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 Anomaly detection aims at identification of suspicious items, observations or events by 
differing from most of the data. Intrusion Detection, Fault Detection, and Fraud Detection 
are some of the various applications of Anomaly Detection. The Machine learning classifier 
algorithms used in these applications would greatly affect the overall efficiency. This work 
is an extension of our previous work ERCRTV: Ensemble of Random Committee and 
Random Tree for Efficient Anomaly Classification using Voting. In the current work, we 
propose SDMR a simple Feature Selection Technique to select significant features from the 
data set. Furthermore, to reduce the dimensionality, we use PCA in the pre-processing 
stage. The EKMC (Ensemble of kNN using MetaCost) with ten-fold cross validation is then 
applied on the pre-processed data. The performance of EKMC is evaluated on 
UNSW_NB15 and NSL KDD data sets. The results of EKMC indicate better detection rate 
and prediction accuracy with a lesser error rate than other existing methods. 
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1. Introduction  

A process involving the identification of data points that do not 
fit with the remaining data points is referred to as Anomaly 
Detection. Hence, Anomaly Detection is employed by various 
machine learning applications involving the Detection of 
Intrusions, or Faults, and Frauds. Anomaly Detection can be 
achieved based either on nature of data or circumstances. There are 
three approaches for Anomaly Detection used under different 
circumstances: Static Rules approach, when the Training data is 
missing and when the Training data is available. 

1.1. Static Rules Approach 

In this approach, a list of known anomalies is identified, and 
rules are written to identify these anomalies. Rules are generally 
written using pattern mining techniques. Since identification of 
Static Rules is complex, machine learning approach that involves 
automatic learning of the rules is preferred. 

1.2. When Training Data is missing 
When the data set lacks a class label, we may use 

Unsupervised or Semi supervised learning techniques for 

Anomaly Detection. However, evaluating the performance of this 
approach is not possible because there shall be no test data either.  

1.3. When Training Data is available 

Even while the training set is available, the number of 
Anomaly samples will be too less when compared to the benign 
samples and hence there shall be class imbalance in such data sets. 
To overcome this problem, new sets are created by resampling 
data several times. 

Anomaly detection can happen only after a successful 
classification. The efficiency of Anomaly Detection applications 
therefore depends on the classifiers used. Prediction Accuracy, 
ROC Area and Build time are some of such metrics that can 
measure the efficiency of a classifier. They are in turn based on 
Detection Rate (DR) and False Positive Rate (FPR). While DR is 
the correctness measure, FPR is the incorrectness measure during 
classification. ROC(Receiver Operating Characteristic) is a 
graphical representation of the ability of a binary classifier system 
obtained by varying its threshold. ROC involves plotting of TPR 
values (Y-axis) against FPR values (X-axis) at different threshold 
values. The time taken to train the given model is its build time. 
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Any work is expected to have maximum value for DR and least 
or nil values for FPR, Error rates and Build time. This work 
focuses on the selection of features that are significant, from the 
data sets and reduction in their dimensionality while  maintaining 
the detection accuracy. To achieve this, classifier algorithms with 
better individual performances are determined and are 
experimented with various combinations (ensemble) of classifiers. 
It was observed through our experiments that kNN offers best 
results in terms of the chosen metrics. 

kNN is a typical classifier that learns based on 

instances. It is often referred to as a Lazy learning 

algorithm, because it defers  computation until 

actual classification. The kNN algorithm assumes that 

similar things exist in proximity and therefore a 

sample from the test set is classified based on the 

predictions made by most of its neighbors. 

