
www.astesj.com 327

Improving the Performance of Hadoop Framework Using Optimization Process in the Information
Management

Ramachandran Ravi Sowmiyasree, Nachimuthu Maheswari*, Manickam Sivagami

School of Computing Science and Engineering,Vellore Institute of Technology, Chennai,India

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 01 June, 2019
Accepted: 17 September, 2019
Online: 22 October, 2019

 Hadoop has certain issues that could be taken care to execute the job efficiently. These
limitations are due to the locality of the data in the cluster, allocation of the jobs,
scheduling of the tasks and resource allocations in Hadoop. Execution in the
mapreduce remains a challenge in terms of efficiency. So, an improved Hadoop
architecture that takes care of the computation time has been discussed. The improved
architecture addresses the communication issues with the task trackers, inefficient
clean up task, heartbeat function. Comparing with native Hadoop, the improved
Hadoop reduces the total time taken for running the reducer tasks. The performance of
the improved system using optimization serves better in the computation time.

Keywords:
Bigdata
Hadoop
Performance
Map reduce
Hive
sqoop

1. Introduction

Big data has a huge volume, velocity and variety of
information, which produces cost effective, new forms of
information processing that helps in decision making, prediction
and automation etc. Big data analytics is the process of analyzing
large and varied data sets i.e., big data to discover hidden patterns,
unknown correlations, trends, user preferences and other useful
information that can help organizations to take better decisions in
business. Parallel processing in data analytics has appeared as an
interdisciplinary research area due to the nature and large size of
data [1]. Pattern matching/mining or analysis need huge amount
of complex data processing and computing [2].

Significant and reasonable allocation of resources are required to
solve complicated problems [3]. It is very difficult to understand
and process the data using traditional processing techniques. Big
data parallel processing platforms has selected new possibilities
to process the structured, semi-structured or unstructured data [4].

1.1 Problem Statement

 Data localization and the resource allocation for the tasks are
the challenges in the Hadoop. Effective and efficient resource

allocation are the challenges in the map reduce framework. In
order to implement an architecture with the data gathered from
different sources of the systems as in the banking practice and
various data processing supports as in the traditional global
financial systems, an improvement in the computation time is
required.

1.2 Motivation

 Financial sectors and the banks are facing severe demands
due to the growth of data processing. This happens not only from
the improved regulatory requirements and an inconsistency in the
data sources. The cost has to be reduced without compromising
scalability and flexibility. In this scenario, the financial services
industry shows tremendous interest in applying big data
technologies to extract the significant value from the large amount
of generated data. So, there is a requirement to improve the
computation time of the process.

 The proposed system addresses the issues in communicating
with the task trackers, inefficient cleanup tasks, heartbeat
function. Time taken for the reducers to complete the task has
been reduced, which helps in better computation time.

 The sections of the paper are divided as follows: Section 2
discussed some related works. In section 3, Hadoop map reduce

ASTESJ

ISSN: 2415-6698

* Nachimuthu Maheswari, Email: maheswari.n@vit.ac.in

Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 327-333 (2019)

www.astesj.com

Special Issue on Advancement in Engineering and Computer Science

https://dx.doi.org/10.25046/aj040542

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj040542

R.R. Sowmiyasree et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 327-333 (2019)

www.astesj.com 328

work flow and its performance is discussed. In section 4, the
enhanced hadoop system is discussed. In section 5, the
implementation phase is discussed. In section 6, the results are
evaluated and discussed. In section 7, the conclusion is provided.
Finally, in section 8, the future works are discussed.

