

www.astesj.com 375

Artificial Bee Colony-Optimized LSTM for Bitcoin Price Prediction

Andary Dadang Yuliyono, Abba Suganda Girsang*

Computer Science Department, BINUS Graduate Program-Master of Computer Science Bina Nusantara University, Jakarta,
Indonesia 11480

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 28 August, 2019
Accepted: 08 October, 2019
Online: 28 October, 2019

 In recent years, deep learning has been widely used for time series prediction. Deep
learning model that is most often used for time series prediction is LSTM. LSTM is widely
used because of its excellence in remembering very long sequences. However, doing
training on models that use LSTM requires a long time. Trying from one model to another
model that use LSTM will take a very long time, thus a method is needed for optimizing
hyperparameter to get a model with a small RMSE. This research proposed Artificial Bee
Colony (ABC) as a method in optimizing hyperparameter for models that use LSTM. ABC
is a metaheuristic method that mimics the behavior of bee colonies in foraging. Optimized
hyperparameter in this research consisted of sliding window size, number of LSTM units,
dropout rate, regularizer, regularizer rate, optimizer and learning rate. In this research the
proposed method called as ABC-LSTM. Bitcoin prices historical data was used as the
dataset for evaluating the prediction of the models. The best ABC-LSTM model resulted
best RMSE of 189.61 compared to model that use LSTM without optimization resulted best
RMSE of 236.17. This result showed that ABC-LSTM model outperformed models that use
LSTM without optimization.

Keywords:
Hyperparameter
Long Short Term Memory
Artificial Bee Colony
TensorFlow
Deep Learning
Bitcoin

1. Introduction

Nowadays bitcoin has become the most popular
cryptocurrency and has the largest capitalization value compared
to others cryptocurrency. Besides being a digital currency, bitcoin
has also become a trading instrument. The price of bitcoin has very
high volatility. Even though it has high volatility and is full of risks
and uncertainties, many people are interested in trading bitcoin.
The high volatility of bitcoin price movements has encouraged
many people to speculate on getting high capital gains. To assist
bitcoin traders, a system that is capable to predict the price of
bitcoin is needed, which intended to increase the potential to get
large profits as well as to avoid potential losses

In recent years there have been many studies that use deep
learning for predicting the price of bitcoin. Adebiyi et al. [1] and
Guresen et al. [2] used Multi Layer Perceptron (MLP) while Jang
and Lee [3] and McNally et al. [4] used Bayesian Neural Network.
Deep learning model that is widely used for predicting bitcoin
prices is Long Short-Term Memory Neural Network (LSTM) [4],
[5]. LSTM is a special modification of Recurrent Neural Network
(RNN). LSTM is widely used in time series forecasting activities
because of its ability in remembering long sequential data.

The use of model that use LSTM for predicting bitcoin prices
has a disadvantage, it requires a long training time [4] and a
suitable hyperparameter combination is needed to get optimal
results. There were several researches that tried to optimize
hyperparameters in models that use LSTM using metaheuristics
such as Particle Swarm Optimization (PSO) [6], Genetic
Algorithm (GA) [7] and Ant Colony Optimization (ACO) [8]. The
use of metaheuristic for optimizing hyperparameters on model that
use LSTM was expected to get a model with small error.

In this research, a sliding window was conducted on the closing
price of bitcoin and bitcoin volume traded from the previous days
as a feature for price predictions of bitcoin in the next day. Using
sliding window can improve the accuracy of bitcoin predictions
[9]. To get the appropriate sliding window numbers, the sliding
window was used as one of the optimized hyperparameter. This
research used Artificial Bee Colony (ABC) as a method for
optimizing hyperparameter for models that use LSTM for bitcoin
price prediction.

ABC is a metaheuristic algorithm based on foraging behavior
of bee colonies [10]. ABC had been used as an optimization
algorithm in many task [11], such as training neural network [12].
Besides that ABC also used as a machine learning method, such as

ASTESJ

ISSN: 2415-6698

*Abba Suganda Girsang, Email: agirsang@binus.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 375-383 (2019

www.astesj.com

https://dx.doi.org/10.25046/aj040549

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj040549

A.D. Yuliyono et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 375-383 (2019

www.astesj.com 376

clustering [13]. ABC has a good balance in exploiting and
exploring solution [14]. In this research ABC was proposed as an
optimization method for optimizing hyperparameter.

The main contribution of this research is combining ABC and
LSTM to optimize the hyperparameter that resulted a model with
small RMSE. Optimized hyperparameter in this research consisted
of sliding window size, number of LSTM units, dropout rate,
regularizer, regularizer rate, optimizer and learning rate. Chung
and Shin [7] combined GA and LSTM for optimizing
hyperparameter consisted of sliding window size and number of
LSTM units.

