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Redundant robotic systems provide great challenges in solving kinematics and control problems,
that are yet also open opportunities for exploring new, diverse and intelligent ideas and methods.
In this paper, an advanced control method is proposed for position control problems of redundant
robots with output constraints. The controller is structured with two control layers. In the
high-level control layer, a cost function is first synthesized from the main control objective under
constraint conditions. Virtual control signals are then reckoned to optimize the cost function
using a soft Momentum-Levenberg-Marquardt approach. To realize the high-level control
command, a nonlinear control signal is employed in the low-level control layer throughout
a new nonsingular terminal sliding mode control structure. Comparative simulation results
verified on a 7-DOF robotic arm model confirmed the effectiveness of the proposed control
algorithm.

1 Introduction

Dealing with the limitations of high-order kinematic redundancy 
robotic models by advanced control methods has always been fo-
cuses of research interests for many years. However, solving the 
inverse kinematics of these flexible models is not inherently simple, 
making it even more difficult for models with many degrees of free-
dom [1], [2]. The same facing issues could be observed in robotic 
control fields.

To solve the inverse-kinematics problems, many interesting 
methods have been developed. In [2], a genetic algorithm was 
employed to minimize both end-effector position errors and joint 
displacements. Promising control results were obtained, but this 
algorithm took a long time to search the optimal values. In [3], an 
intelligent controller was developed for a redundant robot using a 
null-space approach and Bayesian networks. In [4], it is utilized 
properties of a multi-layered neural network that could form any 
continuous nonlinear mapping from one domain to another to de-
sign an inverse-kinematics neural network to avoid obstacles and 
solve different solutions. Implementation time of the biomimetic 
algorithm [3] was impressively fast while the universal ability was 
exhibited by the neural approach [4]. The inverse-kinematics prob-
lem could be also well treated by various optimization methods 
such as the stretched simulated annealing (SSA) algorithm [5], and 
Jacobian pseudo inverse method [6], or the damped least-squares 
(DLS) law [7]. However, physical constraints are open issues of 
these advanced controllers. To cope with these constraint problems,

quadratic programming (QP) solutions were derived using optimiza-
tion algorithms [8]–[9]. By using generic QP solver, it leads to high
computation cost and limit the real-time applicability [10]. Another
direction for such the constraint problem is the use of null-space
constraint remedies [11]. Priority-task vectors could be adopted
to specify the task sequence and saturation functions were used
as barriers of the constraint violations [12]. Outstanding control
performances were produced but the physical constraints were not
strictly consolidated in a smooth manner by using these advanced
controllers.

To realize high-level control commands, a vast of controllers
could be employed such as linear controllers [13], [14] and non-
linear controllers [15], [16]. Between them, sliding mode control
(SMC) methods are favorite by researchers and developers thanks
to their simplicity, robustness and acceptable working performances
[17], [18]. Conventional SMC approaches however only result in
infinite control errors [15], [19]. To further improve the control
performances, terminal sliding mode control (TSMC) schemes were
proposed and effectively applied for a plenty of robotic applications
[19], [20]. Nevertheless, singularity problems were observed in
the normal TSMC frameworks [21]. Such the weak issues were
treated by a nonsingular terminal sliding mode control (NTSMC)
methodologies in which the terminal power was taken into account
for the time-derivative of the error signals instead of original ones
[22]–[23]. However, the use of the NTSMC algorithms leads to
dependence of the control signal directly on the time-derivative ones
and it could activate vibration phenomena in noisy control cases
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[24]–[25]. To deal with the NTSMC problem in a comprehensive
fashion, new design of the NTSMC is required [22], [26], [27].

This paper is an extension of work originally presented in 2021
International Conference on System Science and Engineering (IC-
SSE) [1]. In this article, we demonstrate the versatility of the previ-
ously mentioned intelligent inverse kinematics solution through its
successful application to a 7-DOF redundant robot. Structure of the
proposed controller includes two control layers with the following
contributions:

1. Robustness of the constrained intelligent inverse-kinematics
algorithm in the high-level control layer is improved by the
Momentum - Levenberg- Marquardt learning technique.