2. Related Work

The improvement in Hadoop Mapreduce performance has
suggested from different concerns or aspects. Many works have
suggested in the improvement of the performance of mapreduce
jobs and the hadoop, such as scheduling the jobs and computation
time improvement. Scheduling the job and the execution time are
considered as the important features of Hadoop [5] [6]. Various
studies have given the information and have received the results
using their ideas [7] [8]. Few people focus on the time of starting
and ending process of map reduce job processing [9]. Issues in the
system memory could be addressed to improve the performance
of the overall system [10]. Apart from Hadoop, few studies utilize
a distributed caching method to enhance the performance of
Hadoop [11] [12]. Shm Streaming [13] proposes a streaming type
of schema to give First In First Out queue as lock less which joins
Hadoop and other programs. Hadoop spreads the redundant data
into various nodes in various racks. This will be helpful in false
tolerant issues. Various studies consider the improvements in data
locality development for the betterment of hadoop [14]. Few,
discuss on the data types for the betterment in the performance of
Hadoop [15].

3. Hadoop Overview

Hadoop is an open source framework for distributed storage
and processing. It gives solutions for big data processing and
analysis. Hadoop has a file system that stores the data relevant to
the applications. The interface is known as the Hadoop
Distributed File System (HDFS). Hadoop Distributed File System
shares the resources for data analysis. The major parts of Hadoop
are map reduce and Hadoop Distributed File System. Other hand,
moving the computing towards the data is less costlier than
movement of data towards computing [16]. Hadoop allocates file
system to store huge amount of data files across the nodes in the
clusters.

In HDFS, the Hadoop cluster has two components, which are

the masters- Name Node and the slaves- Data Nodes. In Hadoop
cluster, name node is responsible for maintaining the file system.
It helps in maintaining the data and sending the jobs to the
corresponding data nodes responsible for the application data
[17]. Job tracker works in the master node. Job Tracker takes care
of the data related to the applications in the data nodes with the
help of the task tracker for processing. Each task is running in the
respective allotted slot in a data node, which has a fixed amount
of map/reduce slots.

3.1 Mapreduce

Map reduce processes the job that splits the input data of the
job into independent parts and stores the data in HDFS. During
map reduce execution phase, multiple map tasks are processed in
parallel. After the completion of the map tasks multiple reduce
tasks are processed in parallel [18]. With respect to the

applications the total number of allotted map tasks be different
than that of reduce tasks. Data that are stored in HDFS and
processed in map/reduce framework is the form of key and value
pair. It has stored and used in the map/reduce tasks to determine
the required results at the end of the job. The final results will be
displayed in the key and value combination.

3.2 Mapreduce Work flow

HDFS stored the data required for the map reduce job and the
data is distributed in to the blocks. Each mapper processed one
block in the same time. Inside the mapper phase, the user can give
the logic as per theproblem requirements. So that the map tasks
runs on all the nodes in the cluster and computes the data parallelly
that are stored in the blocks.

The mapper output is stored in the local disk as it is only the
intermediate output. If it is written on HDFS, that will create
unnecessary multiple copies as the HDFS always replicates the
data. The mapper output is sorted/shuffled and submitted to the
reducer. The shuffling/sorting has taken care by the internal
process. Reducer phase is the next phase of processing and the
user can specify his/her own statements. Input to the reducer is
given by all the mappers. The final output is produced by the
reducer and written on HDFS.

4. Improved Hadoop System

The focus is on transferring the relational data into HDFS
using sqoop. The exported data is analysed using Hive by using
Hive Query Language [19]. The data is partitioned and is fed into
MapReduce for further processing. The MapReduce jobs are
optimized due to the changes done in the configuration of Job in
progress, Task in progress and Task tracker files of hadoop.

Figure.1 Diagrammatic representation of the proposed system

The bank MySql Database contains the required datasets. The
data is exported to HDFS using Sqoop tool. Then Hive does the
partition of the exported data, for which the results gets stored in
HDFS. Then the Hive partitioned data is analysed and fetched
from HDFS for MapReduce processing. The next step is
Optimisation, which is like the heart of the work. Once the
optimisation is over, the results are compared with that of the
native hadoop to prove the working correctness of the work as

http://www.astesj.com/

R.R. Sowmiyasree et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 327-333 (2019)

www.astesj.com 329

shown in Figure 1. The flow of the proposed system is explained
below:

System Work flow

Step 1: Client requests for data sets. Bank data set is transferred
from Mysql to HDFS using Sqoop.

