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 Applying black-box ML models in high-stakes fields like criminology, healthcare and real-
time operating systems might create issues because of poor interpretability and complexity. 
Also, model building methods that include interpretability is now one of the growing 
research topics due to the absence of interpretability metrics that are both model-agnostic 
and quantitative. This paper introduces model selection methods with trade off between 
interpretability and accuracy of a model. Our results show 97% improvement in 
interpretability with 2.5% drop in accuracy in AutoMPG dataset using MLP model (65% 
improvement in interpretability with 1.5% drop in accuracy in MNIST dataset). 
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1. Introduction 

 This paper is an extension of the work originally presented in 
ICITEE 2021 with 1) addition of classification problems and 2) 
more clarified outcomes (i.e. graphs, tables) [1].  

 ML models are widely used in various fields including public 
health and the judicial system. However, the majority of the state-
of-the-art estimators could be categorized as ’black-box’ models 
with poor accountability and transparency [2]. For instance, the 
CNN model learned to detect metal token on the corner of the 
radiology image instead of the image itself (no accountability) [3]; 
because the model is black-box it is hard to notice such behavior 
(no transparency).  

 In [4], research interest in interpretability in model building is 
rising. Unfortunately, because of the absence of quantitative 
assessment metrics, evaluating interpretability is not a trivial goal. 
According to [5], [6], interpretability is inversely proportional to 
accuracy. Therefore, one realistic approach is to trade accuracy 
for interpretability, specifically, is it possible to create simpler 
(easily interpretable) models with high enough accuracy (drop in 
accuracy to a certain threshold)? 

 To address the above problem, we acquire a simple and 
effective numerical interpretability metric-simulatability 
operation count (SOC) [7], following the major contributions of 
this work: 

• Evaluate interpretability and accuracy of commonly used 
models for regression and classification tasks: tree-based 
models, multi-layer perceptron (MLP) and support vector 
machine (SVM). 

• Propose and apply methodology for a trade-off between 
interpretability and accuracy to enhance interpretability of 
the models, by letting accuracy to drop up to certain limits. 

2. Motivation and Related work 

2.1. Motivation 

 Even though supremacy of black-box models led to their 
extensive usage, they have lower interpretability compared to 
tree-based models (e.g., linear model tree), which can compete 
with other models on both regression and classification tasks. 
Complexity of black box models result in higher accuracy in 
general. However, they have lower interpretability with respect to 
tree-based models (e.g. decision tree) which can achieve 
competitive performance on both classification and regression 
tasks. As depicted in Figure 1a, the linear model tree (LMT), 
compared to MLP regression, has almost the same accuracy 
results (MAE) on AutoMPG and Servo datasets, and worse results 
(higher MAE) on Forest Fire dataset. While the interpretability 
level of LMT is remarkably higher (lower SOC) than MLP in the 
AutoMPG and Servo datasets (Figure 1b).  

For comparatively simple datasets (AutoMPG and Servo), 
LMT model can be used to increase interpretability with a small 
accuracy degradation. On the other hand, when the degradation of 
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accuracy cannot be neglected for complex datasets (i.e. Forest 
Fire), we can prune a complex model by hyper-parameter tuning 
in order to raise interpretability level (e.g. by decreasing the 
number of neurons and/or hidden layers in MLP) within practical 
accuracy range. As a by-product, size of the model may be 
reduced, training and inference speed may be increased. 

 
(a) Accuracy (MAE) 

 
(b) Interpretability (#SOC) 

Figure 1: Motivating Example: Accuracy and interpretability of LMT and MLP 
Algorithms 

2.2. Related Work 

 Interpretability/explainability of ML models and explainable 
AI are now emerging research areas due to the wide usage of AI 
technologies [8]. According to [2], it is favored using simple and 
interpretable models as they are capable of replacing 
sophisticated ’black box’ models. In [9], if-then-based rules are 
extracted from SVM using a two-step method: first run SVM on 
data and obtain the set of support vectors, then another 
interpretable model is trained. In [10], the author proposed a 
human-based proxy metric that is derived from evaluation of 
model interpretability by humans or a black-box model’s post-hoc 
interpretation. Authors of [11] studied a simulatability and a ‘what 

if’ local explainability of logistic regression, neural network and 
decision tree. They proposed the metric of interpretability as the 
run time Operation Count (OC). According to [5] the 
Simulatability Operation Count (SOC) evaluates interpretability 
for several regression models through the proposed formula. The 
experiments in this paper use SOC formulas for comparing 
interpretability of selected models in our experiments. 