This paper is structured as follows. Section 2 contains the
literature review, Section 3 contains the proposed method in this
research, which is the combination of ABC and LSTM for
optimizing hyperparameter, Section 4 contains an explanation of
dataset, implementation, experiment results and comparison with
benchmark models and Section 5 contains conclusion of this
research.

2. Literature Review

2.1. Related Works

An old model that is often used for forecasting is the Auto
Regressive Integrated Moving Average (ARIMA). Saxena et al.
[15] used ARIMA model and compared its performance with
LSTM model for predicting bitcoin prices. Bitcoin price prediction
using LSTM outperformed ARIMA [15]. Similar to stock prices,
bitcoin prices is often nonlinear and non-stationary, thus the
application of the ARIMA model for long-term predictions is quite
difficult [16].

In recent years, there are many researches tried to predict price
movement by using deep learning. Deep learning is basically
Artificial Neural Network (ANN) with input layers, several hidden
layers and output layers which are usually referred to as Multi
Layer Perceptron (MLP). Adebiyi et al. [1] used ANN for
predicting stock prices.

Guresen et al. [2] used MLP, Dynamic Artificial Neural
Network (DAN2) and hybrid neural network by using a
generalized autoregressive conditional heteroscedasticity
(GARCH) for predicting a stock market index.

Bayesian Optimized Recurrent Neural Network was used by
McNally et al. [4] for predicting the classification of bitcoin prices
movement that slightly outperformed the ARIMA model. McNally
et al. [4] also used LSTM model with accuracy that exceeded the
Bayesian Optimized RNN but the time needed by LSTM for
training data was much longer than Bayesian Optimized RNN.
This LSTM model had been proven effective for predicting bitcoin
prices [4]. Jang and Lee [3] also used Bayesian Neural Network
for predicting bitcoin prices based on bitcoin time series data and
other blockchain information.

A model that use LSTM was also used by Alessandretti et al.
[5] for predicting the cryptocurrency market where LSTM
performed better for predictions with longer data days than models
that use Gradient Boosting Decision Tree. LSTM for predicting
stock price movements used in [17]–[19]. Nelson et al. [20] used
LSTM to predict stock market price movements. Gao and Chai

[19] used a stock prediction model that combines LSTM with
PCA. Table 1 shows summary of related works. It describes
dataset and method that was used and the experiment results.

Table 1: Summary of related works

Ref Dataset Method Result

[15] Bitcoin Price
LSTM LSTM outperformed

ARIMA ARIMA

[4] Bitcoin Price

Bayesian
Optimized RNN LSTM achieved highest

classification accuracy
while RNN achieved
lowest RMSE

LSTM

ARIMA

[5] Bitcoin Price

Single
Regression
XGBoost Regression XGBoost

worked best for short
time window while
LSTM worked best for
long time window

Multi Regression
XGBoost

LSTM

Simple Moving
Average

[9]

Bitcoin Price,
prices of crude
oil, SSE, gold,
VIX,
FTSE100,
global
currencies
USD/CNY,
USD/JPY,
USD/CHF

Support Vector
Regression

LSTM outperformed all
other model

Linear
Regression
Neural Network

LSTM

[21] Bitcoin Price PSO-MLP-
NARX

The model was able to
predict accurately while
passing all model
validation tests

Huisu et al. [9] used the LSTM model rolling window in

several input features and information about blockchain
information. This model accurately predicted the price of bitcoin.
LSTM was also used by Yunbeom and Hwang [22] by comparing
its performance with several neural networks namely Deep Neural
Network (DNN), basic RNN, RNN with LSTM cell, RNN with
GRU cell and bidirectional RNN. Best performance in specifity,
precision and accuracy achieved by DNN while best performance
in sensitivity achieved by Bidirectional RNN.

Some metaheuristic algorithms were used to optimize model
that use LSTM such as Genetic Algorithm, Ant Colony
Optimization and Particle Swarm Optimization [6]–[8]. Chung and
Shin [7] used a model that use LSTM that is optimized using
Genetic Algorithm (GA) for predicting the stock market. In
metaheuristics, the trial and error method is usually used as the
basis for estimation in determining the time window size and
LSTM architecture to be used in the research model. In [7], a
systematic method was used to determine the time window size
and LSTM topology for predicting the stock market. In deep
learning, it is very difficult to determine the optimal architectural
parameters. [7] showed that the model can be used as an effective
tool to determine the optimal or near optimal model in deep
learning.

http://www.astesj.com/

A.D. Yuliyono et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 375-383 (2019

www.astesj.com 377

Chhachhiya et al. [6] designed architecture of a model that use
LSTM by using Particle Swarm Optimization (PSO). This hybrid
model optimizes 3 parameters, namely activation function,
learning rate and hidden neurons. The parameter that produced the
smallest RMSE value is the most optimal model.