 Bagging, Boosting, Voting and Stacking are the ensembling 
techniques available today. The Bagging approach draws n 
instances randomly from a training set using a distribution that is 
uniform and learns them. The process is repeated several times. 
Every repetition generates one classifier. Boosting, a similar 
approach as that of bagging, focuses more on instances that were 
learnt incorrectly and monitors the performance of the machine 
learning algorithm. After constructing several classifiers in this 
manner, it performs a vote of the weights associated with the 
individual classifiers for making the final prediction. Each 
classifier is assigned weights based on its achieved 

detection accuracy on its training set. Voting requires 
the creation of several sub-models, allowing each of them to vote 
on the outcome of prediction. Stacking involves the training of  
different learning algorithms on the available data and providing 
the predictions of each learning algorithm as additional inputs to 
the combiner algorithm for the final training. In StackingC, Linear 
Regression is used as the Meta Classifier. A way of representing 
a linear equation by merging a set of input values (x) that are 
numeric into a predicted output value (y), may be defined as 
Linear Regression. This work involves an ensembling technique 
for the classification of the test samples present in the data set 
using MetaCost. MetaCost would produce results that are like the 
one that is created by passing the base learner (kNN in our case) 
to Bagging, which eventually is passed to a Cost Sensitive 
Classifier that operates on least expected cost. The only difference 
that we can observe is that MetaCost generates only one cost-
sensitive classifier of the base learner, offering fast classification 
and interpretable output. This implementation uses all iterations 
of Bagging by reclassifying the training data. 
Our experiments on the two benchmark data sets namely NSL-
KDD and UNSW_NB15, prove that an ensemble of kNN using 
MetaCost yields better results compared to various machine 
learning algorithms. The NSL-KDD data set comprises of 41 
features, and a class label to indicate an instance as normal or 
anomalous. The UNSW_NB15 data set on the other hand has 44 
features plus one class label.  

In this extension work [1], we propose SDMR for Feature 
Selection that exploits the advantages of various existing Weight 
Based Ranking Algorithms. In addition to SDMR, the data set is 
also subjected to PCA for dimensionality reduction during the 
preprocessing stage. The Principal Component Analysis (PCA) 
when applied on a data set having many variables (features) 
correlated with one another, reduces its dimensionality by only 
retaining the variation present in it. The existing variables of the 
data set are transformed to a new set of variables, known as the 
principal components (or PCs) that are orthogonal such that the 
correlation between any pair of variables is 0. The resultant set is 
then subjected to EKMC (Ensemble of kNN using MetaCost) with 
a cross validation of ten-folds before recording the performance 
metrics.  

The details of our proposed framework are provided in 
Sections 3 and 4, respectively.  

The key contributions of this extended paper are as follows.  

1. SDMR (Standard Deviation of Mean of Ranks) to discard all 
those features whose ranks are less than the computed value, 

2. Use of PCA for the further reduction of dimensionality of the 
data set. 

3. EKMC Framework for efficient Anomaly classification. 

The remainder of this article is organized as follows: Background 
and previous work related to ADS and our novel EKMC technique 
are explained in Section 3. Section 3 also discusses about the 
details of the novel SDMR Feature Selection technique. Section 4 
presents the experimental results and analysis of the proposed 
EKMC using the two benchmark data sets. Finally, we conclude 
our work and suggest directions for further research. 

2. Background and Related Works 

ERCRTV [1] that forms the base work for the current work, 
uses Correlation based Feature Selection (CFS) algorithm for 
Feature Selection from the NSL KDD and KDD CUP 99 data sets. 
It selects only eight prominent features from them. The data 
subset with only chosen features is provided to an ensembled 
model of Random Committee and Random Forest using Voting. 
A ten-fold cross validation is performed on the model before 
recording the performance metrics. CFS being one of the Filter 
based Feature Selection algorithms, is faster, but is less accurate. 
Hence our current work involves a simple and more efficient 
SDMR technique for Feature Selection and Metacost classifier 
with kNN as the base classifier for the classification of 
Anomalous and benign samples. The MetaCost classifier relabels 
the class feature of the training set using meta learning technique. 
The modified training set is then used to produce the final model.  

The authors of [2], propose a novel approach involving Two-
layer dimensionality reduction followed by a Two-Tier 
classification for efficient detection of intrusions in IoT Backbone 
Networks. Their approach addresses the limitations of making 
wrong decisions and increased computational complexity of the 
classifier due to higher dimensionality. Component Analysis and 
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Linear Discriminate Analysis form the Two Layers of 
Dimensionality Reduction during the preprocessing stage while 
Naïve Bayes and Certainty Factor variation of the K-Nearest 
Neighbor techniques form the Two Tiers of classification. A 
Detection Accuracy of 84.82 on twenty percent of the NSL-KDD 
training set is achieved by their work.  

