
Advances in Science, Technology and Engineering Systems Journal
Vol. 7, No. 4, 49-58 (2022)

www.astesj.com
Special Issue on Innovation in Computing, Engineering Science & Technology

ASTES Journal
ISSN: 2415-6698

ARAIG and Minecraft: A Modified Simulation Tool
Cassandra Frances Laffan*,1, Robert Viktor Kozin1, James Elliott Coleshill1, Alexander Ferworn1, Michael Stanfield2, Brodie Stanfield2

1Computational Public Safety Lab, Department of Computer Science, Toronto Metropolitan University, Toronto, M5B 1Z4, Canada
2Inventing Future Technologies Inc. (IFTech), Whitby, L1N 4W2, Canada

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 10 May, 2022
Accepted: 19 July, 2022
Online: 27 July, 2022

Keywords:
Haptics
Octree
Pathfinding
A*
Search and Rescue
Digital Games

Various interruptions to the daily lives of researchers have necessitated the usage of simulations
in projects which may not have initially relied on anything other than physical inquiry and
experiments. The programs and algorithms introduced in this paper, which is an extended
version of research initially published in ARAIG And Minecraft: A COVID-19 Workaround,
create an optimized search space and egress path to the initial starting point of a user’s route
using a modification (“mod”) of the digital game Minecraft. We initially utilize two approaches
for creating a search space with which to find edges in the resulting graph of the user’s
movement: a naive approach with the time complexity of O(n2) and an octree approach, with the
time complexity of O(nlogn). We introduce a basic A* algorithm to search through the resulting
graph for the most efficient egress path. We then integrate our mod with the visualization tool
for the “As Real As It Gets” (ARAIG) haptic suit, which provides a visual representation of the
physical feedback the user would receive if he were to wear it. We finish this paper by asking a
group of four users to test this program and their feedback is collected.

1 Introduction

As most people, readers and the general populace alike, are aware,
the COVID-19 pandemic has hampered the plans of many re-
searchers [1]; moreover, ongoing supply chain interruptions have
compounded this issue. From research using specialized equipment
to field testing, the past two and a half years have been full of inge-
nious “workarounds” to both workplace restrictions and material
shortages. We feel our current project is no exception: in a time
where our research, as introduced in our previous work [2], should
be applied to tangible hardware and tested in physical environments,
access to our lab and materials is limited. The need for corporeal
results is clear and thus, we propose and implement a workaround
in this paper. This work is an extended version of previously pub-
lished conference proceedings: ARAIG and Minecraft: A COVID-19
Workaround which may be found here [3].

As touched upon in [2], the field of search and rescue is going to
experience various changes over the coming decades. Canada, home
to both this project and its researchers, is one of many countries cur-
rently feeling the metaphorical and literal heat of climate change’s
effects [4]. Natural disasters, such as the forest fires plaguing the
Canadian prairie provinces [5, 6], will become more prevalent across

the country and globally before climate action takes effect [4]. Thus,
now is the time to act in terms of curbing future disasters while
empowering emergency workers to safely and efficiently respond to
high impact, low (though increasing) frequency events. While we
cannot influence government actions, domestically or globally, we
can certainly do our best to assist in preparing our first responders
for future disasters.

One of the most dangerous situations a firefighter may face
in disaster environments, particularly in enclosed spaces such as
homes and buildings, is potentially growing disoriented and thus,
lost [7]. In fact, there is ongoing research on this exact issue [7], as
this is still an unsolved problem. The motivation for this research,
in conjunction with the increasing incidence of natural disasters, is
this issue: how can we utilize modern technology in a lightweight
fashion to assist firefighters in navigating out of these low visibility
environments? Due to the restrictions the pandemic has brought
about, as well as ongoing supply chain issues, the initial answer to
this question comes in the form of simulation.

Minecraft is a digital game which focuses on the exploration,
and building, of randomly generated environments. The graph-
ics, game mechanics and game world are simple: the player is
placed, without warning or preamble, into the Minecraft environ-

*Corresponding Author: Cassandra Frances Laffan, George Vari Engineering and Computing Centre, 245 Church Street, +1 (647) 983-4070 & Cassan-
dra.Laffan@ryerson.ca

www.astesj.com
https://dx.doi.org/10.25046/aj070408

49

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj070408


C.F. Laffan et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 49-58 (2022)

ment, which is composed of “blocks”, not dissimilar to voxels. The
game is centred around navigating, manipulating and accumulating
blocks while exploring a procedurally generated world. Since the
world of Minecraft is so simple, and there are numerous frameworks
which support modding the game (these programs will be referred
to as “mods”), we have found it suits the above requirements for a
simulation medium given our problem domain. Moreover, the game
has a well established and active “modding” community [8, 9].