Sheikhan and Mohammadi [23] used GA-ACO + PSO-MLP
for predicting time series data. Sun et al. [24] combined AdaBoost-
LSTM Ensemble Learning for conducting a financial time series
Forecasting. Indera et al. [21] used MLP which was optimized by
using PSO for predicting the price of bitcoin.

2.2. Long Short Term Memory (LSTM)

LSTM is a type of Recurrent Neural Network (RNN) where
modifications are made to the RNN architecture by adding a
memory cell that can store information for a long period of time
[25]. LSTM was proposed as a solution to overcome the vanishing
gradient or exploding gradient problems that occur in RNN. This
problem occurs when processing very long sequential data. This
gradient problem caused RNN failing to capture long term
dependencies [15]. Vanishing or exploding gradient problem will
reduce the accuracy of a RNN model that affected the output of a
prediction [26].

Figure 1: Architecture of LSTM

In a LSTM cell there is a memory cell and 3 gates, namely the
input gate, the forget gate and the output gate. Figure 1 shows the
architecture of LSTM and the processing of input data. The process
of LSTM is carried out in the following stages [7]:

1. The value of an input can only be stored in the cell state only
if it is permitted by the input gate. Calculation of the values at
input gate and candidate inputs from the cell state is carried
out using Eq. (1) and Eq. (2).

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (1)

Where 𝑖𝑖𝑡𝑡 is the value of input gate, 𝑊𝑊𝑖𝑖 is the weight for the
input value at time to t, 𝑥𝑥𝑡𝑡 is the input value at time to t, 𝑈𝑈𝑖𝑖 is
the weight for the output value from time to t-1, ℎ𝑡𝑡−1 is the
output value from time to t-1 and 𝑏𝑏𝑖𝑖 is the bias at the gate input
and σ is the sigmoid function.

 𝐶̃𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑖𝑖ℎ𝑐𝑐−1 + 𝑏𝑏𝑐𝑐) (2)

Where 𝐶̃𝐶𝑡𝑡 is the candidate cell state value, 𝑊𝑊𝑐𝑐 is the weight for
the input value in cell to c, 𝑥𝑥𝑡𝑡 is the input value at time to t, 𝑈𝑈𝑖𝑖

is the weight for the output value of cell to c-1, ℎ𝑐𝑐−1 is the value
the output of cell to c-1 and 𝑏𝑏𝑐𝑐 is bias in cell to c and tanh is a
hyperbolic tangent function.

2. Then the forget gate value is calculated using Eq. (3).

 𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓� (3)

Where 𝑓𝑓𝑡𝑡 is the forget gate value, 𝑊𝑊𝑓𝑓 is the weight for the input
value at time to t, 𝑥𝑥𝑡𝑡 is the input value at time to t, 𝑈𝑈𝑓𝑓 is the
weight for the output value from time to t-1, ℎ𝑡𝑡−1 is the output
value from time to t-1 and 𝑏𝑏𝑓𝑓 is the bias on the forget gate and
σ is a sigmoid function.

3. Furthermore the cell state memory is calculated using Eq. (4).

 𝐶𝐶𝑡𝑡 = 𝑖𝑖𝑡𝑡 ∗ 𝐶̃𝐶𝑡𝑡 + 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 (1)

Where 𝐶𝐶𝑡𝑡 is the memory cell state value, 𝑖𝑖𝑡𝑡 is the value of the
gate input, 𝐶̃𝐶𝑡𝑡 is the candidate memory cell state value, 𝑓𝑓𝑡𝑡 is the
forget gate value and 𝐶𝐶𝑡𝑡−1 is the cell state memory value in the
previous cell.

4. After generating a new cell state memory, the value of the gate
output can be calculated using Eq. (5).

 𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜) (2)

Where 𝑜𝑜𝑡𝑡 is the value of the gate output, 𝑊𝑊𝑜𝑜 is the weight for
the input value at time to t, 𝑥𝑥𝑡𝑡 is the input value at time to t, 𝑈𝑈𝑜𝑜
is the weight for the output value from time to t-1, ℎ𝑡𝑡−1 is the
output value from time to t-1 and 𝑏𝑏𝑜𝑜 is the bias at the gate
output and σ is the sigmoid function.

5. The final output value is calculated using Eq. (6).

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh (𝐶𝐶𝑡𝑡) (3)

Where ℎ𝑡𝑡 is the final output, 𝑜𝑜𝑡𝑡 is the gate output value, 𝐶𝐶𝑡𝑡 is
the new memory cell state value and the tan is the hyperbolic
tangent function.