 The methodology presented in [3] illustrates a detection 
technique based on anomaly detection involving data mining 
techniques. The paper discusses about the possible use of Apache 
Hadoop for parallel processing of extremely huge data sets. 
Dynamic Rule Creation technique that is adopted by their authors 
ensures that even new types of security breaches are detected 
automatically. The error rates of below ten percent can be 
observed from their findings. 

The authors in their work [4], present a PSO-based feature 
selection followed by a two-tier ensembling model involving 
Boosting and Random Subspace Model (RSM). They illustrate 
with their results that accuracy and false positive rate (FPR) are 
better compared to all other models.  

The work presented in [5] illustrates the importance of outlier 
detection in the training set that is achieved through Robust 
Regression technique during the preprocessing stage. Their work 
further proves that their model is far more superior to the normal 
Linear Regression technique that is used by most researchers. 
With their experimental data, the authors compare their model 
with Linear Regression Model and demonstrate that their Model 
is much superior especially in environments with bursty network 
traffic and pervasive network attacks.  

The authors of [6] outline a Proactive Anomaly Detection 
Ensemble (ADE) technique for the timely anticipation of anomaly 
patterns in a given data set. Weighted Anomaly window is used 
as the ground truth to train the model allowing it to discover an 
anomaly well before its occurrence. They explore various 
strategies for the generation of ground truth windows. With their 
results, they establish that ADE exhibits at least ten percent 
improvement in earliest detection score as compared with other 
individual techniques across all the data sets that are considered 
for experimentation. 

3. EKMC Technique 

The current work revolves around Preprocessing and 
Classification phases. Feature Selection forms the main layer of 
preprocessing, since not all attributes in the data set are relevant 
during the analysis. We propose a novel SDMR for Feature 
Selection that exploits the advantages of various existing Weight 
Based Ranking Algorithms. In addition to SDMR, the data set is 
also subjected to PCA for dimensionality reduction during this 
phase. In the classification phase, we subject the resultant subset 
to the proposed EKMC algorithm with ten-fold cross validation 
for measuring the performance metrics. The framework of our 
proposed technique is depicted in Fig.1. The experiments are 
carried out on two benchmark data sets namely UNSW-NB15 and 
NSL-KDD. The NSL-KDD comprises of 125973 samples in the 
training and 22544 in the test set. EKMC model was trained 
making use of the training set and was then tested with the test set. 
The performance of the proposed model was further validated by 

running the model on UNSW-NB15 data set comprising of 
175,341 records in the training set and 82,332 records in the test 
set. 

 
Figure 1: Proposed framework for Anomaly Detection 

The various Weight based Feature Selection Algorithms that were 
employed to compute the Ranks Ri  in the proposed SDMR are 
Information Gain, Information Gain Ratio, Weight by Correlation, 
Weight by Chi Squared Statistics, Gini Index, Weight by Tree 
importance, and Weight by Uncertainty. The SDMR that we 
obtained for the NSL KDD Data set was 0.278831 and that of 
UNSW-NB15 was 0.184325. All those features that are less than 
the SDMR values were discarded from the data sets. The proposed 
SDMR returned only 15 features out of 41 in case of NSL KDD 
and 11 features out of 44 features in case of UNSW-NB15. These 
subsets of features of both the data sets are further subjected to 
PCA for dimensionality reduction. The resulting feature subsets 
are finally subjected to the proposed EKMC framework. The 
proposed EKMC algorithm for efficient Anomaly Detection is 
presented in Algorithm 2. Table 1 and Table 2 list the Ranks 
determined using different Rank-Based Feature Selection 
Algorithms on NSL KDD and UNSW-NB 15 respectively. The 
proposed SDMR[7] for Feature Selection is presented in 
Algorithm1. The experimental results as indicated in Table 4 
suggest that the kNN classifier offers best prediction accuracy, 
precision, recall, F-1 measure and Detection Accuracy with least 
classification error value out of the 20 classifier algorithms. 