3. Methodology 

3.1. SOC metric 

Interpretability of algorithms can be evaluated in terms of 
simulatabilty. Simulatability Operation Count (SOC) - the 
number of arithmetic operations needed to execute an algorithm. 
According to [8], SOC can be a proxy metric for simulatability. 
For instance, a linear regression model with 10 variables does 10 
multiplications and 9 additions, thus its SOC is 19. More detailed 
derivation of SOC of estimators can be found in [5]. 

 
Figure 2: An Overview of the Trade-offs Methodology 

3.2. Workflow of the experiment 

The workflow of the experiment is shown in Figure 2. Phase I 
is divided into Data Preprocessing, followed by Model Training. 
In the first stage 1) categorical entries of datasets are converted to 
numerical with OrdinalEncoder [12]; 2) StandardScaler [12] is 
applied to reduce effects of entries on regression coefficients; 3) 
outliers which has z-score bigger than 3 are removed from the 
dataset [13]; 4) correlated entries are dropped to prevent 
multicollinearity (i.e. Variance Inflation Factor (VIF) is larger 
than 10) [14]. In the next stage (model training), hyper-parameters 
are selected by applying GridSearchCV implementation of 
sklearn [12]. 

Phase II consists of a model selection method that we are 
proposing. In the first step, the SOC scores of the chosen 
estimators at the previous training phase will be evaluated. Next, 
we repeatedly run a model selection process to decrease SOC 
scores by letting the accuracy to drop by up to a limit set by 
threshold percentage (p%) from the highest accuracy values 
achieved in the training stage (trade-offs between accuracy and 
interpretability). The threshold percentage is chosen arbitrarily 
between 0 and 15%, but in reality its optimality depends on the 
specifics of the task (i.e. error tolerance and requirements like 
transparency and accountability). For example, on Figure 1a LMT 
and MLP have almost similar accuracy, on Figure 1b LMT has 
much lower SOC. In such cases, LMT is a suitable candidate for 
the tasks that require interpretability of algorithms. 
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Such trade-off can be done by tuning parameters of models 
influencing the SOC according to Table 1.  

Table 1: SOC formula of algorithms [7]  

Estimator 𝐾𝐾𝑡𝑡 𝑜𝑜𝑜𝑜 𝐴𝐴𝑡𝑡 SOC formula 

LMT N/A 2D + 2P + 1 

DT N/A 2D + 1 

MLP 𝐴𝐴𝑡𝑡 
 
 

Relu 

Sigmoid 

Tanh 

2 × 𝑁𝑁𝐻𝐻+1 + ∑ℎ=1
𝐻𝐻 (2 × 𝑁𝑁ℎ+ 𝐴𝐴𝑡𝑡) × 

𝑁𝑁ℎ+1 
 
𝐴𝐴𝑡𝑡 = 1 
𝐴𝐴𝑡𝑡 = 4 
𝐴𝐴𝑡𝑡 = 9 

SVM 𝐾𝐾𝑡𝑡 
Linear 
Polynomial 
Sigmoid 
RBF 

SV × (𝐾𝐾𝑡𝑡+ 2) 
𝐾𝐾𝑡𝑡 = (2P - 1) 
𝐾𝐾𝑡𝑡 = (2P + 1 + d) 
𝐾𝐾𝑡𝑡 = (2P + 10) 
𝐾𝐾𝑡𝑡 = (3P + 1) 

Following the feature selection stage, the number of variables 
in the dataset (P) is fixed, the depth (D) could be decreased to 
reduce SOC in Decision Tree (DT) and in LMT.  