2 Related Work
There has been considerable research into simulations over the past
few years, particularly for reasons outlined in this paper’s intro-
duction. It is of note, however, that the usage of digital games as
an avenue for simulating experiments predates the pandemic and
supply shortages. “Project Malmo”, a project published in 2016
by Microsoft, is an earlier example of this. The authors write an
Application Programming Interface (API) and abstraction layer for
Minecraft. With it, they train an artificial general intelligence (AGI),
to complete various tasks [10, 11]. The inclusion of [10] in our
Related Work is due to their motivations for using Minecraft as their
training medium:

• The environment is rich and complex, with diverse, inter-
acting and richly structured objects [10, 11]. The platform
must offer a worldspace with which a user, or otherwise au-
tonomous agent, can interact. This worldspace must be varied
and robust.

• The environment is dynamic and open [10, 11]. The plat-
form needs to offer unique settings which allow us to mimic
real-world environments.

• Other agents impact performance [10, 11]. Other agents,
such as AI or other humans, should be able to impact the
simulation.

• Openness [10, 11]. The platform should be cross-platform
and portable.

Our ongoing research does not necessitate training AI in
Minecraft. However, the above guidelines summarize why we be-
lieve the game is an optimal platform on which we can test our
algorithms and simulate our experiments. The third point in the
above list, touching upon how other agents impact performance, is
discussed again in various sections of this paper.

Research into simulation, space division and construction of
point clouds, graphs and pathways is limited, especially in the realm
of search and rescue. Thus, we explore a more generalized approach
to 3D pathfinding which has a lower time complexity than more
conventional approaches to navigating Euclidean space. In that
regard, the authors in [12] explore pathfinding using 3D voxel space
in the digital game Warframe.

In [12], they propose utilizing an octree, comprised of voxels or
“octants”, to split the 3D world of Warframe into a low time complex-
ity, searchable space which allows for more efficient pathfinding.
Every octant is the centre point of a corresponding voxel. The pro-
gram explores all 26 nearby voxels to find the next best space to

move to. The authors determine the next available voxels via the
following constraints: are there obstacles in the closest voxel? If so,
the voxel is left out of the potential path as the agent cannot occupy
the same space as another object. Is the voxel out in the “open”,
away from cover? It is undesirable for an agent to be out in the
open, as it leaves it vulnerable to enemy attacks.

In [13], the authors implement an approach to processing point
clouds in Euclidean space, much like what we are attempting to
accomplish in our own research; in this case, they wish to navigate
through buildings and other structures. The researchers observe that
sorting and naively navigating through unordered point clouds can
have needlessly high time and space complexities. They propose
using an octree to circumvent these issues, allowing new buildings
to be mapped internally with a lower demand for computation time.
It should be noted that the point clouds these researchers are using
are already constructed before data processing; our research dif-
fers in that, not only are we constructing the point clouds as a user
navigates through the worldspace, but points are not pre-processed.

The authors in [13] use these point clouds to determine the lo-
cation of obstacles and throughways, such as furniture or doors,
respectively. They concern themselves more with identifying and
labelling specific objects and terrains, such as stairs, whereas we
are more concerned with efficient navigation. More precisely, our
focus is on whether or not the firefighter’s elevation has changed, as
well as the most efficient egress path through a given point cloud
and resulting graph.

Further on in this paper, we implement an A* algorithm for
searching the resulting graph with appropriate edges drawn between
nodes. Two papers which are referenced in this publication for the
implementation of A* are: Algorithms and Theory of Computation
Handbook [14] and Artificial Intelligence: A Modern Approach [15].
Both publications act as guidelines for the implementation of not
only A*, but other algorithms which are discussed in the Future
Work section. The latter also provides guidance for both the time
and space complexities of A*, which are necessary to explore given
the problem domain.

3 Methodologies

The next sections are divided and ordered in a way mimicking the
timeline of this project. First, methods for modifying Minecraft
are outlined, as this is a necessary step for producing meaningful
datasets and egress settings for our experiments. Next, we explore
dividing the worldspace of Minecraft and ensuing datasets into a
searchable graph with edges (at times referred to in this work as
“adjacencies”). Splitting the worldspace and creating a graph in a
timely manner emulates the urgency necessary in the real world
environment for firefighters. Pathfinding through the graph follows
the graph creation, as is the logical progression of events; again,
efficiency in time complexity is discussed since urgency is one of
the most important factors in creating the egress path for a first
responder. Navigating through the Minecraft worldspace follows,
alongside using the ARAIG visualization tool. Creating directions
and output for the suit, while important, needs to be done with
the intention of making them intuitive for first time users. Thus, a
short survey is conducted with a small group of users to get initial

www.astesj.com 50

http://www.astesj.com


C.F. Laffan et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 49-58 (2022)

feedback on the simulated system.

4 Modding Minecraft

Minecraft follows a server-client network model. This means there
are two avenues for modding the game: server-side or client-side
[16]. The server-side handles logic, game state and updates from
clients. The client-side handles rendering the game state and send-
ing updates. This separation of concerns is important. If we wish
to illustrate this concept in Minecraft, a creature, its location and
where it moves is handled by the server. The information about said
creature is sent to the client where it is rendered. The client can also
send updates, for example, when the player wishes to perform an
action such as jumping or hitting a block. In this respect, as it can
only modify what it has access to, the client cannot control where
the aforementioned creature is and the server cannot control how
the aforementioned creature appears.