2. A new nonsingular nonlinear terminal sliding mode control
method using a flexible power function is proposed for the
low-level control layer to enhance the control performance of
the closed-loop system.

3. Effectiveness of the proposed control method is verified by
comparative simulation results on a 7-DOF robot model.

The outline of the paper is organized as follows. Section 2 dis-
cusses problem statements. The modified design of the intelligent
inverse-kinematics algorithm is presented in Section 3. Section 4
shows a new NTSMC controller. The intensive simulation results
are presented in Section 5. The paper is then concluded in Section
6.

2 Problem Statements
Forward kinematics of a general n-dof robotic manipulator could
be obtained using homogenous-transformation computation [5], [6],
[7]:

Pee = f (θ1, θ2, ..., θn) (1)

where Pee ∈ RN×1 is the end-effector position, θ = [θ1, θ2, ..., θn] is
the vector of joint variables, N is the number of task-space variables,
and f denotes the forward-kinematics computation.

Behaviors of the joint angles are presented by the following
dynamics using the Euler-Lagrange method [28], [27]:

M(θ)θ̈ + C(θ, θ̇) + G(θ) + Fr(θ̇) + d = τ (2)

where τ ∈ Rn×1 is the vector of joint torques, M ∈ Rn×n is a
symmetric positive-definite mass matrix, C ∈ Rn×1 is the Coriolis-
centripetal vector, G ∈ Rn×1 is the gravitational vector, Fr ∈ Rn×1 is
the Coulomb friction vector, and d stands for external disturbances.
Remark 1: Note that with a redundant robot, n is larger than N .
We define a position error combining from a desired position Peed

and the system output Pee. The main control objective here is to
figure out proper control signals (τ) to drive the control error to
zero complying with specific constraints. To this end, the main con-
troller with a two-layer control structure is used. The complicated
dynamics with redundant characteristics and unpredictable external
disturbances are however main obstacles in developing the expected
controller.

3 High-level Control Layer
The structure of the high-level control layer includes the inverse-
kinematics solution stage, the constraint integration stage, and the
optimization stage.

3.1 A Basic Inverse-Kinematics Method

The main control objective is formulated from the current and de-
sired positions, as follows:

E1 = 0.5‖Pee − Peed‖
2 (3)

where ‖•‖ is the Euclidean norm of the term (•).
By using the Jacobian-transpose-based method to minimize the

high-level objective (2), virtual control signal is selected as follows
[6], [29]:

θ̇v = −ηJT (Pee − Peed) (4)

where J ∈ RN×n is the Jacobian matrix of the considering robot, and
η is a positive learning constant.
Remark 2: In fact, there are infinite solutions for the problem (3).
Hence, it is possible to shape possible solutions inside the expected
regions [30].

3.2 Improvements for Joint Constraints

In this subsection, joint constraints are studied as additional control
objectives. The former target (3) is modified as:

E2 = 0.5‖Pee − Peed‖
2 + kT

1 ln
(
θ − θ

)
+ kT

2 ln
(
θ̄ − θ

)
(5)

where k1, k2 ∈ Rn ×1 are vectors of positive constants, and (θ̄, θ) are
the upper and lower bounds of joint variables.

With the new objective (5), the virtual control signal (4) is up-
dated as follows:

θ̇v = −η

(
JT (Pee − Peed) + diag (k1)

1
θ − θ

− diag (k2)
1

θ̄ − θ

)
(6)

Remark 3: When the function ln is added to the expression (5), it
interacts with the angular limit by increasing the value as it gets
closer. This means that the virtual speed will also be subtracted a
significant amount and has a deceleration effect. The parameter will
adjust this interaction amount of the binding component ln.