2.3. Artificial Bee Colony

Artificial Bee Colony algorithm was first proposed by
Karaboga in 2005. It is a metaheuristic algorithm based on bee
colonies. This algorithm mimics the intelligent behavior of bee
colonies in foraging. In ABC, a colony of bees is divided into 3
types. Employee bee that is responsible for exploiting food
sources, onlooker bee that is participating in exploiting food
sources based on food information received from employee bee in
waggle dance and scout bee that is tasked to find a new food
source.

In ABC Algorithm, solutions of the optimization problem is
described as a food source (nectar) [11]. And the quality of nectar
describes the objective function of a solution. The number of food
sources is the same as the number of employee bees, while the
number of employee bees is the same as the number of onlooker
bees. Bee behavior in foraging can be described as follows [11]:

http://www.astesj.com/

A.D. Yuliyono et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 375-383 (2019

www.astesj.com 378

1. At the initial stage of looking for food sources, bees start
randomly exploring the area around the nest to get food
sources.

2. After finding food sources, bees begin to become employee
bees and start exploiting food sources found. After that. the
employee bee will return to the nest by carrying nectar and
unloading the nectar. After unloaded the nectar, the employee
bee can immediately return to the food source or the bee can
share information about the food source to other bees by doing
Waggle Dance. The number of movements in dance shows the
quality of nectar. If the nectar has run out, the employee bee
will become a bee scout and start looking for other food sources
randomly.

3. Onlooker bees waiting in the nest and choose the food source
after watching waggle dance performed by employee bees.

 Based on the behavior of bee colonies in foraging, the steps
of the Artificial Bee Colony algorithm can be described as follows
[12]:

1. Initialize the 𝑥𝑥𝑖𝑖 solution using Eq. (7). Each solution is a vector
with D dimensions.

 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0, 1)(𝑥𝑥𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚) (7)

 Where i = 1. . . SN, j = 1. . . D. SN is the number of food sources
(solution) and D is the number of optimized hyperparameters.

2. Evaluate all solutions

3. Cycle = 1. The optimal parameter search process is in cycles, C
= 1, 2. . . , MCN.

4. Repeat step 5 to 12 until cycle = Maximum Cycle Number
(MCN)

5. Create a new 𝑣𝑣𝑖𝑖 solution for each employee bee from the 𝑥𝑥𝑖𝑖
solution using Eq. (8) and evaluate the results. This new
solution is a modification of the previous solution.

 𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 + ∅𝑖𝑖𝑖𝑖 (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘𝑘𝑘) (8)

 Where k ∈ {1,2, ..., SN) and j ∈ {1,2, ..., D) are randomly
selected indexes.

6. Perform the selection process. If the cost function of the new
solution is smaller than the previous solution, the solution will
be updated to the new solution. The employee's bee will then
remember the new, better solution.

7. Calculate the probability value 𝑝𝑝𝑖𝑖 for the 𝑥𝑥𝑖𝑖 solution using Eq.
(9) and Eq. (10).

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 = � 1/(1 + 𝑓𝑓𝑖𝑖)
1 + 𝑎𝑎𝑎𝑎𝑎𝑎(𝑓𝑓𝑖𝑖)

 𝑖𝑖𝑖𝑖 𝑓𝑓𝑖𝑖 ≥ 0
𝑖𝑖𝑖𝑖 𝑓𝑓𝑖𝑖 < 0� (9)

𝑝𝑝𝑖𝑖 =

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖
∑ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑆𝑆𝑆𝑆
𝑖𝑖=1

 (10)

 Where 𝑓𝑓𝑖𝑖 is the value of the objective function solution i.

 Where 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 is the fitness value of the value of the objective
function solution i. And SN is the number of solutions.

8. The onlooker bee evaluates the solution based on the
information provided by the employee bee then selects which
solution to follow based on the probability of 𝑝𝑝𝑖𝑖 calculated
using Eq. (10). Create a new 𝑣𝑣𝑖𝑖 solution for each onlooker bee
from the 𝑣𝑣𝑖𝑖 solution selected based on the probability of 𝑝𝑝𝑖𝑖
using Eq. (7) and evaluating the results. As with the bee
employee, this solution is a modification of the selected 𝑥𝑥𝑖𝑖
solution.

9. Perform the selection process. If the cost function of the new
solution is smaller than the previous solution, the solution will
be updated to the new solution. The employee bee will
memorize the new solution.

10. If there is a bee when modifying a solution does not get a new
solution that is better than the previous solution until certain
limit, then the solution will be abandoned, and the bee becomes
a scout bee and randomly searches new food sources using Eq.
(7). The new solution will replace the old solution that was
abandoned.