Server-side modding tends to be relatively straightforward, since
the network interface is well understood and documented. There are
numerous “community sourced” implementations and application
programming interfaces (APIs) which extend the Mincecraft server.
The API we use for this mod is Spigot [17], which provides a way
to run code on events, such as player movement. It also enables
programs to react to said events, namely cancelling the movement,
recording coordinates or even running actions, such as smiting the
player with a bolt of lightning.

Client-side modding is often more complex than its server-side
counterpart. To extend the game, client-side mods have to “hook”
directly into the “vanilla” client using a variety of complex methods.
An example is runtime “bytecode” manipulation, where the Java
runtime environment is used to modify compiled code while it is
running [9]. Minecraft client code is often complex in nature as
it deals largely with in-game rendering. In addition, the code is
obfuscated, making it difficult to read and understand.

There are two big projects that make modding Minecraft easier:
Forge [18] and Fabric [8]. Forge is more established and has a larger
scope of supported modding functionalities. However, the conse-
quence of this is that the framework takes longer to update and is less
light-weight. Fabric, in contrast, is newer and lighter, using modern
techniques and providing more low level control. In this project, we
opt to use Fabric, as we prefer to keep the mod lightweight, allowing
for a more agile approach to mod development.

Originally, we attempted to create a server-side mod. Our goal
was determining if location data and its visualization is viable in
Minecraft. Despite our success in proving its viability, the limi-
tations of server-side modding in regards to visualization quickly
made themselves known. As previously mentioned, the server has
limited control as to what the client “sees”. While the server can
spawn creatures or create particles for visualization, we require
more customization. Given these circumstances and our require-
ments, the client-side model is best suited for our mod. This allows
us to use the same code to render our custom visualizations that the
client uses to render the game.

Our Minecraft mod visualizes a graph data structure by draw-
ing the edges as lines and the nodes as numbers in the Minecraft
worldspace. This gives the user the ability to visualize the recorded

coordinate points and the connections created between them. Coor-
dinate points closer to the real world are now easier to collect; there
is no need for random numbers or predetermined coordinates.

Figure 1: An example of how the Minecraft mod visualization tool renders the
player’s pathway before and after the pathfinding algorithm is run.

As stated above, Minecraft is a Java based game. However, in
order to seamlessly interface with the ARAIG simulation software,
the pathfinding program is in C. Thus, the Minecraft mod and the
pathfinding algorithms must be split into separate programs, with
communication being done over a network socket using a simple
protocol. This protocol can be described as a request-response
byte encoded message protocol. The first byte is the message type
and the rest is the message body in the request. In contrast, the
reply is comprised of only a message body. For example, to get
the current location from the mod, the pathfinding program sends a
GET LOCAT ION byte identifier. The server then responds with 4
big-endian byte encoded floating point numbers containing to the x,
y, z, and yaw components respectfully.

The control flow of the mod is as follows:

1. Capture location data: The mod has two commands, /start
and /stop, the user can enter in the “chat bar” to control the
recording of coordinate points. This emulates a GPS device
by providing the coordinates of a wearer to an external ma-
chine. The location data is stored as a list of coordinate points.
While the user is recording his path, a numbered node is
placed in the worldspace and recorded as a set of coordinates.

2. Transfer captured location data: The pathfinding program
then requests all of the recorded coordinate points from the
mod, allowing processing to begin.

3. Transfer live location data: Additionally, the pathfinding
program queries the user’s live location data from the client.
This allows for live tracking of the user along the path so that
egress instructions are updated accordingly in real time.

4. Send draw updates: Finally, in response to the captured
and live location data, the pathfinding program sends draw

www.astesj.com 51

http://www.astesj.com


C.F. Laffan et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 49-58 (2022)

commands to the client. The commands include: drawing or
deleting a line between points, changing the colour of a given
line, and changing the colour of the points.

While our initial belief of having the data collection and visu-
alization as separate from the pathfinding program may result in
unnecessary complexity, the resulting mod is, in fact, the opposite.
Using two separate programs for data processing and data visualiza-
tion allows the code to be more organized and decoupled. One of
the benefits for this is the pathfinding program could be restarted
and debugged without needing to restart the Minecraft client. Since
the two are decoupled, both can be developed at different paces.

5 Creating the Graph

Two approaches are outlined here for graph creation, which is nec-
essary for finding an egress path given points in 3D space: a naive
approach which has a time complexity of O(n2) and an octree ap-
proach which runs in O(nlogn) time.

5.1 Naive Implementation

Algorithm 1 is the initial approach for creating the shortest egress
pathway possible given the user’s nodes.

Algorithm 1: add node(graph, node) Adds a node to the
graph. Then, adds it to the adjacency arrays of any existing
nodes within a radius R.

Input: A graph with all previous nodes already inserted
and connected: graph, a newly created node to
insert into the graph: node

foreach existing node ∈ graph.nodes do
if distance(existing node, node) ≤ R or

existing node == graph.nodes[−1] then
/* Appends the node to the adjacency

array of a given node in the graph

*/

existing node.adjacencies← node
end
graph.nodes← node

When a new node is created, the add node function is called to
add it to the graph. The node is compared to every existing node
already in the graph; if the node is within R radius of the node
it is being checked against, it is added to the second node’s adja-
cency list. This approach is simple and intuitive, yet inefficient. As
mentioned previously, its time complexity is O(n2). The algorithm
works as a proof of concept but it quickly becomes evident that
with sufficiently large n, a more efficient approach is necessary. See
Figure 2 for a visualization of this function.