Step 2: Hive extracts the data and partition the data set for map
reduce programming.

Step 3: Changes performed in the Jobinprogress, Taskin progress,
task tracker files.

Step 4: Name node initializes the job. Data fetched from the data
node and performs the job.

Step 5: Performance of the results with respect to the computation
time is compared with the native Hadoop.

4.1 Data Collection and Preprocessing

The Initial phase of the work is data collection. The article has
a bank dataset that contains the account details, customer details
and transaction details in MySql database.The transfer of the
dataset into hadoop (HDFS), i.e, data migration is done using
Sqoop tool. Sqoop supports for transferring data from relational
databases to Hadoop.

Data from the three datasets (account,customer and
transaction) are combined with its attributed and produced 21,215
records. The final combined dataset has the following attributes:
account number, transaction type, amount, month and year.

In this phase, the dataset is fetched into hadoop (HDFS) using

Sqoop Tool as in Figure 2. Using Sqoop, customized
functionalities can be performed like fetching the particular
column or fetching the dataset with specific condition and data
can be stored in hadoop (HDFS).

Figure.2 Data preprocessing using sqoop

4.2 Data Analysis

In this phase, the dataset is analysed using HIVE tool which
will be stored in hadoop (HDFS). For analyzing the dataset, HIVE
uses HQL Language. Hive is chosen because it is a data
warehouse by itself. Hive has the ability to work on top of an
existing Hadoop cluster and provides SQL-like interface. The user
can map the existing Sqoop tables to Hive and operate on them as
shown in Figure3.

4.2.1 Partitioning

Hive arranges the tables into partitions. The records are
partitioned based on the transaction type(with draw, transfer,
deposit). Partitioning helps in dividing a table into related parts
based on the values of partitioned columns as shown in Figure 4.
Partitioning is useful in querying a portion of the data.

Figure.3 Data analysis using Hive

Figure.4 Partitioning the transaction data

The number of rows loaded and the time taken to load the
partitioned data into HDFS is shown in Figure 5.

Figure.5 Loading partitioned data into HDFS

4.2.2 Bucketing

Bucketing decomposes data into manageable or equal parts as
shown in Figure 6. The user can restrict the number of buckets to
store the data. It provides faster query response. The number of
required buckets can be given during the table creation. Loading
of equal volume of data has to be done manually by programmers
is a significant issue.

Choosing partitioned data over bucketed data

The size of the loaded partitioned data in the three partitions
is less when compared to the size of the loaded bucketed data.

http://www.astesj.com/

R.R. Sowmiyasree et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 327-333 (2019)

www.astesj.com 330

Bucketing works well when the field has high cardinality (number
of possible values a field can have) and data is evenly distributed
among buckets. Partitioning works best when the cardinality of
the partitioning field is low.

Figure.6 Bucketed data in HDFS

4.3 Data Processing

Data Processing is done using Hadoop Madpreduce. The
partitioned data is fed into MapReduce for the processing. The
main factor considered is the SLOTS_MILLIS_REDUCES[20].
It represents the total time taken for running the reduce tasks in
milliseconds in the occupied slots. It also includes the tasks that
where started speculatively as shown in Figure 7.

Figure.7 Running mapreduce job

4.4 Optimisation

Optimisation can be done to the native hadoop by changing
the configuration factors of the system. There are three main files
in hadoop[21], to which the changes are done to obtain an
improved and an optimised version of hadoop. The files in hadoop
to which the changes are made in order to obtain an improved
version are

JobInProgress.java

JobInProgress maintains all the information in order to keep
the job on the straight. It maintains its JobProfile and its updated
JobStatus, along with a set of tables for doing bookkeeping of its
tasks.

TaskInProgress.java

TaskInProgress (TIP) maintains all the information required
for a task in the lifetime of its owning Job. A given task might be
executed or re-executed, so level of indirection is needed above
the running-id itself. A given TaskInProgress contains multiple
taskids, zero or more of which might be executing at any one time,
allowing speculative execution. A TIP allocates enough taskids to
account for all the speculation and failures it will ever have to
handle. TIP is dead when they are up.