11. Save the best solution up to now

12. Cycle = cycle + 1

3. Proposed Method
3.1. The Concept

Optimized hyperparameter in this research consisted of
sliding window size (h1), number of LSTM units (h2), dropout (h3),
regularizer (h4), regularizer rate (h5), optimizer (h6) and learning
rate (h7). Each hyperparameter has a different range of values. The
concept of optimizing hyperparameter in the model that use LSTM
using ABC is to make these hyperparameters as dimension of
problems, thus there are 7 dimensions of the problem. Each
combination of the 7 dimensions of the problem is a solution that
represents a model that use LSTM. Those solutions in the form of
a combination of hyperparameters are described as genes in a
chromosome in the genetic algorithm as can be seen in Figure 2.
Those solutions will be trained and then predictions will be made.
The prediction results of the model is measured using RMSE and
considered as the fitness function of a solution on ABC.

h1 h2 h3 h4 h5 h6 h7

Figure 2: dimension of hyperparameter (dimension of problem)

Next, those solutions will be optimized by changing one of the
values of the 7 dimensions of the hyperparameter randomly and
then conducting training and prediction using the modified
solutions. If the modified solution is better than previous solution,
the solution will be updated. The process continues until the
maximum cycle numbers specified in the ABC parameters setting
is reached.
3.2. Artificial Bee Colony – Long Short Term Memory (ABC-

LSTM)
The hyperparameter optimization process on LSTM using the

Artificial Bee Colony is carried out in following steps :

http://www.astesj.com/

A.D. Yuliyono et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 375-383 (2019

www.astesj.com 379

1. Randomly generate N initial solutions (food sources) using
Eq. (7). In this case the solutions are hyperparameter
combination for training LSTM.

2. Conducting LSTM training using the initial hyperparameter,
evaluating and memorizing the lowest fitness function, in this
case is the RMSE value of the prediction

3. Employee bee evaluates the RMSE produced by the initial
solutions and tries to modify the hyperparameter combination
to minimize RMSE using Eq. (8).

4. Onlooker bees choose the best hyperparameter combination
based on probability on Eq. (9) and Eq. (10) and try to modify
the hyperparameter combination to minimize RMSE

5. If the attempts to modify the hyperparameter exceeds the
abandon limit value, the employee bee turns into a scout and
creates a new hyperparameter combination using Eq. (7).

6. The process is repeated until it reaches the maximum number
of cycles and produces a hyperparameter combination with
the smallest RMSE value.

4. Experimental Results

4.1. Data Collection

Bitcoin prices dataset that was used in this research was
downloaded from the coinmarketcap.com website. Historical data
on downloaded bitcoin prices have daily intervals from December
27, 2013 to January 21, 2019. Bitcoin price data traded using US
dollar currency units. Historical data on bitcoin prices consisted of
the opening price (open), the highest price (high), the lowest price
(low), closing price (close), the volume of traded bitcoin (volume)
and market capitalization as can be seen in table 2.

Table 2: Illustration of bitcoin price dataset

Date Open High Low Close Volume Market Cap

27-Dec-13 763.28 777.51 713.6 735.07

46,862,700

8,955,394,564

28-Dec-13 737.98 747.06 705.35 727.83

32,505,800

8,869,918,644

29-Dec-13 728.05 748.61 714.44 745.05

19,011,300

9,082,103,621

30-Dec-13 741.35 766.6 740.24 756.13

20,707,700

9,217,167,990

31-Dec-13 760.32 760.58 738.17 754.01

20,897,300

9,191,325,349

Figure 3: Bitcoin close price

Figure 3 shows the historical movement of bitcoin prices, while
figure 4 shows the historical movement of bitcoin trading volume.
Highest bitcoin price and volume of bitcoin trading throughout
history occurred in December 2017. Bitcoin prices and bitcoin
trading volume were used as features in this research.

Figure 4: Bitcoin traded volume

4.2. Data Normalization

In this step the dataset value was converted into data with a
scale from 0 to 1 using MinMaxScaler in a Scikit Learn library.
The dataset after normalization can be seen in table 3. The dataset
was divided into 3 sections consisted of 80% training dataset, 10%
validation dataset and 10% test dataset. Illustration of bitcoin price
dataset after normalized can be seen in table 3.

Table 3: Illustration of normalized bitcoin price dataset

Date Open High Low Close Volume Market Cap

27-Dec-13 0.03038 0.02846 0.02883 0.02883 0.00185 0.02009

28-Dec-13 0.02907 0.02693 0.02839 0.02846 0.00124 0.01983

29-Dec-13 0.02856 0.02701 0.02888 0.02935 0.00068 0.02048

30-Dec-13 0.02925 0.02791 0.03025 0.02992 0.00075 0.02090

31-Dec-13 0.03023 0.02761 0.03014 0.02981 0.00076 0.02082

4.3. Feature

Features that were used in this research consisted of the
closing price of bitcoin and the volume of bitcoin traded as seen in
table 4.

