlab = �(lk − li)2 + (ak − ai)2 + (bk − bi)2 (2) 

dxy = �(xk − xi)2 + (yk − yi)2 (3) 
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effective results, we chose a low-value number. Then, merge each 
superpixel with a smaller size than a given thresholding number of 
pixels to the nearest similar neighbor. It will turn them into one 
larger superpixel without losing the adherence to object 
boundaries. 

3.2. Texture Features Extraction Using (ICICM) 

Color co-occurrence matrix (CCM) is one of the most efficient 
yet straightforward texture descriptors. It consists of extracting 
statistical measurements about the co-existence of different colors 
from the image. Integrative Color Intensity Co-occurrence Matrix 
(ICICM) has been introduced in [30] as an extension of CCM to 
simulate the human perception of textures. They argued that each 
pixel might be regarded as color or gray-level depending on its 
intensity level. Thus, two measures, namely Wcol and Wgray, which 
determine the extents of color and gray, have been extracted from 
each pixel within the image. After that, these measures have been 
used to extract four co-occurrence matrices that represent the co-
existence of Wcol / Wcol, Wcol = Wgray, Wgray=Wcol, and Wgray = Wgray. 
Finally, a set of third-order statistical moments have been drawn 
and used as image descriptors. An improvement of ICICM has 
been proposed in [31], in which a smooth approach of color/gray-
level space quantization has been adopted. Ultimately, ICICM has 
been used to extract texture features for each final form superpixel. 

3.3. Identifying Classes Using SVM 

A Support Vector Machine (SVM) is a supervised 
discriminative classifier formally defined by a separating 
hyperplane. Given a set of training examples with which class they 
belong, the SVM training algorithms create a model that can assign 
the new data to one of those classes. Therefore, the SVM classifier 
can be trained with the combination vectors between the LAB 
color features and the texture features of the training superpixel 
samples to obtain our final class results. The samples are taken 
from each of the four classes, a simple linear kernel type of SVM 
was applied, and the results are shown in figure  3(d). 

4. Accurate Building Position 

From the previous results in figure  3(d), we can see that 
buildings and trees are entirely separated, unlike some similarities 
with the roads and the parking lots. As we mentioned before, the 
prior knowledge of the direction of the shadows lets us distinguish 
between elevated objects and the ones at ground level. Still, the 
problem is how to detect the exact shape of the buildings. 

Usually, the rooftop of the building has the same color; 
therefore, a seed point location with the regional growth method 
may do the trick. However, in many areas around the world and 
depending on the designs of the buildings, it can cause to show 
darker sides than the others on the rooftop of the buildings, so we 
adept our new implementation of the regional growth to resolve 
this problem. 

4.1. Seed Point Location and Regional Growth 

At first, an initial superpixels seed points location is defined 
based on three conditions: 

• the superpixels in the shadows class and have a neighbor 
from the trees class are eliminated;  

• the superpixels that have been considered as seed points 
must be in buildings class that is a neighbor to the one in 
shadows class after the elimination according to their 
respective direction (in this case, the up and right sides); 

• The superpixels with more neighbors from road class than 
building class are eliminated. 

Next, to make sure that the seed points are located all over the 
region of the building and resolve the darker side problem, we 
applied the regional growth method using the [a, b, ep, h, c, en] 
vector with the earlier initial superpixels seed points where a and 
b are the green–red and blue-yellow color components from the 
Lab color space; ep, h, c, and en are respectively the entropy, 
homogeneity, correlation, and energy from the texture features. 
Assuming that 𝑉𝑉𝑖𝑖  is the vector of the initial superpixel seed points 
𝑆𝑆𝑖𝑖   and 𝑉𝑉s   is for the other neighbors' superpixel 𝑆𝑆𝑠𝑠  , so the 
following logical conditions have been applied, and the results will 
be our final superpixels seed points 

Vs − Vi  ≤ Ts (4) 

Ss ∈  C1 (5) 

In the end, we used another regional growth to get the whole 
shape of buildings, and this time used the lightness value (L) from 
the Lab color space for all the pixels 𝑃𝑃s   of the image starting as an 
initial with the centers 𝐶𝐶i   of each superpixel from the final 
superpixels seed points result take into consideration one 
condition: 

4.2. Accurate The Final Shape of The Buildings 

We can see from the last step that neither the boundaries nor 
the inside of the building are precisely shaped and filled in figure 
3(f); there are still some noises and gaps in it. Therefore, some 
complementary steps are in need. Firstly, an open morphological 
operation has been applied to remove the noise and fill the gaps. 
Then, the buildings' boundaries were extracted using a simple 
contour method. The final results are shown in figure 3. 