TaskTracker.java

Task tracker is a process that initiates and monitors the map
reduce tasks in the environment. It communicates the Job tracker
for assigning the tasks and update the status.

4.4.1 JobInProgress

The changes made to the JobInProgress.java are as follows,

Contacting the tasktracker at once

In native hadoop, the task can contact the TT only after the
whole task gets completed. So change is made so that, once the
runJobSetupTask() works, the task can contact the TT then and
there. It is beneficial as the TT is well informed of the on-going
tasks and can also help to avoid speculations.

Launching Synchronised Cleanup

In native hadoop, Cleanup task is called once at the end of the
task. The change made here is the introduction of Synchronised
Cleanup task, which is launched before the cleanup task. It
updates the last known cluster size then and there. It is highly
beneficial in case of multiple tasks.

Later check of Cleanup
It checks whether the cleanup task is launched already or if

the setup is not launched already. The later check is beneficial
when the number of maps is zero.

4.4.2 TaskInProgress

The changes made to the TaskInProgress.java are as
follows,

Skipping feature

Since completed reduces (for which the outputs go to hdfs) are
not failed, this failure is noted only for completed maps, only if
the particular tasked completes the particular map. However if the
job is done, there is no need to manipulate completed maps. Reset
the successful TaskId since no successful tasks can be concluded
while running. There can be failures of tasks that are hosted on a
machine that has not yet registered with restarted jobtracker.
Therefore, the skipping feature recalculates the counts only if it is
a genuine failure.

SetComplete function

When the TIP is complete, the other speculative subtasks will
be closed when the owning tasktracker reports in and calls should
close on the required object.

4.4.3 TaskTracker

The changes made to the TaskTracker.java are as follows,

http://www.astesj.com/

R.R. Sowmiyasree et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 327-333 (2019)

www.astesj.com 331

Resetting heartbeat interval from the response

The name node and the data node communicate using
Heartbeat messages. After a certain amount of time, if the Name
Node does not receive any response from Data Node, then that
particular Data Node is declared as dead. The normal heartbeat
period is three seconds. If the name node is not receiving the
heartbeat from a data node in ten minutes, then the name node
decides the data node to be not in service and the data node’s
replicas are considered to be unavailable. The name node allocates
the new replicas for the unavailable blocks in the other data nodes.
The heartbeat message from the data node carries the information
regarding the storage, amount of usage and transfer rate of data in
the current state. Such details are helpful for the name nodes
allocation of blocks and the decision making in load balancing.

By resetting heartbeat interval from the response, the TT
knows the completed tasks. Once cleanup of the completed task
is over, normal operation is resumed.

5. Implementation
5.1 Mapper Class

The map task is to process the input data. The input data is
stored in the Hadoop Distributed File System (HDFS). The input
file is passed to the map function and read line by line. The mapper
processes the data and produces the intermediate data. The
amount, transaction type, year and month are initialised according
to the positions in the input data. The mapper class writes the year,
month, transaction type and amount along with the sum into
HDFS.

5.2 Reducer Class

This stage is the combination of the shuffle and the reduce
stage. The Reducers job is to process the data that comes from the
mapper. After processing, it produces a new collection of output,
which will be stored in the HDFS.

5.3 Driver Class

The Driver class verifies the arguments from the command
line. The input/output file details, job details are available in the
command line. It assigns values for the job. The driver starts the
execution from the main () method. In this method, a new
configuration object and the Job are instantiated.

The job.waitForCompletion() helps to unveils the job
perfectly. This driver code helps to wait for the job completion.
The job status will be updated after the job completion. The true
argument informs the framework to write verbose output to the
controlling terminal of the job.

6. Results and Discussion

The work has done using bank data, which is analysed to
identify the future trends in the sector. The improvement in the
Hadoop performance is ensured by the factors such as
computation time, time taken for running reduce tasks, contacting
the task trackers at once, synchronised clean up, skipping feature,
resetting the heartbeat interval.