Table 4: Features

Feature Description

P Bitcoin close price

V Bitcoin traded volume

Y Predicted Bitcoin price

4.4. Hyperparameter

In this step, hyperparameters selection were determined, along
with variations in values. This optimized hyperparameters had a
significant effect on the performance of the LSTM model. This

0

5000

10000

15000

20000

25000

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

3E+10

http://www.astesj.com/

A.D. Yuliyono et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 375-383 (2019

www.astesj.com 380

research optimized 7 hyperparameters with varying values. Breuel
[27] and Greff et al. [28] compared the LSTM performance using
various hyperparameters, and concluded that one of the most
important hyperparameter was learning rate, because it had direct
impact to model performance. Selected hyperparameters and the
range values in this research can be seen in table 5.

Table 5: List of optimized hyperparameter

No Hyperparameter Range Value Interval

1 Sliding Window Size 40 - 70 5

2 Number of LSTM Units (neurons) 30 - 100 5

3 Dropout 0.3 - 0.5 0.01

4 Learning Rate 0.0001 - 0.01 0.0001

5 Regularizer L1, L2, L1L2 -

6 Regularizer Rate 0.005 - 0.02 0.001

7 Optimizer rmsprop, adam,
nadam -

4.5. Environment and Parameter Setting

These experiments were conducted on Google Colab using
GPU accelerator. The models were created using TensorFlow.
TensorFlow is an open source deep learning framework that is
widely used for research and production. In this research were
performed 30 experiments, where each experiment consistsed of
approximately 210 models and each model used 512 batch size and
1.000 epochs.

ABC algorithm in this experiment used the parameter setting
as in the table 6.

Table 6: ABC parameter setting

Parameter Setting

Dimension 7

Solution Number 10

Population Size 20

Limit 7

Maximum Cycle Number 10

4.6. Evaluation

For evaluating the performance of all models with different
hyperparameter combination that was performed in the ABC
optimization, Root Mean Squared Error (RMSE) was used. RMSE
is calculated using Eq. (11). RMSE is often used to evaluate the
predictions of forecasting activities. The smaller the RMSE value,
the more accurate the predictions.

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
��𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑗𝑗�

2
𝑛𝑛

𝑗𝑗=1

 (11)

4.7. Experiment result obtained using ABC-LSTM

Figure 5 shows the convergence process of ABC-LSTM in
obtaining a combination of hyperparameter that produced a
prediction with the smallest RMSE value. From 30 experiments,
where each experiment consisted of approximately 210 models,
result 30 best models, the first ABC-LSTM best model was
selected that produced the smallest RMSE value
183.342117450547. The first ABC-LSTM best model had
hyperparameter as follows:
• Sliding window size = 60
• Number of LSTM neurons = 65
• Dropout = 0.31
• Learning Rate = 0.0091
• Regularizer = L2
• Regularizer Rate = 0.014
• Optimizer = RMSprop

Figure 5: Convergence of the selected ABC-LSTM best model

Figure 6: Boxplot of 30 ABC-LSTM best model performance

Figure 6 shows the boxplot of 30 ABC-LSTM best model
from 30 experiments while table 7 shows the descriptive statistics
of the RMSE of ABC-LSTM best model from each experiment.
Smallest RMSE value obtained is 183.3421175 and biggest RMSE
value obtained is 240.8371386.

4.8. Comparison with LSTM without optimization

After obtaining the best combination of hyperparameter,
comparisons conducted to model that use LSTM without

0

50

100

150

200

250

300

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

http://www.astesj.com/

A.D. Yuliyono et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 375-383 (2019

www.astesj.com 381

optimization or using standard hyperparameter. For model without
optimization there were 7 experiments with sliding windows of 5,
10, 20, 40, 60, 80 and 100, each with 60 runs. For the first ABC-
LSTM best model also with 60 runs.

Table 7: 30 ABC-LSTM best model performance

Measure ABC-LSTM

Mean 206.8833373

Standard Deviation 13.31792151

Best 183.3421175

Worst 240.8371386

Figure 7: LSTM (5) prediction and actual comparison

Figure 8: LSTM (10) prediction and actual comparison

Figure 9: LSTM (20) prediction and actual comparison

Figure 10: LSTM (40) prediction and actual comparison

Figure 11: LSTM (60) prediction and actual comparison

Figure 12: LSTM (80) prediction and actual comparison

Figure 13: LSTM (100) prediction and actual comparison

http://www.astesj.com/

A.D. Yuliyono et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 375-383 (2019

www.astesj.com 382

Figure 14: ABC-LSTM prediction and actual comparison

Figure 7-14 shows a comparison graph between the actual
price and the prediction price of bitcoin using model that use
LSTM without optimization, and the first best ABC-LSTM model.
ABC-LSTM model shows most similarity between prediction and
actual price.