5.2 Octree Implementation

An octree object has three member variables associated with it.
First, the bounds variable, which contains the boundaries for the
3-Dimensional (3D) box that the octree resides in; these are stored
as a set of coordinates. Next, it contains a children array. This array

contains either zero or eight octants. These octants are the result of
splitting the bounds object into eight equally sized boxes.

Number of Nodes (n)

Ti
m

e
(t

)

Figure 2: Plotting number of nodes n against time t where t = n2.

Algorithm 2: make octree(nodes, bounds) Creates an oc-
tree given a set of points in 3D space.

Input: An array of nodes: nodes, the current boundaries for
the octree: bounds

Output: An octree containing either eight octree “children”
(octants) or N ≥ leaf nodes

initialize octree
initialize boundaries
if !nodes then

octree.children← NULL
else

if length(nodes) ≤ N then
octree.nodes← nodes

else
/* Splitting the space into octants */

boundaries← split(bounds)
initialize octree.children
for i = 0; i ≤ 8; i + + do

initialize next nodes
foreach node ∈ nodes do

if node ∈ boundaries[i] then
next nodes← node

end
octree.children[i]←
make octree(next nodes, boundaries[i])

end
end

end
return octree

Finally, an octree object has a nodes array; it remains empty unless
the octree object is a leaf in the greater data structure. It should be
noted that, unlike the naive approach above, this algorithm is run
after the subject has ended the path recording. The pseudo-code for
the octree creation is illustrated in Algorithm 2.

The initial octree object is created with its bounding box charac-
terized by the minimum and maximum (x, y, z) coordinates of the
whole graph. The function make octree is then called on an array

www.astesj.com 52

http://www.astesj.com


C.F. Laffan et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 49-58 (2022)

of every node and the aforementioned boundaries. Then, one of
three things must happen: first, if the array of nodes is empty, the
octree’s children array is set to NULL to indicate that it is empty.
Second, if the array of nodes exists, and contains less than or equal
to the amount of allowed nodes in a given octant space, the octree’s
nodes array is populated and the octree object becomes a “leaf”.

Finally, if neither of the previous two conditions are true, the
function recursively calls itself. A new set of octants is created by
splitting the boundaries into eight identically sized cubes. Next,
for each new octant, each node is compared to its bounds and, if
it is contained within the octant’s boundaries, it is placed in a new
array. Once the array is populated with the appropriate nodes, the
make octree function is recursively called on it and its respective
boundaries. The resulting octree is added to the children array for
the current octree.

The construction of this octree creates an efficient, though spa-
tially complex, search space which allows for the appropriate edges
in the graph to be created. The pseudo-code for edge creation, as a
series of octree searches, is in Algorithm 3.

Algorithm 3: f ind ad jacencies(octree, node) Populates
a node’s adjacency array with nodes within a radius R.

Input: An octree object: octree, the current node that we
wish to find the adjacencies for: node

if octree.nodes then
foreach oct node ∈ octree.nodes do

if node < oct node.ad jacencies and
distance between(oct node, node) < R then

node.ad jacencies← oct node
end

else
for i = 0; i < 8; i + + do

if node ∈ octree.children[i].bounds then
f ind ad jacencies(octree.children[i], node)

end
end

As Algorithm 3 demonstrates, f ind ad jacencies takes a fully
formed octree and a node as arguments. It is called on every node
in the graph once. The function checks if the octree object is a
leaf, and, if it is, the selected node is compared to each node in
the octree’s nodes array. If any nodes are within the given distance
R, they are added to the adjacency array for the node. Conversely,
if the octree object is not a leaf in the octree, the bounds for each
member of its children array are checked against the coordinates of
the node. If the node is within the given child’s bounding box, the
f ind ad jacencies function is called on the child and the node. This
is done recursively until all of the appropriate octree branches for a
given node are explored.

It should be noted that the average case runtime for creating the
octree and recreating its path is O(nlogn), where n is the total num-
ber of nodes in the system. The worst-case runtime for this octree
approach is the same as the above naive implementation, which is
O(n2). The worst case for this algorithm occurs if and when a node
is compared to every leaf in the octree and thus, every other node in
the system.

The bottleneck for efficiency in this case is not the creation of
the octree, which is in fact linear time, nor is it any given single

search of the octree, which is also O(logn). Rather, the bottleneck is
that the search must be performed for each node in the graph. Thus,
the time complexity for this algorithm is T = n+nlogn, which is the
sum of both the runtime of the octree construction and the creation
of each node’s adjacency list. Idiomatically, the runtime is O(nlogn).
See Figure 3 for a visualization of this function.

Number of Nodes (n)

Ti
m

e
(t

)

Figure 3: Plotting number of nodes n against time t where t = nlog(n).