The type of activation functions (𝐴𝐴𝑡𝑡), the number of hidden 
layers (H) and neurons (N) can be tuned in MLP to obtain lower 
SOC values. Lastly, selecting a simpler kernel function (𝐾𝐾𝑡𝑡 , e.g. 
Linear) and decreasing the number of support vectors (SV) (using 
NuSVR and NuSVC [12]) and by tuning hyperparameters reduces 
SOC in SVM. 

Table 2: Servo Features 

Feature    Description 

motor  
screw  
pgain  
vgain  
class  

A,B,C,D,E 
A,B,C,D,E 
3,4,5,6 
1,2,3,4,5 
0.13 to 7.10 

4. Experimental Results 

4.1. Experimental Setup 

Datasets for Regression: For our experiments three test 
datasets (from complex to simple) are used: Forest Fire (complex) 
[15], Auto MPG (medium) [16] and Servo (simple) [17]. 

1) Servo: There are 5 variables with target class, and 167 data 
instances. Value of each variable is discrete, except for the target, 
it is continuous within the range [0.13, 7.1] and is a servo-

mechanism's raise time. Detailed descriptions are explained in the 
TABLE 2. 

2) Auto MPG: There are 9 variables and 398 data instances, the 
target variable is ’mpg’ (miles per gallon). Detailed descriptions 
are in the TABLE 3. 

Table 3:  Auto MPG features 

Feature    Description 

mpg 
model year 
cylinders 
displacement 
horsepower 
weight 
acceleration 
 
origin 
name 

miles per gallon, continuous output variable 
version of a car 
power unit of engine 
measure of the cylinder volume 
power of engine produces 
weight of car 
amount of time taken for car to reach 
a velocity of 60 miles per hour 
multi-valued discrete 
name of the car 

3) Forest Fire: There are 517 data instances and 13 vari- ables 
including a target class ’area’. Full descriptions are in the TABLE 
4. 

Table 4: Forest Fire features 

Feature    Description 

area 
 
X,Y 
month, date 
 
temp, wind, rain 
RH 
FFMC,DMC,DC,ISI 
 

in ha, 0 means less than 
1ha/100 (=100m2) 
coordinates of place of fire 
categorical value from jan. to dec. 
and mon. to sun. correspondingly 
meteorological data 
relative humidity 
components of Fire Weather Index 
(FWI) of the Canadian system 

Datasets for Classification: The classification datasets 
include Iris (simple) [18], MNIST (medium) [19] and Pima 
Indian Diabetes (complex) [20]. 

4)  Iris: The dataset contains 5 features with 1 target class 
and 150 instances. Features of Iris dataset are real values and 
described in TABLE 5. 

Table 5: Iris Features 

Feature    Description 

sepal length 
sepal width 
petal length 
petal width 
class  

1.0 - 6.9 cm 
0.1 - 2.5 cm 
4.3 - 7.9 cm 
2.0 - 4.4 cm 
Setosa, Versicolour, Virginica 
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5)  MNIST: The dataset has 784 features and 70000 (60k 
training and 10k test images) instances, predicting one of 10 
digits. Features of MNIST consists of a 28x28 array of real 
values of all pixels in the picture. 

6)  Diabetes: There are 768 instances of 9 features of real 
values, which are described in TABLE 6. The outcome is 
positive or negative for the diabetes test. 

Table 6: Diabetes Features 

Feature    Description 

Pregnancies 
Glucose 
Blood Pressure 
Skin Thickness 
Insulin 
BMI 
Diabetes Pedigree 

Function 
Age 
class 

0 - 17 
0 - 199 
0 - 112 
0 - 99 
0 -846 
0.0 - 67.1 
0.078 - 2.42 
21 - 81 
0, 1 

Algorithms for Regression: LMT is a model [21] and its 
implementation was according to M5 design [17]; Scikit- learn 
library’s [12] MLP Regressor and SVR were used in our 
experiment. Accuracy metrics is a Mean Absolute Error 
(MAE) 

Algorithms for Classification: DT, MLP Classifier and 
SVM implementations of scikit-learn library [12] were used to 
deal with classification task. The percentage of correct 
predictions (Accuracy) is used as an accuracy metric. 

 
4.2. Results and Analysis 

Preprocessing for Regression: Preprocessing stage 
allowed to reduce Servo dataset to 152 data instances, Auto 
MPG to 367 (’horsepower’ and ’displacement’ are dropped 
because of collinearity issue, ’name’ variables is not used), and 
Forest Fire to 468.  