Figure 15: Boxplot of comparison with benchmark models

Table 8: Performance comparison

Model Mean Deviation Std Best Worst

LSTM (5) 368.62 125.94 236.17 929.33

LSTM (10) 437.88 114.34 233.66 740.96

LSTM (20) 488.13 124.33 246.52 912.74

LSTM (40) 611.44 162.23 351.73 1292.90

LSTM (60) 570.79 143.95 316.88 1080.47

LSTM (80) 503.91 145.46 332.63 1201.08

LSTM (100) 461.99 133.54 287.08 1347.78

ABC-LSTM 315.96 131.02 189.61 903.01

Figure 15 shows boxplot of comparison of model that use
LSTM without optimization and the first ABC-LSTM best model.
Prediction using the first ABC-LSTM best model produced the
smallest RMSE value of 189.61. It also produced the lowest

average RMSE value of 315.96. Performance of other models can
be seen in table 8.

5. Conclusion

There were 2 features used in this study, bitcoin prices and
bitcoin traded volume and 7 hyperparameters consisted of sliding
window size, number of LSTM units, dropout, learning rate,
regularizer, regularizer rate, and optimizer. From 30 ABC-LSTM
experiments, the selected ABC-LSTM best model resulted RMSE
of 183.34. The best ABC-LSTM model resulted best RMSE of
189.61 compared to models that use LSTM without optimization
resulted best RMSE of 236.17. This result showed that ABC-
LSTM model outperformed models that use LSTM without
optimization.

Besides ABC, another metaheuristic that is very popular used
for optimization is genetic algorithm (GA). GA is one of the
evolutionary algorithms where best solutions will be used as
parents. Those best solutions will be bred to produce a new
solution that is better than the parent solutions. In the next research,
a comparison between optimizing hyperparameter on models that
use LSTM using ABC and GA will be performed.

References

[1] S. O. Adebiyi, A. A., Ayo, C. K., Adebiyi, M. O., & Otokiti, “Stock Price
Prediction using Neural Network with Hybridized Market Indicators,” J.
Emerg. Trends Comput. Inf. Sci., vol. 3, no. 1, pp. 1–9, 2012.

[2] E. Guresen, G. Kayakutlu, and T. U. Daim, “Using artificial neural network
models in stock market index prediction,” Expert Syst. Appl., vol. 38, no. 8,
pp. 10389–10397, 2011.

[3] H. Jang and J. Lee, “An Empirical Study on Modeling and Prediction of
Bitcoin Prices With Bayesian Neural Networks Based on Blockchain
Information,” IEEE Access, vol. 6, no. 99, pp. 5427–5437, 2018.

[4] S. McNally, J. Roche, and S. Caton, “Predicting the Price of Bitcoin Using
Machine Learning,” Proc. - 26th Euromicro Int. Conf. Parallel, Distrib.
Network-Based Process. PDP 2018, pp. 339–343, 2018.

[5] L. Alessandretti, A. ElBahrawy, L. M. Aiello, and A. Baronchelli,
“Anticipating cryptocurrency prices using machine learning,” Complexity,
vol. 2018, pp. 1–16, 2018.

[6] D. Chhachhiya, A. Sharma, and M. Gupta, “Designing optimal architecture of
recurrent neural network (LSTM) with particle swarm optimization technique
specifically for educational dataset,” Int. J. Inf. Technol., vol. 11, no. 1, pp.
159–163, 2019.

[7] H. Chung and K. Shin, “Genetic Algorithm-Optimized Long Short-Term
Memory Network for Stock Market Prediction,” Sustainability, vol. 10, no.
10, p. 3765, 2018.

[8] A. ElSaid, F. El Jamiy, J. Higgins, B. Wild, and T. Desell, “Using ant colony
optimization to optimize long short-term memory recurrent neural networks,”
Proc. Genet. Evol. Comput. Conf. - GECCO ’18, pp. 13–20, 2018.

[9] J. Huisu, J. Lee, and W. Lee, “Predicting Bitcoin Prices by Using Rolling
Window LSTM model,” ACM, 2018.

[10] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (ABC) algorithm,” J.
Glob. Optim., vol. 39, no. 3, pp. 459–471, 2007.

[11] B. Akay and D. Karaboga, “A modified Artificial Bee Colony algorithm for
real-parameter optimization,” Inf. Sci. (Ny)., vol. 192, pp. 120–142, 2012.