6 Egress Path Creation
This section assumes one of the previous two graph creation algo-
rithms was run and there now exists a graph with appropriate nodes
and their respective adjacencies. Algorithm 4 creates a path back to
the first node of the graph for the user. See Figure 4 for an example
overview of a reconstructed path.

Algorithm 4: create pathway(graph) Creates a stack
containing the nodes comprising the most efficient path
back to the beginning of the graph.

Input: A graph with appropriate adjacencies already
created: graph

initialize stack
initialize node← graph.nodes[0]
while node , graph.nodes[−1] do

stack.push(node)
node← node.ad jacencies[−1]

end
/* Gives the directions to the user in order

*/

initialize next node
while stack do

next node← stack.pop
end

6.1 Naive Search

Algorithm 4 navigates through the graph by “jumping” to the last
neighbour in the current node’s edges. Both of the previous algo-
rithms place the latest recorded neighbour at the end of the adjacency
array. The naive algorithm accomplishes this by appending new

www.astesj.com 53

http://www.astesj.com


C.F. Laffan et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 49-58 (2022)

nodes to the graph as they are created and updates the adjacency
arrays accordingly by comparing each existing node to the new node.
The octree algorithm emulates this behaviour by comparing a node’s
ordering ID to the neighbour’s ID. If the node’s ID is less than the
incoming neighbour’s ID, the node is appended to the adjacency
array. Thus, a stack is the only thing necessary when recreating the
shortest path with which the user can navigate back to the beginning
of the graph. The time complexity for this approach is linear, O(m),
where m is the number of nodes in the egress path; the worst case
runtime is O(n), where n is the number of nodes in the graph.

Figure 4: An aerial view of a reconstructed path.

Algorithm 5: A* Search
Input: A graph with all adjacencies drawn: graph
Output: A path containing the nodes from the user to the

closest goal node: path
initialize priority queue
priority queue.enqueue(start node, 0)
while !priority queue.is empty do

u← priority queue.deqeueue
if u == graph.end then

f inal node← u
break

else
foreach ad jacency ∈ u.ad jacencies do

if ad jacency.g + distance(ad jacency, u) <
ad jacency.g then

ad jacency.previous← u
ad jacency.g←
u.g + distance(ad jacency, u))

f ← ad jacency.g + ad jacency.h
priority queue.enqueue(ad jacency, f )

if ad jacency.visited then
ad jacency.reExpansions + +

else
ad jacency.visited ← true

end
end

end
end
return path(start node, f inal node)

6.2 A* Search

The issue with the previous implementation is that it does not take
into account a future feature for this system: multiple users. Even
worse, there are some instances of path creation in which jumping

to the highest neighbouring node will not actually create the most
efficient pathway back for a single user. An edge case which would
cause this undesirable behaviour, for example, is if the user continu-
ously navigates in “loops” or interconnected circles. Algorithm 5 is
a basic implementation of A*, which replaces the naive approach
above. While the naive approach is linear in its time complexity, the
average time complexity for A* is O(bd), where b is the branching
factor and and d is the depth of the solution [15].

The heuristic function utilized by Algorithm 5 is the Euclidean
distance value from any given node to the final node. This allows for
prioritization of nodes, leading the user in a straighter line towards
the goal. This heuristic, given only one goal node, is admissible
[14], meaning it does not overestimate the cost of a given node to
the goal node [14].

7 Giving Directions in Minecraft
This section assumes the egress path has already been constructed.
As the Modding Minecraft section states, the game was created and
released in the early 2010 [19]. The programmers behind the origi-
nal Java-based game made some unusual implementation decisions,
particularly in regards to its coordinate system. In essence, it is a
right-handed system with unconventional axes. The three issues
which we circumvent later in this paper, in order to provide accurate
navigation, are:

1. The y-axis is the measure of how high or low the player is
relative to the ground, as opposed to the conventional z-axis
for this task;

2. The angles between points in the XZ-plane are given clock-
wise, instead of the conventional counter-clockwise that is
generally utilized for trigonometry;

3. The positive Z axis, which is South, is 0 radians in Minecraft.
Consequently, North, which is negative Z, is π radians.

Figure 5: A diagram of the Minecraft coordinate system.

www.astesj.com 54

http://www.astesj.com


C.F. Laffan et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 49-58 (2022)

Figure 6: An example of the resulting system of vectors when a player’s yaw is
facing a different direction than the next desired node. θ and the blue arrow are the
player’s yaw. ~t is the node vector, ~s is the player’s position vector.