 
Figure 3: SVR training on Auto MPG dataset. 

Model Training for Regression: As mentioned earlier, 
algorithms are trained with GridSearchCV allowing us to test 
a broad range of hyper-parameters. Figure 3 shows the process 
of training SVM on Auto MPG. The lowest error is at C = 1000 
and gamma = 0.05 and sub-optimal configuration is obtained 
by concave down graph. 

Table 7: Accuracy Performance (MAE) of Trained Models with references. 
(Lowest error values in bold). 

   Servo  Auto MPG Forest Fire 

LMT 
MLP 
SVR 
Lin. 

Reg. 
Other 

Ref. 

0.133  1.889  6.847  
0.096  1.890  5.376  
0.183  1.830  5.212  
0.863  2.304  6.723  
0.220 [22] 2.020 [23] 6.334 [24] 

Overall outcomes of the model training phase are in Table 7. 
SVR performs better than other models on Auto MPG and Forest 
Fires datasets and MLP on Servo dataset. Performances of the 
Scikit Learn’s Linear Regression and other references are 
provided for comparison. 

Model Training for Classification: Like the regression 
training phase, GridSearchCV is used to find best combina- 
tions of hyperparameters for the models. One of the examples 
of parameter-tuning is shown in Figure 4, where optimal values 
are gamma = 0.00003 and C = 4.64. 

 
Table 8: Accuracy Performance of Trained Models with references. (Highest 

accuracy values in bold). 

   Iris                MNIST              Diabetes 

DT 
Random 

Forest 
MLP 
SVM 
Other Ref. 

96.7%        79.0%      75.4% 
97.7%        97.2%      76.5% 
83.3%        94.9%      75.7% 
98.7%        96.0%      

77.1% 
98.7% [25]   99.7% [26]         76.0% [27] 

Training stage’s results are provided in Table 8. On MNIST 
dataset Random Forest has the best results, while SVM 
outperforms other models on IRIS and Diabetes dataset. As a 
comparison, the results of the Random Forest model from the 
Scikit Learn library were provided. 

Model Selection for Regression: Following two approaches 
to improve interpretability are discussed in this paper: 1) model 
can be substituted by simpler model and 2) the same model is 
simplified by tuning its hyperparameters (e.g. reducing the 
number of neurons or layers in MLP). 

Figure 5 shows the results of the first approach and the idea 
behind it is to demonstrate the behavior of models optimized for 
interpretability applying the trade-offs method. The point (0, 0) 
corresponds to the baseline accuracy and SOC score of the 
estimator on the given dataset. These are the first (top most) 
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entries of each algorithm and dataset pair on Table 9. For 
example, for LMT and Servo, baseline score is (0.133, 19). The 
percentage of the increase or decrease is calculated with respect 
to the baseline score. Next entry in LMT and Servo on Table 9 is 
(0.134, 17), which corresponds to (0.75 = (0.134 − 

0.133)/0.133 × 100, 10.52 = (19 − 17)/19 × 100) point on 

the blue graph (encircled with red) on Figure 5. 
All estimators (MLP, SVR and LMT) behave similarly on 

regression task. For example, on the Servo dataset SOC is 
reduced significantly ( approximately by 85%, 17% and 11%) 
for small raise in error (2.1%, 1.6% and 0.75% respectively). 
MLP is the most accurate estimator for Servo (with 0.096 MAE 
value). If 2% reduction in accuracy is feasible for Servo 
dataset, MLP’s interpretability could be increased by 85%. 
Alternatively, if MAE value of 0.133 is acceptable for Servo 
dataset, LMT algorithm with SOC value of only 19 could be 
used instead of MLP. 

 
Figure 4: Training SVM on Diabetes dataset. 

 
Figure 5: Comparison of Models in Accuracy and Interpretability on the Servo 

dataset. 

Table 9 is a supplement of Figure 5 with additional results 
of Forest Fire and Auto MPG datasets. Same as in Figure 5, 
notable advancement is achieved in interpretability with a 
small degradation in accuracy. For the Auto MPG and Forest 
Fire datasets using LMT, the most accurate results are obtained 

with tree depth of 1 (see Figure 7), hence the model cannot be 
simplified further. 