Algorithm 1: SDMR (Standard Deviation of Mean of 
Ranks) Feature Selection 

 Input:  D data set having n number of Features 
 Output: subset F of D with Most Significant Features 
 1. for each feature fi є D do 
  Determine Ranks Ri using different Weight  

  Based Feature Selection Techniques 
  next 
 2. for each feature fi є D do 
  Compute Sum (∑ Ri) and Mean mRi of Ranks 
  ∑Ri = R1+ R2+  ... + Rn and mRi = ∑𝑅𝑅𝑅𝑅

𝑛𝑛
 

  next 
 3. Compute Standard Deviation of Mean of  

  Ranks SDMR    
 4. Discard all fi є D < SDMR 
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 5. return F 
Table 1: Feature Ranks of NSL KDD 

Attribute Information 
Gain 

Information 
gain ratio 

Correlation Chi 
Squared 
statistics 

Gini 
Index 

Tree 
importance 

Uncertainty 

f1_duration 0.03 0.18 0.06 0.01 0.03 0.00 0.02 

f2_protocol_type 0.09 0.12 0.07 0.11 0.11 0.00 0.16 

f3_service 1.00 0.29 0.43 1.00 1.00 0.00 0.67 

f4_flag 0.77 0.56 0.64 0.81 0.81 0.00 1.00 

f5_src_bytes 0.90 1.00 0.01 0.00 0.96 1.00 0.00 

f6_dst_bytes 0.85 0.94 0.00 0.00 0.89 0.94 0.00 

f7_land 0.00 0.02 0.01 0.00 0.00 0.00 0.00 

f8_wrong_fragment 0.01 0.22 0.13 0.01 0.01 0.00 0.04 

f9_urgent 0.00 0.08 0.00 0.00 0.00 0.00 0.00 

f10_hot 0.00 0.14 0.02 0.00 0.00 0.00 0.00 

f11_num_failed_logins 0.00 0.10 0.00 0.00 0.00 0.00 0.00 

f12_logged_in 0.60 0.69 0.92 0.64 0.64 0.00 1.00 

f13_num_compromised 0.00 0.12 0.01 0.00 0.00 0.00 0.00 

f14_root_shell 0.00 0.04 0.03 0.00 0.00 0.00 0.00 

f15_su_attempted 0.00 0.12 0.03 0.00 0.00 0.00 0.00 

f16_num_root 0.01 0.13 0.01 0.00 0.01 0.00 0.00 

f17_num_file_creations 0.00 0.11 0.03 0.00 0.00 0.00 0.00 

f18_num_shells 0.00 0.04 0.01 0.00 0.00 0.00 0.00 

f19_num_access_files 0.00 0.12 0.05 0.00 0.00 0.00 0.01 

f20_num_outbound_cmds 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

f21_is_host_login 0.00 0.08 0.00 0.00 0.00 0.00 0.00 

f22_is_guest_login 0.00 0.03 0.05 0.00 0.00 0.00 0.01 

f23_count 0.49 0.56 0.77 0.58 0.57 0.00 0.56 

f24_srv_count 0.03 0.22 0.00 0.06 0.03 0.10 0.12 

f25_serror_rate 0.55 0.72 0.87 0.58 0.58 0.00 0.91 

f26_srv_serror_rate 0.56 0.72 0.86 0.58 0.58 0.68 0.93 

f27_rerror_rate 0.08 0.15 0.34 0.09 0.09 0.00 0.15 

f28_srv_rerror_rate 0.07 0.16 0.34 0.09 0.09 0.00 0.15 

f29_same_srv_rate 0.70 0.82 1.00 0.77 0.75 0.79 0.94 

f30_diff_srv_rate 0.67 0.77 0.27 0.03 0.74 0.73 0.06 

f31_srv_diff_host_rate 0.14 0.21 0.16 0.12 0.16 0.00 0.19 

f32_dst_host_count 0.22 0.26 0.50 0.27 0.27 0.00 0.25 

f33_dst_host_srv_count 0.59 0.66 0.96 0.74 0.67 0.60 0.71 

f34_dst_host_same_srv_rate 0.59 0.66 0.92 0.71 0.67 0.00 0.69 

f35_dst_host_diff_srv_rate 0.51 0.57 0.32 0.71 0.59 0.49 0.06 

f36_dst_host_same_src_port_rate 0.14 0.16 0.12 0.06 0.17 0.00 0.07 

f37_dst_host_srv_diff_host_rate 0.22 0.28 0.08 0.04 0.26 0.00 0.09 

f38_dst_host_serror_rate 0.56 0.74 0.87 0.59 0.57 0.70 0.91 

f39_dst_host_srv_serror_rate 0.58 0.76 0.87 0.58 0.58 0.00 0.97 

f40_dst_host_rerror_rate 0.07 0.14 0.34 0.09 0.09 0.00 0.13 

f41_dst_host_srv_rerror_rate 0.11 0.25 0.34 0.11 0.12 0.00 0.19 
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Table 2: Feature Ranks of UNSW-NB 15 