5. Experimental Results 

This section includes three subsections: first, the suitable 
selection of algorithm parameters has been defined. The second 
subsection presents the classification results with and without 
texture. And finally, we analyze the results and compare them with 
other methods. The entire experiment was applied to a dataset from 
Land Information New Zealand urban aerial image for Auckland 
with a size of 6400x9600 for each image and 7.5cm ground 
resolution. The experiment is implemented in Intel 3.2 GHz CPU 
with 16G memory 

 

Li − Ls ≤ Tg 
(6) 
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Figure 3. Experimental result of different stages of the algorithm. (a) The original image; (b) Superpixels ; (c) Aggregation Superpixels, (d) classification results, (e) 
Seed Point Location, (f) after growth (e) Final Shape of The Buildings and (h) The building extraction. 

5.1. Parameters Selection 

Three values must be determined (n, Ts , Tg) where n is the 
initialized number of the superpixels in the SLIC algorithm, Ts and 
𝑇𝑇𝑔𝑔 are the thresholding of the regional growth in Eqs (4) and (6), 
respectively. To initial a suitable number n of the superpixels is a 
two-sided problem. A smaller n leads to fewer calculations and a 
shorter time in execution. On the other hand, the bigger it is, the 
better homogeneity we get. That being said, what it depends on is 
the size and resolution of the image that has been studied. In our 
test, we use different values of n on a cut from Land Information 
New Zealand urban aerial image for Auckland with the size of 
1286x1249 and 7.5cm ground resolution, and the results reveal that 
the best value of n is 2500. Therefore, we can define an equation 
for any image with the exact ground resolution based on that result. 

n =
size image

size test /n test
 (7) 

In the same way, for the two thresholding, Ts and Tg. We can 
define their values using a sample test and apply the exact values 
to the rest of the other images.  

5.2. Classification Results 

For acceptable outcome classification results, we have to keep 
an eye on two things. First, as we said before, a proper choice of 
the initial number of superpixels prevents overlapping groups due 
to the leak of homogeneity. Second is the selection of training sets 
for the SVM methods. The more we cover all the possibilities, the 
better results we get. Under those considerations, figure 4 
illustrates the comparison results of the classification with and 
without adding the texture features. The improvement is much 
more noticeable when buildings have similar colors to the other 
classes. 

 
Figure 4. the comparison results of the classification, (a) the classification with the 
texture features, (b) without adding the texture features, Where the blue represents 
the buildings, the green the grass and the trees, and the red the road and the 
sidewalk 

5.3. Building Detection Comparison 
In this section, the images selected represent diverse building 

characteristics such as size, the shape of buildings, and different 
color combinations of their roofs. Our proposed method has been 
compared to algorithms presented by method [23], a method [26], 
and method [15] to give a qualitative comparison with our 
algorithm. As shown in Figure 5, the images on the first row 
indicate the original input images where we chose three different 
images, and the second row illustrates the final building extraction 
results. 

Firstly, the following quantities were defined: TP (true 
positive), the number of correctly detected buildings, FP (false 
positive), the number of incorrectly detected buildings, and FN 
(false negative), the number of undetected buildings. To quantify 
the accuracy of the building extraction results, we used the 
detection rate (DR or precision) to measure the degree to which 
detected buildings indeed are actual buildings. Furthermore, the 
false-negative rate (FNR) measures the degree of missed 
detections to the total actual buildings. Meanwhile, the 
completeness of detection (COMP) is the number of correctly 
detected buildings without decreasing or increasing their 
boundaries. 