However, the uncontrolled increase and decrease of this con-
straint component will adversely affect the real error update and
cause large errors for the whole system when working near the hard-
ware limit. The requirement here is that the additional constraint
must be large enough to keep the robot within the allowable area
and small enough to not affect the error update. Therefore, a new
type of the parameter with great flexibility is needed to adjust the
constraint up and down properly. Hence, we develop an alternative
solution that makes the parameters automatically change under a
nonlinear way:  k1 = e−0.5b1|θ−θ|

2

k2 = e−0.5b2|θ−θ̄|
2 (7)

where bi|i=2,3 are positive constants.
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In this virtue, the control signal (6) is updated again as:

θ̇v = −ηJT (Pee − Peed)
−ηdiag (k1)

(
1
θ−θ
− b1

(
θ − θ

)
ln

(
θ − θ

))
−ηdiag (k2)

(
1
θ̄−θ
− b2

(
θ − θ̄

)
ln

(
θ̄ − θ

)) (8)

Remark 4: At this time, values of the constraint components will
be adjusted up by the Gaussian-type gain when the joint variables
approach the upper limits or the lower limits. This is caused by the
characteristics of the Gaussian function [30], [31] as the variable
values approach their centers. Conversely, when the joints move
away from the upper and lower limits, depending on the slope of
the Gaussian function, the gain will decrease very quickly and push
the influence of the constraint down very small. This will satisfy the
requirement set forth above.

3.3 Robust Constraint Inverse-Kinematics Approach

From (8), we have reformed the learning of the virtual control signal
by using the Momentum-Levenberg–Marquardt method to make it
faster while maintaining accuracy:

θ̇v,i = mθ̇v,i−1 −
ηLb

α+‖Lb‖
2

Lb = JT (Pee − Peed) + diag (k1)
(

1
θ−θ
− b1

(
θ − θ

)
ln

(
θ − θ

))
+diag (k2)

(
1
θ̄−θ
− b2

(
θ − θ̄

)
ln

(
θ̄ − θ

))
(9)

where (0 < m < 1) and α are positive constants, and •i, •i−1 denote
current and previous states of (•) .
Remark 5: The advantage of this learning algorithm is that it could
solve the problems of the normal gradient descent learning methods
which are slow to converge and easy to get stuck at the local min-
imum that is difficult or impossible to reach the global minimum
[2], [4], [30]. The Momentum approach could help convergence
faster by creating momentum behaviors from the previous velocity,
while the shortcoming of instability of Momentum methods would
be handled by the Levenberg–Marquardt part due to its ability to
damp and ensure all the joint velocities not too different.

4 Finite-time Low-level Control Layer
The low-level control layer is a controller that realize the virtual
commands (θv) generated by the high-level control one. To control
the robot joint (θ) following the desired virtual control signal (θv) ,
we define a low-level tracking control error:

e = θ − θv (10)

Inspired by terminal sliding mode control theories [17], [18], [19],
we then synthesize an indirect control objective as: s = ė + λ f

f = sgn(e)|e|
e2+γ

e2+β

(11)

where λ and (γ < β) are positive constants.
To realize the control mission (11) or (12) for the robotic system

(10), we propose the following nonlinear terminal control signal:

τ = (C + G + Fr) + M
(
θ̈v − λ ḟ − Kdr sσ − Krosgn(s)

)
(12)

where Kdr,Kro and (0 < σ < 1) are positive control gains.

Figure 1: Block diagram of the proposed controller for redundant robots.

Remark 6: The NTSMC method can solve the problem of low set-
tling time and push the error down very small because the larger the
error leads to the steeper the selected sliding surface s will be (this is
true for both the upper and lower regions of the setpoint); while the
steeper the sliding surface provides the faster and more accurate the
convergence. This is why the control signal can track the setpoint
much better than a Proportional-Integral-Derivative (PID) controller
[32], [31]. Block diagram of the proposed controller is presented in
Fig. 1.

5 Validation Results

Figure 2: Configuration of a 7DOF robot for investigating.