6.1 Health of the file in HDFS after optimization

The fsck command in hadoop runs a HDFS file system
checking utility. It is designed for reporting problems with various

files. It checks health of hadoop file system. It produces a report
that gives the complete health of the file system. HDFS is
considered healthy if all the files have a minimum number of
replicas as shown in Figure.8.

Table 1. Performance Analysis

Factors

Before
Optimizati
on(sec)

After
Optimizati
on(sec)

Job Duration 82 23

Map Time 60 3

Reduce Time 22 20

Figure.8 Health status of the result

Figure.9 Performance - before and after optimization

http://www.astesj.com/

R.R. Sowmiyasree et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 327-333 (2019)

www.astesj.com 332

SLOTS MILLIS REDUCES is the total time spent by all reduces
in the occupied slots. Difference in the time taken for running
reduces tasks before and after optimisation is noted to be 1367ms
as shown in Figure 9. After optimization it takes less time.

6.2 Performance Analysis

The performance of the job for the same input is analysed
before and after the optimisation is show in Table 1. Job duration,
Map task time and Reduce task time are taken as the factors for
the performance analysis. The time taken to complete the job is
less after optimization is shown in Figure 10. The performance
has evidently improved after the optimisation.

Figure.10 Performance Evaluation

7. Conclusion

In this article, an improved hadoop framework is presented. It
includes analysing the internal working of the Hadoop
MapReduce job, so that changes are done to the job in progress,
task in progress and task tracker files. In H2Hadoop [19] the work
was concentrated on the DNA dataset only and in the improved
hadoop [22] they have considered the text data and the
performance time was not reasonably improved. The changes
performed to optimise the system in this article are in contact with
the job tracker at once, launching synchronised cleanup function,
cleanup later checkup, skipping feature, resetting the heartbeat
interval from the response, avoiding speculative tasks resulted in
an improved hadoop framework. The performance of the
improved system using optimization is better in the computation
time.

8. Future Work

Performance factors

The other performance factors of File System Counters,
MapReduce Framework can be modified to obtain a more
optimised hadoop system.

Tool for better performance

The result can be analysed using Spark to obtain a faster
performance than Hadoop, as spark runs in-memory on the
cluster, and it is not tied to Hadoop MapReduce paradigm. This
makes repeated access to the same data much faster. Spark can

run as a standalone or on top of Hadoop YARN, where it can read
data directly from HDFS.

Security issues in Hadoop can be addressed at various levels,
including but not limited to file system, networks, scheduling,
load balancing, concurrency control, and databases.

References
[1] MMing, M., G. Jing, and C. Jun-jie, “Blast-Parallel: The parallelizing

implementation of sequence alignment algorithms based on Hadoop
platform”, In: Proc. of International Conf. on Biomedical Engineering and
Informatics (BMEI), IEEE, pp. 465-470, 2013.
doi: 10.1109/BMEI.2013.6746988

[2] cC. Schatz, B. Langmead and S. L. Salzberg, “Cloud computing and the
DNA data race”, Journal of Nature biotechnology, Vol.28, No.7, p.691,
2010. doi:10.1038/nbt0710-691.

[3] E. E. Schadt, et al., “Computational solutions to large-scale data management
and analysis”, Journal of Nature Reviews Genetics, Vol.11, No.9, pp. 647-
657, 2010. https://doi.org/10.1038/nrg2857.

[4] Marx, Biology: The big challenges of big data. Nature Publishing,
498(7453): pp. 255-260, 2013. https://doi.org/10.1038/498255a

[5] N. Tiwari, S. Sarkar, U. Bellur and M. Indrawan, “Classification framework
of MapReduce scheduling algorithms”, International Journal of ACM
Computing Surveys (CSUR), Vol.47, No.3, p.49, 2015.doi:10.1145/2693315

[6] M. Zaharia, et al., Job scheduling for multi- user mapreduce clusters, Tech.
Rep. UCB/EECS-2009-55, EECS Department, University of California,
Berkeley, 2009. doi =10.1.1.649.3097