Attribute Information 
Gain 

Information 
gain ratio 

Correlation Chi Squared 
statistics 

Gini index Tree 
importance 

Uncertainty 

f1_id 0.32 0.51 0.49 0.62 0.38 0.83 0.46 

f2_dur 0.20 0.29 0.04 0.00 0.24 0.13 0.01 

f3_proto 0.19 0.08 0.33 0.20 0.20 0.00 0.20 

f4_service 0.08 0.00 0.28 0.09 0.09 0.00 0.10 

f5_state 0.27 0.27 0.65 0.32 0.32 0.30 0.39 

f6_spkts 0.11 0.16 0.05 0.00 0.14 0.30 0.00 

f7_dpkts 0.20 0.30 0.12 0.00 0.25 0.07 0.00 

f8_sbytes 0.11 0.30 0.02 0.00 0.14 1.00 0.00 

f9_dbytes 0.20 0.30 0.08 0.00 0.25 0.03 0.00 

f10_rate 0.24 0.37 0.43 0.25 0.27 0.24 0.29 

f11_sttl 0.46 1.00 0.80 0.54 0.53 0.90 0.70 

f12_dttl 0.20 0.29 0.02 0.52 0.24 0.48 0.63 

f13_sload 0.24 0.38 0.21 0.00 0.28 0.15 0.00 

f14_dload 0.26 0.58 0.45 0.13 0.33 0.25 0.26 

f15_sloss 0.10 0.14 0.00 0.00 0.13 0.19 0.00 

f16_dloss 0.10 0.21 0.10 0.00 0.14 0.08 0.00 

f17_sinpkt 0.13 0.30 0.20 0.02 0.17 0.08 0.07 

f18_dinpkt 0.20 0.30 0.04 0.00 0.24 0.02 0.00 

f19_sjit 0.10 0.11 0.02 0.00 0.13 0.11 0.00 

f20_djit 0.10 0.10 0.06 0.00 0.13 0.10 0.00 

f21_swin 0.10 0.11 0.47 0.13 0.13 0.00 0.18 

f22_stcpb 0.09 0.09 0.34 0.10 0.12 0.00 0.08 

f23_dtcpb 0.09 0.09 0.34 0.09 0.12 0.00 0.07 

f24_dwin 0.09 0.09 0.43 0.12 0.12 0.00 0.16 

f25_tcprtt 0.09 0.17 0.03 0.01 0.11 0.06 0.02 

f26_synack 0.09 0.16 0.05 0.00 0.11 0.21 0.01 

f27_ackdat 0.09 0.16 0.00 0.00 0.11 0.13 0.01 

f28_smean 0.05 0.05 0.04 0.02 0.06 0.29 0.02 

f29_dmean 0.20 0.30 0.38 0.10 0.25 0.09 0.12 

f30_trans_depth 0.00 0.00 0.00 0.00 0.00 0.12 0.00 
f31_response_body_len 0.01 0.10 0.02 0.00 0.01 0.00 0.00 
f32_ct_srv_src 0.08 0.13 0.31 0.09 0.09 0.14 0.11 
f33_ct_state_ttl 0.41 0.90 0.61 0.56 0.48 0.40 0.62 
f34_ct_dst_ltm 0.09 0.17 0.31 0.09 0.09 0.09 0.13 
f35_ct_src_dport_ltm 0.11 0.22 0.41 0.12 0.12 0.02 0.19 
f36_ct_dst_sport_ltm 0.21 0.37 0.47 0.14 0.20 0.12 0.26 
f37_ct_dst_src_ltm 0.10 0.16 0.38 0.11 0.11 0.12 0.14 

f38_is_ftp_login 0.00 0.00 0.01 0.00 0.00 0.00 0.00 
f39_ct_ftp_cmd 0.00 0.00 0.01 0.00 0.00 0.00 0.00 
f40_ct_flw_http_mthd 0.00 0.01 0.01 0.00 0.00 0.00 0.00 
f41_ct_src_ltm 0.09 0.16 0.32 0.09 0.09 0.00 0.12 
f42_ct_srv_dst 0.08 0.14 0.32 0.10 0.09 0.13 0.11 
f43_is_sm_ips_ports 0.02 0.31 0.20 0.03 0.03 0.15 0.07 
f44_attack_cat 1.00 0.68 1.00 1.00 1.00 0.73 1.00 
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Algorithm 2: Ensemble of kNN using MetaCost (EKMC) 

  Input: subset F after applying PCA 
  Output: Performance Metrics 

1. Subject input to an Ensemble of MetaCost with 
kNN Base Classifier. 

2. Perform cross validation of ten-folds and 
record the performance metrics. 
 

Encouraged by the results of kNN, we tried ensembling kNN 
using Bagging, Classification by Regression and MetaCost and 
the results as indicated in Table 4 prove that MetaCost happens to 