The proposed controller was verified on a 7DOF redundant robot
arm, whose detailed configuration is fully described in Fig. 2. The
robot had three links (d1, d2, d3) and seven joints (θi|i=1..7). The de-
sired trajectory of the robot was planned in the Cartesian coordinate
system Oxyz . The end-effector position Pee = [x, y, z]T of the robot
is expressed as:



x=d1c1s2 − d2(s4(s1s3 − c1c2c3) − c1c4s2) − d3(c6(s4(s1s3 − c1c2c3)
−c1c4s2)+s6(c5(c4(s1s3 − c1c2c3)+c1s2s4)+s5(c3s1+c1c2s3)))

y=d3(c6(s4(c1s3+c2c3s1)+c4s1s2)+s6(c5(c4(c1s3+c2c3s1)
−s1s2s4)+s5(c1c3 − c2s1s3)))

+d2(s4(c1s3+c2c3s1)+c4s1s2)+d1s1s2
z=d2(c2c4 − c3s2s4) − d3(s6(c5(c2s4+c3c4s2) − s2s3s5)
−c6(c2c4 − c3s2s4))+d1c2

where si|i=1..7 := sin(θi) and ci|i=1..7 := cos(θi).
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Figure 3: Structure of the 7DOF robot at working position.

Figure 4: Comparative control errors of the end-effector position obtained by the
controllers.

The parameters of the robot model for simulation were selected
as follows: m1 = 0.5 kg, m2 = 0.5 kg, m3 = 0.5 kg, m4 = 0.3
kg, m5 = 0.3 kg, m6 = 0.2 kg, m7 = 0.2 kg, d1 = d2 = 0.2
m, and d3 = 0.15 m . The operating condition was free of inter-
ference and had a viscous friction force with a selected friction
coefficient µ = 20. The initial values of the joint angles were
θi|i=1..7 = 0, and the initial end-effector position of the robot in
the Cartesian coordinate was (0; 0; 0.55) (m). The desired position
of the end-effector chosen for testing was (0.2; 0.2; 0.1) (m). To
clearly evaluate the control performances of the proposed controller,

a previous control method [1] was employed to realize the same
control mission in the same system under the same testing condi-
tions. Control gains of the previous controller were selected as
b1 = b2 = 0.0001, η = diag([0.4, 0.4, 0.5, 0.5, 0.6, 0.6, 0.6]),KP =

200I7,KI = 50I7,KD = 25I7, while those of the proposed
controller were manually tuned and obtained as b1 = b2 =

0.0001, η = diag([0.4, 0.4, 0.5, 0.5, 0.6, 0.6, 0.6]), α = 1,m =

0.9, λ = 10I7, γi|i=1..7 = 0.95, βi|i=1..7 = 1, σi|i=1..7 = 0.9,Kdr =

100I7,Kro = 0.001I7.
In the first test, the two controllers were applied to control the

robot from the initial position to the desired one with the same low-
level control layer but with different high-level control ones. The
response posture of the robot working under the proposed controller
after the simulation is shown in Fig. 3. Control results obtained are
shown in Figs. 4 - 5.

Figure 5: Reference joint angles generated by the proposed controller from the first
test.

Figure 6: Desired profiles of the joint angles in the joint-constraint test.

The control errors of the end-effector position of the robot ac-
complished by the two controllers are compared in Fig. 4. Gener-
ally, the two control systems were stably working with excellent
steady-state control errors of about (6, 7.2, 4.5) × 10−6(m) in the
x, y, z directions of the end-effector positions, respectively. The
figure also shows that the convergence time of the previous con-
troller was about 310 (s) (the red-dot line) while that of the proposed
controller was only about 203 (s) (the blue-solid line). The faster
results came from the Momentum learning behaviors supported by
the Levenberg–Marquardt adaptation scheme (8). Reference joint
angles generated by the high-level control layer of the proposed
controller are shown in Fig. 5. By combining Figs. 2, 3 and 5,
it can be easy to understand that to reach the desired end-effector
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position, the joints 4 and 6 were hard-working parts with the largest
variations ( from 0 to 1.29) (rad).

Figure 7: Errors of the end-effector in the joint-constraint test.

Figure 8: Comparative output at joint 6 in the first and second tests.