[7] R. Gu, et al., “SHadoop: Improving MapReduce performance by optimizing
job execution mechanism in Hadoop clusters”, Journal of Parallel and
Distributed Computing, Vol.74, No.3, pp. 2166-2179, 2014.
https://doi.org/10/1016/j.jpdc.2013.10.003

[8] Q. Chen, C. Liu, and Z. Xiao, “Improving MapReduce performance using
smart speculative execution strategy”, Journal of IEEE Transactions on
Computers, Vol.63, No.4, pp.954-967, 2014. doi:10.1109/TC.2013.15

[9] Y. Jinshuang, et al., “Performance Optimization for Short MapReduce Job
Execution in Hadoop”, In: Proc. of International Conf. on Cloud and Green
Computing (CGC), IEEE, pp. 688-694, 2012. doi:10.1109/CGC.2012.40

[10] Apache, Centralized Cache Management in HDFS. Update date
2014.https://hadoop.apache.org

[11] S. Zhang, et al., “Accelerating MapReduce with distributed memory cache”,
In: Proc. of International Conf. On Parallel and Distributed Systems
(ICPADS), IEEE, pp.472-478, 2009. doi:10.1109/ICPADS.2009.88

[12] J. Zhang, G. Wu, X. Hu and X. Wu, “A Distributed Cache for Hadoop
Distributed File System in Real-Time Cloud Services”, In: Proc. of
International Conf. On Grid Computing, IEEE Computer Society, pp.12-21,
2012. doi:10.1109/Grid.2012.17

[13] L. Longbin, et al., “ShmStreaming: A Shared Memory Approach for
Improving Hadoop Streaming Performance”, In: Proc. of International Conf.
On Advanced Information Networking and Applications (AINA), IEEE,
pp.137-144, 2013. doi:10.1109/AINA.2013.90

[14] B. Palanisamy, et al., “Purlieus: locality-aware resource allocation for
MapReduce in a cloud.”, In: Proc. of International Conf. On High
Performance Computing, Networking, Storage and Analysis, ACM, pp.1-11,
2011. doi:10.1145/2063384.2063462

[15] H. Alshammari, J. Lee and H. Bajwa, "H2Hadoop: Improving Hadoop
Performance Using the Metadata of Related Jobs," in IEEE Transactions on
Cloud Computing, vol. 6, no. 4, pp. 1031-1040,
2016.doi:10.1109/TCC.2016.2535261

[16] Hammoud, and M. F. Sakr, “Locality-aware reduce task scheduling for
MapReduce”, In: International Conf. on Cloud Computing Technology and
Science (CloudCom), IEEE, pp. 570-576, 2011.
doi:10.1109/CloudCom.2011.87

[17] J. B. Buck, et al., “SciHadoop: Array-based query processing in Hadoop”,

In: Proc. of International Conf. on High Performance Computing,
Networking, Storage and Analysis (SC), 2011.
doi:10.1145/2063384.2063473

[18] Holmes, Hadoop in Practice, Manning Publications Co., 2012.
[19] Edward, W. Dean and R. Jason, Programming hive, O’Reilly Publications,

2012.

http://www.astesj.com/
https://doi.org/10.1109/BMEI.2013.6746988

R.R. Sowmiyasree et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 327-333 (2019)

www.astesj.com 333

[20] Y. Xiao and B. Hong, “Bi-Hadoop: Extending Hadoop to Improve Support
for Binary-Input Applications”, In: Proc. of International Symposium On
Cluster, Cloud and Grid Computing (CCGrid), IEEE/ACM, pp.245-252,
2013. doi:10.1109/CCGrid.2013.56

[21] https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/mapreduce/Jo
bCounter.html

[22] Thanekar, Sachin & Bagwan, A. & Subrahmanyam, K..,Improving Hadoop
performance by enhancing name node capabilities.Fronteiras. 6. 1-18.,2016.
doi:10.21664/2238-8869.

http://www.astesj.com/
https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/mapreduce/JobCounter.html
https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/mapreduce/JobCounter.html

	References