[12] D. Karaboga, B. Akay, and C. Ozturk, “Artificial Bee Colony (ABC)
Optimization Algorithm for Training Feed-Forward Neural Networks,”
Modeling Decisions for Artificial Intelligence, pp. 318–329, 2007.

[13] D. Karaboga and C. Ozturk, “A novel clustering approach: Artificial Bee
Colony (ABC) algorithm,” Appl. Soft Comput. J., vol. 11, no. 1, pp. 652–657,
2011.

[14] M. Mernik, S. H. Liu, D. Karaboga, and M. Črepinšek, “On clarifying
misconceptions when comparing variants of the Artificial Bee Colony
Algorithm by offering a new implementation,” Inf. Sci. (Ny)., vol. 291, no. C,
pp. 115–127, 2015.

[15] A. Saxena, T. R. Sukumar, T. Nadu, and T. Nadu, “Predicting bitcoin price
using lstm And Compare its predictability with arima model,” Int. Journa Pure
Appl. Math., vol. 119, no. 17, pp. 2591–2600, 2018.

http://www.astesj.com/

A.D. Yuliyono et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 375-383 (2019

www.astesj.com 383

[16] X. Zhan, Y. Li, R. Li, X. Gu, O. Habimana, and H. Wang, “Stock Price
Prediction Using Time Convolution Long Short-Term Memory Network,”
KSEM, vol. 11061, pp. 461–468, 2018.

[17] S. Borovkova and I. Tsiamas, “An Ensemble of LSTM Neural Networks for
High-Frequency Stock Market Classification,” Journal of Forecasting, pp. 1–
27, 2018.

[18] T. Fischer and C. Krauss, “Deep learning with long short-term memory
networks for financial market predictions,” Eur. J. Oper. Res., vol. 270, no. 2,
pp. 654–669, 2018.

[19] T. Gao and Y. Chai, “Improving Stock Closing Price Prediction Using
Recurrent Neural Network and Technical Indicators,” Neural Comput., vol.
30, no. 10, pp. 2833–2854, 2018.

[20] D. M. Q. Nelson, A. C. M. Pereira, and R. A. De Oliveira, “Stock market’s
price movement prediction with LSTM neural networks,” in Proceedings of
the International Joint Conference on Neural Networks, 2017, vol. 2017, pp.
1419–1426, 2017.

[21] N. I. Indera, I. M. Yassin, A. Zabidi, and Z. I. Rizman, “Non-linear
Autoregressive with Exogeneous input (narx) bitcoin price prediction model
using PSO-optimized parameters and moving average technical indicators,”
J. Fundam. Appl. Sci., vol. 9, no. 3S, p. 791, 2018.

[22] S. Yunbeom and Changha Hwang, “Predicting Bitcoin Market Trend with
Deep Learning Models,” Quant. Bio-Science, vol. 37, no. 1, pp. 65–71, 2018.

[23] M. Sheikhan and N. Mohammadi, “Time series prediction using PSO-
optimized neural network and hybrid feature selection algorithm for IEEE
load data,” Neural Comput. Appl., vol. 23, no. 3–4, pp. 1185–1194, 2013.

[24] S. Sun, Y. Wei, and S. Wang, “AdaBoost-LSTM Ensemble Learning for
Financial Time Series Forecasting,” in International Conference on
Computational Science, pp. 590–597, 2018.

[25] N. K. Manaswi, Deep Learning with Applications Using Python. Berkeley,
CA: Apress, 2018.

[26] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, “LSTM network: a deep
learning approach for short-term traffic forecast,” IET Intell. Transp. Syst.,
vol. 11, no. 2, pp. 68–75, 2017.

[27] T. M. Breuel, “Benchmarking of LSTM Networks,” J. Cryst. Growth, vol.
285, no. 4, pp. 486–490, 2015.

[28] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber,
“LSTM: A Search Space Odyssey,” IEEE transactions on neural networks and
learning systems, pp. 1–11, 2016.

http://www.astesj.com/

	1. Introduction
	2. Literature Review
	2.1. Related Works
	2.2. Long Short Term Memory (LSTM)
	2.3. Artificial Bee Colony

	3. Proposed Method
	3.1. The Concept
	3.2. Artificial Bee Colony – Long Short Term Memory (ABC-LSTM)

	4. Experimental Results
	4.1. Data Collection
	4.2. Data Normalization
	4.3. Feature
	4.4. Hyperparameter
	4.5. Environment and Parameter Setting
	4.6. Evaluation
	4.7. Experiment result obtained using ABC-LSTM
	4.8. Comparison with LSTM without optimization

	5. Conclusion
	References