be the most efficient of them all. 

4. Experimental Results and Discussion 

The experiments are carried out on two benchmark data sets 
UNSW-NB15 and NSL-KDD. The NSL-KDD has 125973 
instances in the training and 22544 instances in the test set. EKMC 
was trained using the training set and was tested making use of 
the test set. Performance metrics after a more rigorous ten-fold 
cross validation were then recorded. The performance of the 
proposed model was later validated  using the UNSW-NB15. The 
UNSW-NB15 comprises of 175,341 instances in the training set 
and 82,332 instances in the test set. A ten-fold cross validation 
typically involves dividing the input data set into ten parts and 
training the model with the nine parts while using the excluded 
part as the test set and repeating the process for a total of ten times 
by using an unused test set during each round.  

The SDMR Feature Selection algorithm as listed in Algorithm 1 
involves the computation of ranks for each feature. Information 
Gain, Information Gain Ratio, Weight by Correlation, Weight by 
Chi Squared Statistics, Gini Index, Weight by Tree importance, 
and Weight by Uncertainty are used for the computation of Ranks. 
The weights of each feature of NSL KDD data set are listed in 
Table 1 and that of UNSW-NB 15 in Table 2. The mean value of 
Weights of Ranks of each Feature as determined by all the chosen 
Algorithms is initially determined. A Standard Deviation of Mean 
of Ranks is then Computed. All those Features whose Mean of 
Ranks is less than or equal to the computed SDMR are dropped 
and only the Features whose Mean of Ranks is greater than the 
SDMR are selected. The SDMR of NSL KDD is found to be 
0.278831 and that of UNSW-NB 15 is 0.184325. After dropping 
the Features whose Mean of Ranks is less than the SDMR value, 
only 15 Features from the NSL-KDD and 11 Features from the 
UNSW-NB data set are selected.  

In addition to SDMR, the data set is also subjected to PCA for 
dimensionality reduction during the preprocessing stage. The 
Principal Component Analysis (PCA) when applied on a data set 
having many variables (features) correlated with one another, 
reduces its dimensionality by only retaining the variation present 
in it. The existing variables of the data set are transformed to a 
new set of variables, known as the principal components (or PCs) 
that are orthogonal such that the correlation between any pair of 
variables is 0.The resultant set is subjected to various built-in 

Classifier Algorithms with ten-fold cross validation to measure 
the performance metrics. The performance of the Classifier 
Algorithms is evaluated based on the Accuracy, Classification 
Error, Precision, Recall, F1-Measure and Detection Rates. 

