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  Hadoop has certain issues that could be taken care to execute the job efficiently. These 
limitations are due to the locality of the data in the cluster, allocation of the jobs, 
scheduling of the tasks and resource allocations in Hadoop. Execution in the 
mapreduce remains a challenge in terms of efficiency. So, an improved Hadoop 
architecture that takes care of the computation time has been discussed. The improved 
architecture addresses the communication issues with the task trackers, inefficient 
clean up task, heartbeat function. Comparing with native Hadoop, the improved 
Hadoop reduces the total time taken for running the reducer tasks. The performance of 
the improved system using optimization serves better in the computation time. 
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1. Introduction 

Big data has a huge volume, velocity and variety of 
information, which produces cost effective, new forms of 
information processing that helps in decision making, prediction 
and automation etc. Big data analytics is the process of analyzing 
large and varied data sets i.e., big data to discover hidden patterns, 
unknown correlations, trends, user preferences and other useful 
information that can help organizations to take better decisions in 
business. Parallel processing in data analytics has appeared as an 
interdisciplinary research area due to the nature and large size of 
data [1]. Pattern matching/mining or analysis need huge amount 
of complex data processing and computing [2]. 

Significant and reasonable allocation of resources are required to 
solve complicated problems [3]. It is very difficult to understand 
and process the data using traditional processing techniques. Big 
data parallel processing platforms has selected new possibilities 
to process the structured, semi-structured or unstructured data [4].  
 
1.1 Problem Statement 
 
      Data localization and the resource allocation for the tasks are 
the challenges in the Hadoop. Effective and efficient resource 

allocation are the challenges in the map reduce framework. In 
order to implement an architecture with the data gathered from 
different sources of the systems as in the banking practice and 
various data processing supports as in the traditional global 
financial systems, an improvement in the computation time is 
required.  
 
1.2 Motivation 
 
        Financial sectors and the banks are facing severe demands 
due to the growth of data processing. This happens not only from 
the improved regulatory requirements and an inconsistency in the 
data sources. The cost has to be reduced  without compromising 
scalability and flexibility. In this scenario, the financial services 
industry shows tremendous interest in applying big data 
technologies to extract the significant value from the large amount 
of generated data. So, there is a requirement to improve the 
computation time of the process. 

      The proposed system addresses the issues in communicating 
with the task trackers, inefficient cleanup tasks, heartbeat 
function. Time taken for the reducers to complete the task has 
been reduced, which helps in better computation time. 
 
      The sections of the paper are divided as follows: Section 2 
discussed some related works. In section 3, Hadoop map reduce 
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work flow and its performance is discussed. In section 4, the 
enhanced hadoop system is discussed. In section 5, the 
implementation phase is discussed. In section 6, the results are 
evaluated and discussed. In section 7, the conclusion is provided. 
Finally, in section 8, the future works are discussed. 
 
2. Related Work 

The improvement in Hadoop Mapreduce performance has 
suggested from different concerns or aspects. Many works have 
suggested in the improvement of  the performance of mapreduce 
jobs and the hadoop, such as scheduling the jobs and computation 
time improvement. Scheduling the job and the execution time are 
considered as the important features of Hadoop [5] [6]. Various 
studies have given the information and have received the results 
using their ideas [7] [8]. Few people focus on the time of starting 
and ending process of map reduce job processing [9]. Issues in the 
system memory could be addressed to improve the performance 
of the overall system [10]. Apart from Hadoop, few studies utilize 
a distributed caching method to enhance the performance of 
Hadoop [11] [12]. Shm Streaming [13] proposes a streaming type 
of schema to give First In First Out queue as lock less which joins 
Hadoop and other programs. Hadoop spreads the redundant data 
into various nodes in various racks. This will be helpful in false 
tolerant issues. Various studies consider the improvements in data 
locality development for the betterment of hadoop [14]. Few, 
discuss on the data types for the betterment in the performance of 
Hadoop [15]. 

3. Hadoop Overview 

Hadoop is an open source framework for distributed storage 
and processing. It gives solutions for big data processing and 
analysis. Hadoop has a file system that stores the data relevant to 
the applications. The interface is known as the Hadoop 
Distributed File System (HDFS). Hadoop Distributed File System 
shares the resources for data analysis. The major parts of Hadoop 
are map reduce and Hadoop Distributed File System. Other hand, 
moving the computing towards the data is less costlier than 
movement of data towards computing [16]. Hadoop allocates file 
system to store huge amount of data files across the nodes in the 
clusters. 