(a) (b) 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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Figure 5: Comparison of building detection results obtained by three different algorithms where (row a) Test images, (row b) The results of the proposed method, (row 
c) The results of the method [15], (row d) The results of the method [23] and (row e) The results of the method [26]. (Red represents building results). 

Table 1: Comparison of the building extraction accuracy of the four algorithms (quantitative analysis of Figure 5). 

 Our method method [23] method [26] method [15] 
TP 3719 3799 3806 3802 
FP 110 749 1083 324 
FN 83 56 23 27 
DR (%) 97.13 83.53 77.85 92.14 
FNR (%) 2.18 1.45 0.6 0.7 
COMP 3570 2966 2323 3445 
COMP (%) 95.99 78.07 61.03 90.61 

 

(a) 

(b) 

(c) 

(d) 

(e) 
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𝐷𝐷𝐷𝐷 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 × 100 (8) 

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
× 100 (9) 

Table 1. shows the comparison results of our approach with 
existing methods; 50 different sizes of images (3883 buildings) 
have been taken for testing. Our method has a greater missed 
detection rate than previous strategies (2.18%). However, it has a 
more efficient detection rate and completeness (97.13%, 95.99%). 
That is since those algorithms detected elements other than 
buildings, such as crossroads, lawns, and parking lots, as a building 
explaining the high detection rate. Furthermore, because of the 
background interference and other visual objects, 164 buildings 
were missed by the proposed method from the total number of 
buildings. Moreover, the small buildings that were tight distributed 
may have been excised and integrated as a single building. It might 
also be that small buildings are harder to detect. 

5.4. Computation Time 

Finally, another important consideration for this method is 
computing time. The proposed methods were implemented in a 
MATLAB environment; Table 2 contains further information 
about computation times. Our suggested approach was applied to 
50 test images (3,883 buildings); each line in the table represents 

the elapsed time for every section. The total time is 2146.18 
seconds, and the average time is approximately 42.92 seconds.  

Furthermore, segmentation takes only 0.34 seconds on 
average, which is the quickest of all steps. Conversely, the SVM 
classification takes substantial time, accounting for 92.1 percent of 
the overall time. Nevertheless, the average time needed to process 
an image is 42 seconds, much shorter than the approaches 
presented in [23] and [26]. 

Through figure 6, We can see that the segmentation images 
evaluation took 0.06 seconds longer than the feature extraction 
time of 0.03 seconds in figure 6a and that the time for zoning is 
less than feature extraction in figure 6b. This is because the regions 
in the 50 images that were processed had completely different 
dimensions (2537*3665, 2961*1761, 3465*5601,...etc.) than the 
area in the tested image (figure. 6B), which has Dimensions 
(1286*1249). 

6. Conclusion 

Almost every building detection method has some limitations 
due to the restrictions that have been applied. This paper presents 
a pipeline for building detection in 2D urban images by 
considering two main problems: the color similarity in urban 
objects and the difference of color shades in building rooftops. The 
proposed algorithm combines color and texture features to classify 
the urban image into four classes to solve the first issue. And the 
reason this is achievable is due to the advantages of using 
superpixels instead of single normal pixels.  

Table 2: The amount of time each section of the proposed building detection 

Section Total Time (s) Average time (s) Percentage (%) 
Image segmentation 17.02 0.3404 0.8% 

Feature extraction 65.83 1.3166 3.1% 

Object classification (shadow 
detection ) 

1975.58 39.5116 92.1% 

The final shape of the building 87.75 1.755 4.1% 

Total 2146.18 42.92.36 100% 

 

 
Figure 6. Building detection computational time in sec. Where (a) Total Time of building detection in 50 images and (b) Total Time of building detection in one image. 
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As for the second one, we use an adaptive regional growth 
method using only the a and b vectors from the Lab color space 
with the texture features. After conducting careful analysis, the 
experimental results revealed a remarkable improvement. 
Compared to the existing algorithm, the range detection procedure 
was quick and accurate, and the computing time required to detect 
the region was also reduced. The automatic detection method used 
in this work is a reliable methodology that may be used during a 
catastrophe event. However, some failures are detected in 
particular cases, like building with different rooftop color parts at 
once. Therefore, we will target more particular situations to 
improve detection accuracy in future work. 
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