To assess the effectiveness of the joint-constraint feature pro-
posed, in the second test, we limited the joint 6 into a range of
(−π/3 ≤ θ6 ≤ π/3) . The simulation results achieved by the pro-
posed controller for the old and new testing conditions are presented
in Figs. 6-8. As seen in Fig. 7, the proposed controller still ensured
the excellent control quality for the end-effector positions under the
constrained working condition. Furthermore, as shown in Fig. 6,
the profiles of all joint angles would also change to ensure that the
data changes of θ6 was still inside of the given range (−π/3; π/3).
The profiles of the joint variable θ6 in this test and the last test are
compared in Fig. 8. It can be seen that, in the case of the constraint
defined, the angle θ6 increased very fast to the upper limit and then
stopped increasing and kept a certain distance with the upper limit
because the joint velocity was greatly reduced caused by the algo-
rithm. The results would also be similar for the other joints if other
joint constraints were applied. Note that, thanks to the redundant
robot configuration possessed, even though the joint angle θ6 was
limited, the control burden was shared by the other joint angles,
especially by the joint θ2 and θ4, that could be observed in this test
by comparing the data in Figs. 5 and 6.

In the third test, we performed a new simulation to show the
importance of the low-level control layer by comparing the response
quality between the new controllers with NTSMC and previous
PID controllers [1]. The two controllers were used to control the
end-effector of the robot to the desired position and their control
results are compared in Figs. 9-12. For the easier observation, we
only took the results of joints 2, 4, 6 because they are folded joints.

Figure 9: The joint control errors obtained by the new NTSMC controller.

Figure 10: The joint control errors obtained by the previous controller.

Figure 11: The end-effector control errors obtained the proposed controller.

Figure 12: The end-effector control errors obtained the previous controller.

The results in Figs. 9 and 10 indicate that the settling time and
the transient response of the new controller were superior to those of
the old one (ten times faster). Achieving a very small error (±10−4)

www.astesj.com 178

http://www.astesj.com


D.M. Hung et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 174-181 (2022)

in a very short time has shown the effectiveness of the improved
NTSMC method compared to the previous one. The other control re-
sults in Figs. 11 and 12 also imply that with the improvements in the
low-level control layer, it is not surprising about the faster response
and higher accuracy in the end-effector control space obtained by
the proposed controller as comparing to the previous one.

Figure 13: The desired end-effector positions in the fourth test.

Figure 14: External disturbances in the fourth test.

Figure 15: Comparative control errors at the end-effector of the robot.

Figure 16: Comparative control errors of the robot joints.

Figure 17: Control signals generated by the proposed controller at the robot joints.

To validate the feasibility of the proposed control approach, in
the last simulation, the robot was challenged with new desired end-
effector positions of multi-step signals, as depicted in Fig. 13, and
external disturbances at joints 4 and 5 as presented in Fig. 14. The
obtained control results of the proposed and previous controllers
are illustrated in Figs. 15 - 17. Under the new testing conditions,
as seen in Fig. 15, the designed controller still provided higher
control accuracies and faster settling time at the end-effector than
the previous one. To this end, the proposed control approach was
not only employed the robust intelligent learning control law (7)-(9)
but it was also supported by the new NTSMC framework (10)-(12).
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Indeed, as shown in Fig. 16, the control errors of the new nonlin-
ear low-level controller at joints 4 and 5 in the heavy disturbances
were respectively 0.0018 (rad) and 0.002 (rad), while those of the
previous one were 0.03 (rad) and 0.015 (rad). Figure 17 shows the
control signals generated by the proposed controller. The feasibility
of the proposed control method could be confirmed throughout the
data obtained.

6 Conclusions
In this paper, an intelligent two-layer control method for dealing
with inverse-kinematics problems of redundant robots has been
improved and applied to a 7-DOF robot. In the high-level con-
trol layer, the inverse kinematics problem is solved by using the
Momentum-Levenberg optimization method. In cases of the joint
constraint requirements, an advanced constrained learning feature
can be activated to ensure that the robot joints can avoid physical
limit collisions. To enhance the control performance of the overall
system, a new nonlinear terminal sliding mode control framework
is developed in the low-level control layer. The effectiveness of the
proposed control algorithm has been consolidated by comparative
validation results obtained. In the future, the intelligent method will
be integrated more advanced, optimal, flexible working features and
verified on a real-time system.
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