 
In HDFS, the Hadoop cluster has two components, which are 

the masters- Name Node and the slaves- Data Nodes. In Hadoop 
cluster, name node is responsible for maintaining the file system. 
It helps in maintaining the data and sending the jobs to the 
corresponding data nodes responsible for the application data 
[17]. Job tracker works in the master node. Job Tracker takes care 
of the data related to the applications in the data nodes with the 
help of the task tracker  for processing. Each task is running in the 
respective allotted slot in a data node, which has a fixed amount 
of map/reduce slots. 

3.1 Mapreduce 

Map reduce processes the job that splits the input data of the 
job into independent parts and stores the data in HDFS. During 
map reduce execution phase, multiple map tasks are processed in 
parallel. After the completion of the map tasks multiple reduce 
tasks are processed in parallel [18]. With respect to the 

applications the total number of allotted map tasks  be different 
than that of reduce tasks. Data that are stored in HDFS and 
processed in map/reduce framework is the form of key and value 
pair. It has stored and used in the map/reduce tasks to determine 
the required results at the end of the job. The final results will be 
displayed in the key and value combination.  

3.2 Mapreduce Work flow 

HDFS stored the data required for the map reduce job and the 
data is distributed in to the blocks. Each mapper processed one 
block in the same time. Inside  the mapper phase, the user can give 
the logic as per theproblem requirements. So that the map tasks 
runs on all the nodes in the cluster and computes the data parallelly 
that are stored in the blocks. 

The mapper output is stored in the local disk as it is only the 
intermediate output. If it is written on HDFS, that will create 
unnecessary multiple copies as the HDFS always replicates the 
data. The mapper output is sorted/shuffled and submitted to the 
reducer. The shuffling/sorting has taken care by the internal 
process.  Reducer phase is the next phase of processing and the  
user can specify his/her own statements. Input to the reducer is 
given by all the mappers. The final output is produced by the 
reducer and  written on HDFS. 

4. Improved Hadoop System 

The focus is on transferring the relational data into HDFS 
using sqoop. The exported data is analysed using Hive by using 
Hive Query Language [19]. The data is partitioned and is fed into 
MapReduce for further processing. The MapReduce jobs are 
optimized due to the changes done in the configuration of Job in 
progress, Task in progress and Task tracker files of hadoop.  

 

 
Figure.1 Diagrammatic representation of the proposed system 

The bank MySql Database contains the required datasets. The 
data is exported to HDFS using Sqoop tool. Then Hive does the 
partition of the exported data, for which the results gets stored in 
HDFS. Then the Hive partitioned data is analysed and fetched 
from HDFS for MapReduce processing. The next step is 
Optimisation, which is like the heart of the work. Once the 
optimisation is over, the results are compared with that of the 
native hadoop to prove the working correctness of the work as 
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shown in Figure 1. The flow of the proposed system is explained 
below: 

System Work flow 

Step 1: Client requests for data sets. Bank data set is transferred 
from Mysql to HDFS using Sqoop. 

Step 2: Hive extracts the data and partition the data set for map 
reduce programming. 

Step 3: Changes performed in the Jobinprogress, Taskin progress, 
task tracker files. 

Step 4: Name node initializes the job. Data fetched from the data 
node and performs the job. 

Step 5: Performance of the results with respect to the computation 
time is compared with the native Hadoop. 

4.1 Data Collection and Preprocessing 
 

The Initial phase of the work is data collection. The article has 
a bank dataset that contains the account details, customer details 
and transaction details in MySql database.The transfer of the 
dataset into hadoop (HDFS), i.e, data migration is done using 
Sqoop tool. Sqoop supports  for transferring data from relational 
databases to Hadoop. 

Data from the three datasets (account,customer and 
transaction) are combined with its attributed and produced 21,215 
records. The final combined dataset has the following attributes: 
account number, transaction type, amount, month and year.  

  
In this phase, the dataset is fetched into hadoop (HDFS) using 

Sqoop Tool as in Figure 2. Using Sqoop, customized 
functionalities can be performed like fetching the particular 
column or fetching the dataset with specific condition and data 
can be stored in hadoop (HDFS). 

 

 
Figure.2 Data preprocessing using sqoop 

4.2 Data Analysis 

In this phase, the dataset is analysed using HIVE tool which 
will be stored in hadoop (HDFS). For analyzing the dataset, HIVE 
uses HQL Language. Hive is chosen because it is a data 
warehouse by itself. Hive has the ability to work on top of an 
existing Hadoop cluster and provides SQL-like interface. The user 
can map the existing Sqoop tables to Hive and operate on them as 
shown in Figure3. 