Efficiency of classification would be better when a classifier 
exhibits true positive rates that are maximum and false positive 
rates that are minimum. In this context, 8 Performance metrics of 
classification process are defined. Let Nben represent total number 
of normal or benign samples and Nanom the number of anomalous 
samples in a data set. True Positive (TP) is the number of normal 
or benign instances classified correctly as normal is denoted as 
Nbenben and True Negative (TN) is the number of anomalous 
instances classified correctly as anomalous is denoted as 
Nanomanom. False Positive (FP) is a measure of normal instances 
misclassified as anomalous is denoted as Nbenanom while False 
Negative (FN) is a measure of anomalous instances misclassified 
as normal is denoted as Nanomben.  

The Detection Rate (DR) is the rate of anomalous samples 
being classified correctly as anomalous. 

TPR= N ben→𝑏𝑏𝑏𝑏𝑏𝑏
(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑏𝑏𝑏𝑏𝑏𝑏+𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑏𝑏𝑏𝑏𝑏𝑏)

X 100  (1) 

False positive rate (FPR) is the rate of normal samples being 
classified incorrectly as anomalous samples. 

 
FPR = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑏𝑏𝑏𝑏𝑏𝑏) X 100  (2) 
 
False Negative Rate (FNR) is the rate of anomalous samples 

being classified incorrectly as benign samples. 
 

FNR = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑏𝑏𝑏𝑏𝑏𝑏
(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑏𝑏𝑏𝑏𝑏𝑏+𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) X 100  (3) 

  
True Negative Rate (TNR) is the rate of benign samples being 

classified correctly as benign out of the total available benign 
samples. 

 
TNR = N ben→𝑏𝑏𝑏𝑏𝑏𝑏

(N ben→𝑏𝑏𝑏𝑏𝑏𝑏+𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) X100                (4) 
 

Prediction Accuracy (PA) is the total number of anomalous and 
benign samples that are identified correctly with respect to the 
total number of all available samples. 

 
PA = (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+N ben→𝑏𝑏𝑏𝑏𝑏𝑏)

(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+N ben→𝑏𝑏𝑏𝑏𝑏𝑏+𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎→𝑏𝑏𝑏𝑏𝑏𝑏)
 X 100  (5) 

 
Precision is the number of true positives divided by the total 
number of elements labeled as belonging to the positive class. 

Precision =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

 X100 (6) 

Recall is the number of true positives divided by the total 
number of elements that really belong to the positive class. 

 
Recall =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁→𝑏𝑏𝑏𝑏𝑏𝑏) X 100  (7) 
  
F1-Measure is the harmonic mean of Precision and Recall and 

is given by: 
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F1-Measure= 2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

   (8) 

The experimental results as indicated in Table 3 suggest that the 
kNN classifier offers best Prediction Accuracy, Precision, Recall, 
F-1 measure and Detection Accuracy with least classification 
error value out of the 20 classifier algorithms. This prompted us 
to use kNN as the Base Classifier in the Ensembled approach. 
When different Ensembling Schemes such as Bagging, 
Classification by Regression and MetaCost were used, only 
MetaCost with kNN as the Base Classifier offered best results in 

comparison with the other two approaches as indicated in Table 4 
and plotted on a graph as depicted in Figure 3. This was the reason 
behind choosing MetaCost with kNN as the Base Classifier in our 
proposed work. 

The proposed EKMC performs better than our previous model i.e. 
ERCRTV [1] and the existing GAA-ADS [8] models when tested 
on both the data sets. EKMC exhibits good Prediction Accuracy 
and a better Detection Rate as listed in Table 5 and depicted in 
Figure 2.  