Once the shortest path has been created for the player, we need
to give him directions to the next immediate node in that path. To do
this, we calculate the angle of the next node relative to the player’s
yaw. We shall call this angle α. First, we take the vector ~t, which
is the vector pointing to the desired node, and the player’s position
vector, ~s, and calculate ~g, which we will refer to as our direction
vector:

~g = ~t − ~s

Once we have our direction vector, we calculate β, which is the
angle of ~g relative to the native coordinates to Minecraft. For this,
we use 2-argument arctangent:

β = atan2(−gz, gx) + π

Once β is calculated, we have to adjust the angle so that it is relative
to the flipped coordinate system that we are now working in. We
will call this angle δ:

δ = 3π/2 − β

The final step to find the next desired direction is to calculate the
difference between the resulting δ and θ, where θ is the player’s yaw.
This is α:

α = δ − θ

For the sake of convenience, in order to ensure that the resulting
angle is easy to use when giving directions from the suit in the next
node, we may add 2π to normalize the value of α. Please refer to

Figure 6 for a visualization of an example in this system. Thus, the
algorithm used to calculate the next desired directional instruction,
relative to the player, is outlined in Algorithm 6.

Algorithm 6: Returns the angle of the node relative to the
player’s position and yaw.

Input: A player’s coordinates and yaw: player, the desired
node: node

gx ← node.x − player.x
gz ← node.z − player.z
β← atan(−gz, gx) + π
δ← (3π)/2 − β
α← δ − player.yaw
if α < 0 then

α← α + 2π
return α

A public repository including these algorithms may be found in
[20]. The functionalities which are specific to the ARAIG suit, as
discussed below, have been removed for the sake of licensing.

8 Integration with ARAIG

The “As Real As It Gets” (ARAIG) suit, as outlined in IFTech’s
specifications in [21], has numerous vibratory and stimulus sensors.
In order to provide a distinct set of visual cues on the simulated suit,
we utilize the vibratory sensors. This way, the player can quickly
translate the visual instructions from the simulated suit to following
directions inside the Minecraft environment. To ensure the system
was quick to learn for new users, the program only outputs four
directions (which are given in relation to α as calculated in the
previous section):

1. Forward: π − 1/2 < α < π + 1/2. The user’s abdomen and
pectorals are stimulated, indicating to them that they should
move forward.

2. Left: π/2 − 1/2 < α < π − 1/2. The user’s left shoulder is
stimulated, indicating to them that they should turn left.

3. Right: π + 1/2 < α < 3π/2 + 1/2. The user’s right shoulder
is stimulated, indicating to them that they need to turn right.

4. Turn around: If α is not within the previous three ranges,
the user is not facing the correct direction. Thus, the user’s
back is stimulated, prompting them to turn around.

Once the program is running, the user is given a set of initial
instructions. The directions relayed to the user are updated every
500 milliseconds given the user’s yaw and location. Taking the
conditions outlined in Figure 6 as an example, the user’s suit output
would appear on the screen as shown in Figure 1.

www.astesj.com 55

http://www.astesj.com


C.F. Laffan et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 49-58 (2022)

Figure 7: An example of how the ARAIG suit simulation software appears given the
conditions in Figure 6.

The ARAIG simulation software integration has been omitted
in the supplementary GitHub repository. If readers wish to use
this software, they are encouraged to reach out to IFTech at [22].
Once readers receive the appropriate permissions to use the ARAIG
visualization software and SDK, they are free to contact Cassandra
Laffan or Robert Kozin for access to the full version of this mod
and its functionalities.

9 User Testing
A small series of tests were designed to examine whether or not this
system is intuitive and quick to learn for new users. The sample
size for this study is limited by the non-disclosure agreement (NDA)
which protects the ARAIG visualization tool. Consequently, users
tested in this study are only those with access to the researchers’ ma-
chines. As a result, we survey four users of varying backgrounds, all
of whom have access to one of the computers with the visualization
software available.

Figure 8: Screenshots of the burn house as constructed in Minecraft.

The user tests take place in a “burn house”, which is a struc-
ture built to the specifications as outlined in [23]. Burn houses are

standardized buildings in which firefighters may practice navigating
structures and fighting fires in a physically simulated environment
here in North America. This is a logical testing environment as
the system is being designed with first responders in mind. The
main goal of this “pilot study” is not necessarily to evaluate how
quickly a user may exit a building given different circumstances,
but to observe how the average user interacts with the system. We
also gather feedback on possible system improvements in hopes of
making it more intuitive to new users.

There are four categories of navigation tests, all of which have
the same set up and goal: the user is tasked with navigating to the
top of the tower, then retracing their pathway down. The navigation
upward is not timed as it generally took 60 seconds±1 second; what
was timed was the user navigating back to where they started. The
users are told it is acceptable to both stray from the path if they were
lost or quit for the same reason. The categories for testing are as
follows:

1. Control Run: The control run times the users navigating
to their starting points at the bottom of the tower with high
visibility and no navigational assistance.

2. Low Visibility: This run is much like the control run, with
no navigational assistance. However, distance of visibility for
the users is greatly decreased, as per Figure 8.

3. High Visibility with Path Recreation: This category of test-
ing allows the users their full field of vision. Their goal of
retracing their path is assisted with output on the simulated
ARAIG suit on a neighbouring screen. The users are informed
that they could opt not to acknowledge the suit’s output if
they find it to be confusing or a hindrance to their task.

4. Low Visibility with Path Recreation: This set of tests has
the users navigate up to the top of the tower and back down
with low visibility. They are given the output of the simulated
ARAIG suit on a neighbouring monitor to assist them in this
task. Much like in the previous category, they are informed
that if they felt the suit is acting as a hindrance to their task,
they can opt to ignore its output.