4.2.1 Partitioning 

Hive arranges the tables into partitions. The records are 
partitioned based on the transaction type(with draw, transfer, 
deposit). Partitioning helps in dividing a table into related parts 
based on the values of partitioned columns as shown in Figure 4. 
Partitioning is useful in querying a portion of the data. 

 
Figure.3 Data analysis using Hive 

 
Figure.4 Partitioning the transaction data 

 
The number of rows loaded and the time taken to load the 
partitioned data into HDFS is shown in Figure 5. 

 
Figure.5 Loading partitioned data into HDFS 

4.2.2 Bucketing 

Bucketing decomposes data into manageable or equal parts as 
shown in Figure 6. The user can restrict the number of buckets to 
store the data. It provides faster query response. The number of 
required buckets can be given during the table creation. Loading 
of equal volume of data has to be done manually by programmers 
is a significant issue. 

Choosing partitioned data over bucketed data 

The size of the loaded partitioned data in the three partitions 
is less when compared to the size of the loaded bucketed data. 
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Bucketing works well when the field has high cardinality (number 
of possible values a field can have) and data is evenly distributed 
among buckets. Partitioning works best when the cardinality of 
the partitioning field is low. 

 
Figure.6 Bucketed data in HDFS 

4.3 Data Processing 

Data Processing is done using Hadoop Madpreduce. The 
partitioned data is fed into MapReduce for the processing. The 
main factor considered is the SLOTS_MILLIS_REDUCES[20]. 
It represents the total time taken for running the reduce tasks in 
milliseconds in the occupied slots. It also includes the tasks that 
where started speculatively as shown in Figure 7. 

 
Figure.7 Running mapreduce job 

4.4 Optimisation 

Optimisation can be done to the native hadoop by changing 
the configuration factors of the system. There are three main files 
in hadoop[21], to which the changes are done to obtain an 
improved and an optimised version of hadoop. The files in hadoop 
to which the changes are made in order to obtain an improved 
version are  

JobInProgress.java 

JobInProgress maintains all the information in order to keep 
the job on the straight. It maintains its JobProfile and its updated 
JobStatus, along with a set of tables for doing bookkeeping of its 
tasks. 

TaskInProgress.java 

TaskInProgress (TIP) maintains all the information required 
for a task in the lifetime of its owning Job. A given task might be  
executed or re-executed, so level of indirection is needed above 
the running-id itself. A given TaskInProgress contains multiple 
taskids, zero or more of which might be executing at any one time, 
allowing speculative execution. A TIP allocates enough taskids to 
account for all the speculation and failures it will ever have to 
handle. TIP is dead when they are up. 

TaskTracker.java 

Task tracker is a process that initiates and monitors the map 
reduce tasks in the environment. It communicates the Job tracker 
for assigning the tasks and update the status. 

4.4.1 JobInProgress 

The changes made to the JobInProgress.java are as follows, 

Contacting the tasktracker at once 

In native hadoop, the task can contact the TT only after the 
whole task gets completed. So change is made so that, once the 
runJobSetupTask() works, the task can contact the TT then and 
there. It is beneficial as the TT is well informed of the on-going 
tasks and can also help to avoid speculations. 

Launching Synchronised Cleanup 

In native hadoop, Cleanup task is called once at the end of the 
task. The change made here is the introduction of Synchronised 
Cleanup task, which is launched before the cleanup task. It 
updates the last known cluster size then and there. It is highly 
beneficial in case of multiple tasks. 

Later check of Cleanup 
It checks whether the cleanup task is launched already or if 

the setup is not launched already. The later check is beneficial 
when the number of maps is zero. 

4.4.2 TaskInProgress 

The changes made to the TaskInProgress.java are as 
follows, 

Skipping feature 

Since completed reduces (for which the outputs go to hdfs) are 
not failed, this failure is noted only for completed maps, only if 
the particular tasked completes the particular map. However if the 
job is done, there is no need to manipulate completed maps. Reset 
the successful TaskId since no successful tasks can be concluded 
while running. There can be failures of tasks that are hosted on a 
machine that has not yet registered with restarted jobtracker. 
Therefore, the skipping feature recalculates the counts only if it is 
a genuine failure. 

SetComplete function 

When the TIP is complete, the other speculative subtasks will 
be closed when the owning tasktracker reports in and calls should 
close on the required object. 