Table 3: Classification result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Comparison of Ensembling Techniques 

 

 

 

 

 

 

Classification 
Algorithm 

Accuracy Classification 
Error 

Precision Recall F1 Measure Detection 
rate 

Perceptron 49.37% 50.63% 68.08% 2.88% 5.26% 2.88% 

Neural Net 50.75% 49.25% 48.12% 30.00% 36.96% 30.00% 

Quadratic 
Discriminant 
Analysis 

51.29% 48.71% 4.57% 0.06% 0.12% 0.06% 

Regularized 
Discriminant 
Model 

51.63% 48.37% 8.01% 0.05% 0.10% 0.05% 

Naïve Bayes 51.71% 48.29% 21.10% 0.13% 0.26% 0.13% 

CHAID 51.88% 48.12% unknown  0.00% unknown  0.00% 

Default Model 51.88% 48.12% unknown  0.00% unknown  0.00% 

Generalised 
Linear Model 

51.89% 48.11% 90.91% 0.01% 0.03% 0.01% 

Linear 
Discriminant 
Model 

51.89% 48.11% 90.91% 0.01% 0.03% 0.01% 

Linear 
Regression 

51.89% 48.11% 87.50% 0.01% 0.02% 0.01% 

Logistic 
Regression 

51.89% 48.11% 68.42% 0.02% 0.04% 0.02% 

Deep 
Learning 

52.71% 47.29% 53.91% 88.42% 60.83% 88.42% 

Naïve Bayes 
Kernel 

60.32% 39.68% 39.68% 77.63% 77.63% 77.63% 

Decision 
Stump 

90.35% 9.65% 92.36% 87.15% 89.68% 87.15% 

Gradient 
Boosted Tree 

93.54% 6.46% 91.85% 95.09% 93.42% 95.09% 

Random Tree 94.24% 5.76% 92.90% 95.31% 94.09% 95.31% 

Rule 
Induction 

94.45% 5.55% 93.96% 94.54% 94.25% 94.54% 

Decision Tree 95.54% 4.46% 94.36% 96.51% 95.42% 96.51% 

Random 
Forest 

95.74% 4.26% 94.67% 96.58% 95.62% 96.58% 

kNN 98.85% 1.15% 98.88% 98.73% 98.81% 98.73% 

Ensembling 
Technique 

Accuracy Classification 
Error 

Precision Recall F1 Measure Detection rate 

Bagging 98.87% 1.13% 98.88% 98.76% 98.82% 98.76% 

Classification 
by Regression 

98.85% 1.15% 98.88% 98.73% 98.81% 98.73% 

Meta cost 98.90% 1.10% 98.92% 98.80% 98.86% 98.80% 
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Figure 2: Comparison graph of Various available Models 

Table 5: Performance Comparison of the techniques on NSL-KDD and UNSW-
NB 15 data sets. 

Data set Method Accuracy Detection Rate 

 
 
NSL KDD 

EKMC 98.90% 98.80% 

ERCRTV[1] 99.60% 0 

GAA-ADS[8] 97.30% 96.76% 

 
UNSW 
NB15 

EKMC 81.58% 87.60% 

ERCRTV[1] 0 0 

GAA-ADS[8] 87.46% 86.04% 

 

5. Conclusion 

In the Pre-processing phase[9,10], Feature Selection using 
SDMR is applied to select only significant features from the data 
set. The SDMR Feature Selection algorithm is very much novel 
and greatly reduces the dimensionality of the data set almost 
equaling to 70%. It selects only 15 features out of 41 features in 
case of NSL-KDD and a mere 11 features out of 44 features in case 
of UNSW-NB15. PCA is then applied to further reduce 
dimensionality of the data set. The proposed EKMC  outperforms 
GAA-ADS in terms of Detection rate on both the data sets. The 
detection rates of EKMC are 98.8% and 87.60% on NSL-KDD and 
UNSW-NB15 respectively while that of GAA-ADS are 96.76 and 
86.04% respectively on the same data sets. The performance 
metrics are recorded for tenfold cross validation. The proposed 
model is required to be tested on other data sets as well and 
Classification Error rate must further be reduced. 

 

Figure 3: Comparison of Ensembling techniques graph 
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