Figure 9: An example of a low-visibility environment created by our mod.

Users are also asked to give any and all feedback they believe is
pertinent to the experiment.

10 Results
Users were given time to practice controlling the player character
in the game before running the tests. The results for each run are

www.astesj.com 56

http://www.astesj.com


C.F. Laffan et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 49-58 (2022)

shown in Figure 10. Generally, the users were more efficient when
not following the directions given by the suit in high visibility situ-
ations. However, whether or not the use of the suit made it easier
for the user to find their way back to the start in low vision envi-
ronments seemed entirely dependent on the user’s experience with
Minecraft in the past and the path they took. This will be further
discussed below.

Figure 10: The results of our short pilot study. Measurements are given in Min-
utes:Seconds:Milliseconds.

User feedback was as follows:

• Users A, B and D all remarked that having the suit in the low
vision environment made navigating somewhat easier if they
did not initially take erratic paths.

• Users B, C and D all said that dividing their attention be-
tween Minecraft and the ARAIG simulation software made
navigating efficiently very difficult.

• Users B and C insisted that completing the task would be
much easier while wearing the suit.

• User B suggested that instead of stimulating the user on the
back to prompt him to turn around, to instead have it indi-
cate that the user should go forward. This would emulate a
“pushing” motion.

When we asked users if they would find the system useful when
wearing the physical ARAIG suit, all of them responded that yes, it
would be more helpful.

11 Discussion
On average, the time taken to navigate the high visibility portion
is shorter unassisted versus navigating with the assistance of the

simulated ARAIG suit. This is supported by the feedback from
most users: splitting their attention between two monitors may be
distracting and much more difficult than simply guessing their return
path. The shortest pathways, as reflected in Table 1, are either the
user taking advantage of the fact there were a few optimal routes
to the top of the building from the ground, or them falling down
multiple flights of stairs.

Users A and D both have previous experience playing Minecraft.
They found the ARAIG suit’s contributions to their navigation back
to their starting point to be beneficial. Users B and C, on the other
hand, expressed that the simulated suit detracted from their ability to
navigate, as they were already focusing heavily on how to navigate
in the low light environment. Shorter pathways up, which were
generally just a simple race up the stairs, are reflected in the low
visibility runs.

12 Conclusion
In this project, we continue the work we first presented in [2], where
we propose a system for assisting first responders in navigating
out of low visibility environments utilizing the ARAIG haptic suit.
In order to circumvent various obstacles due to the pandemic and
supply chain interruptions, we opt to simulate the ARAIG function-
ality and path recreation in the digital game Minecraft. To do so, a
mod for the game integrating the ARAIG visualization software is
written. This mod tracks a user’s movement through the Minecraft
worldspace. Once the player’s points in space are recorded, two
different implementations of creating a graph from these points
are proposed: the naive approach, which directly compares every
node to every other node, and an octree approach, which divides
the worldspace into octants, allowing for efficient edge creation.
Then, two search algorithms are implemented and compared for
finding the most efficient egress path in the resulting graph. The
first implementation is another naive approach, which simply jumps
from a node to the last recorded node in its edge array. The second
implementation is a basic A* algorithm, which, while having a
higher time complexity in a worst-case scenario, does not fail in
special circumstances.

Finally, we have four users test our software and give us con-
structive feedback based upon their experiences playing the game in
conjunction with the visualization tool for the ARAIG suit. Users
generally agree dividing their attention between two programs is
difficult and the task would be much easier to complete if wearing
the physical ARAIG suit. This feedback is useful for when our re-
search evolves to include firefighters, as we do not want firefighters
to feel as if they are disconnected from, or do not understand, the
physical input from the suit.

12.1 Future Work

Succeeding this leg of our research are various steps we plan to
implement. First and foremost, as we note above, we are looking
to implement multi-user functionalities. In doing so, further usage
of A* is necessary and the naive implementation for finding the
egress path simply will not work. There are numerous variants and
alternatives to A* [14], including iterative deepening A* (IDA*)

www.astesj.com 57

http://www.astesj.com


C.F. Laffan et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 49-58 (2022)

and recursive best first search (RBFS). The next immediate step
is thus finishing the Minecraft mod, implementing various search
algorithms and comparing them on large datasets.

Before we begin testing in real-world environments, we intend
on bridging the gap between these two concepts. As our Results
section mentions, users lamented having to split their attention be-
tween two screens while navigating with the simulated ARAIG suit.
Further testing in the Minecraft environment includes having a user
wear the physical suit while navigating the game world. This would
allow the user to focus his full visual attention on Minecraft while
receiving instructions from the ARAIG garment.

Other steps in this research include integrating the algorithms
with software which interfaces with the physical world, such as
Google’s AR Core API [24]. Using our algorithms in more con-
trolled, less noisy real-world environments will allow us to refine
these algorithms before we begin integrating them with noisier data
such as LiDAR, sonar or a 3D camera data. Finally, we can even-
tually begin work on integrating these algorithms fully with the
physical ARAIG suit and supplementary sensors, as first introduced
in [2]. We will then test this technology in a physical burn house as
presented in [23].