4.4.3 TaskTracker 

The changes made to the TaskTracker.java are as follows, 
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Resetting heartbeat interval from the response 

The name node and the data node communicate using 
Heartbeat messages. After a certain amount of time, if the Name 
Node does not receive any response from Data Node, then that 
particular Data Node is declared as dead. The normal heartbeat 
period is three seconds. If the name node is not receiving the 
heartbeat from a data node in ten minutes, then the name node 
decides the data node to be not in service and the data node’s 
replicas are considered to be unavailable. The name node allocates 
the new replicas for the unavailable blocks in the other data nodes. 
The heartbeat message from the data node carries the information 
regarding the storage, amount of usage and transfer rate of data in 
the current state. Such details are helpful for the name nodes 
allocation of blocks and the decision making in load balancing. 

By resetting heartbeat interval from the response, the TT 
knows the completed tasks. Once cleanup of the completed task 
is over, normal operation is resumed. 

5. Implementation 
5.1 Mapper Class 

The map task is to process the input data. The input data is 
stored in the Hadoop Distributed  File System (HDFS). The input 
file is passed to the map function and read line by line. The mapper 
processes the data and produces the intermediate data. The 
amount, transaction type, year and month are initialised according 
to the positions in the input data. The mapper class writes the year, 
month, transaction type and amount along with the sum into 
HDFS. 

5.2 Reducer  Class 

This stage is the combination of the shuffle and the reduce 
stage. The Reducers job is to process the data that comes from the 
mapper. After processing, it produces a new collection of output, 
which will be stored in the HDFS. 

5.3 Driver  Class 

The Driver class verifies the arguments from the command 
line. The input/output file details, job details are available in the 
command line. It assigns values for the job. The driver starts the 
execution from the main () method. In this method, a new 
configuration object and the Job are instantiated. 

The job.waitForCompletion() helps to unveils the job 
perfectly. This driver code helps to wait for the job completion. 
The job status will be updated after the job completion.  The true 
argument informs the framework to write verbose output to the 
controlling terminal of the job. 

6. Results and Discussion 

The work has done using bank data, which is analysed to 
identify the future trends in the sector. The improvement in the 
Hadoop performance is ensured by the factors such as 
computation time, time taken for running reduce tasks, contacting 
the task trackers at once, synchronised clean up, skipping feature, 
resetting the heartbeat interval. 

6.1 Health of the file in HDFS after optimization 

The fsck command in hadoop runs a HDFS file system 
checking utility. It is designed for reporting problems with various 

files. It checks health of hadoop file system. It produces a report 
that gives the complete health of the file system. HDFS is 
considered healthy if all the files have a minimum number of 
replicas as shown in Figure.8.  

Table 1. Performance Analysis 

Factors 

Before 
Optimizati
on(sec) 

After 
Optimizati
on(sec) 

Job Duration 82 23 

Map Time 60 3 

Reduce Time 22 20 

 

 
Figure.8 Health status of the result 

 
Figure.9 Performance -  before and after optimization 
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SLOTS MILLIS REDUCES is the total time spent by all reduces 
in the occupied slots. Difference in the time taken for running 
reduces tasks before and after optimisation is noted to be 1367ms 
as shown in Figure 9. After optimization it takes less time. 

6.2 Performance Analysis 

The performance of the job for the same input is analysed 
before and after the optimisation is show in Table 1. Job duration, 
Map task time and Reduce task time are taken as the factors for 
the performance analysis. The time taken to complete the job is 
less after optimization is shown in Figure 10. The performance 
has evidently improved after the optimisation. 

 
Figure.10 Performance Evaluation 

7. Conclusion 

In this article, an improved hadoop framework is presented. It 
includes analysing the internal working of the Hadoop 
MapReduce job, so that changes are done to the job in progress, 
task in progress and task tracker files. In H2Hadoop [19] the work 
was concentrated on the DNA dataset only and in the improved 
hadoop [22] they have considered the text data and the 
performance time was not reasonably improved.  The changes 
performed to optimise the system in this article are in contact with 
the job tracker at once, launching synchronised cleanup function, 
cleanup later checkup, skipping feature, resetting the heartbeat 
interval from the response, avoiding speculative tasks resulted in 
an improved hadoop framework. The performance of the 
improved system using optimization is better in the computation 
time. 

8. Future Work 

Performance factors 

The other performance factors of File System Counters, 
MapReduce Framework can be modified to obtain a more 
optimised hadoop system. 

Tool for better performance 

The result can be analysed using Spark to obtain a faster 
performance than Hadoop, as spark runs in-memory on the 
cluster, and it is not tied to Hadoop MapReduce paradigm. This 
makes repeated access to the same data much faster. Spark can 

run as a standalone or on top of Hadoop YARN, where it can read 
data directly from HDFS. 

Security issues in Hadoop can be addressed at various levels, 
including but not limited to file system, networks, scheduling, 
load balancing, concurrency control, and databases. 
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