Conflict of Interest The authors declare no conflicts of interest.

Acknowledgements The researchers acknowledge the funding
provided by the Toronto Metropolitan University in conjunction with
the Natural Sciences and Engineering Research Council (NSERC).

A special thanks to Jinnah S. Ali-Clarke and Aaron Gill-Braun
for providing invaluable support and insight for our research. An-
other special thanks to Erin MacLellan for her invaluable editing
contributions to this paper.

References
[1] S. R., “Covid-19’s impact felt by researchers,” 2021.

[2] C. F. Laffan, J. E. Coleshill, B. Stanfield, M. Stanfield, A. Ferworn, “Using the
ARAIG haptic suit to assist in navigating firefighters out of hazardous environ-
ments,” 11th IEEE Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON), 2020, doi:10.1109/iemcon51383.
2020.9284922.

[3] C. F. Laffan, R. V. Kozin, J. E. Coleshill, A. Ferworn, B. Stanfield, M. Stan-
field, “ARAIG And Minecraft: A COVID-19 Workaround,” in 2021 IEEE
Symposium on Computers and Communications (ISCC), 1–7, 2021, doi:
10.1109/ISCC53001.2021.9631428.

[4] W. J. Ripple, C. Wolf, T. M. Newsome, P. Barnard, W. R. Moomaw, “World
Scientists’ Warning of a Climate Emergency,” BioScience, 70(1), 8–12, 2019,
doi:10.1093/biosci/biz088.

[5] J. P. Tasker, “Elizabeth May says climate change, extreme events like Fort
McMurray fire linked — CBC News,” 2016.

[6] S. Larson, “Massive fire north of Prince Albert, Sask., is threatening farms and
acreages — CBC News,” 2021.

[7] W. Mora, Preventing firefighter disorientation: Enclosed structure tactics for
the Fire Service, PennWell Corporation, Fire engineering Books & Videos,
2016.

[8] “Fabric,” 2015.

[9] “Fabric Mixin Framework,” 2015.

[10] M. Johnson, K. Hofmann, T. Hutton, D. Bignell, “The Malmo Platform for
Artificial Intelligence Experimentation,” in Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI’16, 4246–4247,
AAAI Press, 2016, doi:10.5555/3061053.3061259.

[11] S. Adams, I. Arel, J. Bach, R. Coop, R. Furlan, B. Goertzel, J. S. Hall, A. Sam-
sonovich, M. Scheutz, M. Schlesinger, S. C. Shapiro, J. Sowa, “Mapping the
Landscape of Human-Level Artificial General Intelligence,” AI Magazine,
33(1), 25–42, 2012, doi:10.1609/aimag.v33i1.2322.

[12] D. Brewer, N. R. Sturtevant, “Benchmarks for Pathfinding in 3D Voxel Space,”
in SOCS, 2018.

[13] F. W. Fichtner, A. A. Diakité, S. Zlatanova, R. Voûte, “Semantic enrichment of
octree structured point clouds for multi-story 3d pathfinding,” Transactions in
GIS, 22(1), 233–248, 2018, doi:10.1111/tgis.12308.

[14] M. J. Atallah, M. Blanton, 22.4, CRC Press, 2010.

[15] S. J. Russell, P. Norvig, Artificial Intelligence: A modern approach, Pearson,
4th edition, 2022.

[16] “Protocol FAQ, URL: https://wiki.vg/Protocol FAQ.” .

[17] S. Team, “Spigot, URL: https://www.spigotmc.org/.” .

[18] “MinecraftForge Documentation, URL: https://mcforge.readthedocs.io/en/latest/.”
.

[19] Notch, “Minecraft 0.0.11A for public consumption,” 2009 URL:
https://web.archive.org/web/20150716115516/http://notch.tumblr.com/post/10
9000107/minecraft-0-0-11a-for-public-consumption.

[20] C. F. Laffan, R. Kozin, “Octree Path Finding Algorithm,” 2021. URL:
https://github.com/cassLaffan/Minecraft Pathfinding.

[21] “ARAIG As Real As It Gets, URL: https://iftech-
technologies.com/downloadthe- sdk/.” .

[22] B. Stanfield, M. Stanfield, “Download the ARAIG SDK, URL: https : / / www
. firefacilities.com/fire-training-towers/tower-models/thecaptain/.” .

[23] “Fire Department Training Building - Multiple Fire Fighter Trainees,”
2020. URL: https : / / www . firefacilities.com/fire-training-towers/tower-
models/thecaptain/.

[24] “Build new augmented reality experiences that seamlessly blend the digital
and physical worlds, URL: https://developers.google.com/ar.” .

www.astesj.com 58

http://www.astesj.com

	 Introduction
	 Related Work
	 Methodologies
	 Modding Minecraft
	 Creating the Graph
	 Naive Implementation
	 Octree Implementation

	Egress Path Creation
	Naive Search
	A* Search

	Giving Directions in Minecraft
	Integration with ARAIG
	User Testing
	Results
	Discussion
	Conclusion
	Future Work