Figure 6 shows the results of the second approach with three 
datasets using MLP. The similar behavior is observed on all 
datasets - SOC of the MLP model is decreased notably with 
small degradation in accuracy. The elbow (turning) points are 
feasible candidate points for effective trade-off between 
interpretability and accuracy, since after these points (from left 
to right) the slopes of the graphs sharply drop. For instance, in 
Auto MPG dataset (line in red) interpretability is improved 
(reduction of SOC) by 97% with 2.5% reduction (raise in 
MAE) in accuracy. The similar pattern is observed in the rest 
of the datasets. 

 
Figure 6: Trade-off between Accuracy and Interpretability in MLP estimator. 

 
Figure 7: Performance of LMT on Forest Fire dataset. 

Model Selection for Classification: For the classification 
task, similar approaches as for regression were applied; and 
Figure 8 summarizes the results of the first approach where 
trade-offs between accuracy and interpretability for all the 
models (DT, MLP and SVM) on MNIST dataset are depicted. 
It could be seen from Figure 8 that all graphs start at point (0, 
0), which are the baseline scores for accuracy and inter- 
pretability. These baseline score correspond to the last entries 
(with highest accuracy and SOC values) of each algorithm and 
dataset pair on Table 10. For instance, for MLP and MNIST 
baseline score is (94.9%, 10719). Percentage change in SOC 
or accuracy are calculated with respect to the baseline score, 
for example, next entry in MLP and MNIST on Table X is 
(93.4%, 3879), and it gives a red point (1.5% = (94.9% - 
93.4%), 64% = (1-(3879/10719))*100 ) on Figure 8. Overall, 
models perform in the same way on the classification task. For 
instance, interpretability could be increased dramatically (by 
7.3%, 64%, and 40%) in exchange for a small decrease in 
accuracy (6.62%, 1.5%, and 3.2% correspondingly). SVM is 
the most accurate model (accuracy 96%) for MNIST dataset, 

http://www.astesj.com/
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since DT is interpretable intrinsically, its interpretability could 
not be improved effectively with trade-offs method. 

 
Figure 8: Comparison of Models in Accuracy and Interpretability on the MNIST 

dataset. 

 
Figure 9: Trade-off between Accuracy and Interpretability in MLP estimator for 

classification. 

Table 10: Comparison of models in terms of accuracy and interpretability (acc. is 
short for accuracy) for classification. 

  DT 
acc., SOC 

MLP 
acc., SOC 

SVM 
acc., SOC 

Iris 66.7%, 11 
93.3%, 13 
96.0%, 15 
96.7%, 17 

62.0%, 29 
71.3%, 32 
76.7%, 41 
83.3%, 61 

96.7%, 117 
97.3%, 162 
98.0%, 198 
98.7%, 252 

Mnist 54.5%, 137 
63.4%, 139 
71.7%, 141 
79.0%, 151 

80.4%, 794 
90.4%, 1599 
93.4%, 3879 
94.9%, 10719 

88.5%, 45220 
89.8%, 48720 
92.8%, 58380 
96.0%, 97500 

Diabetes 72.3%, 19 
73.7%, 21 
73.8%, 23 
75.4%, 27 

68.7%, 103 
70.1%, 231 
73.3%, 627 
75.7%, 1038 

75.7%, 5185 
76.6%, 5338 
77.1%,5712 
-  - 

Table 10 is a more detailed version of Figure 8, and it 
shows significant increases of interpretability by allowing 
some drops in accuracy. 

The second approach was to test one of the models on three 
datasets, for example MLP (Figure 9). The model performs 
similarly on all datasets and SOC could be improved at cost 
of lowering accuracy. For example, 64% increase of 
interpretability would require 1.5% reduction in accuracy on 
MNIST. 

5. Conclusion 

We introduced a methodology for trade-offs between 
interpretability and accuracy by inheriting the quantitative and 
model-agnostic metric - SOC. The LMT model, through its 
powerful but simple architecture (combination of linear 
regression and decision tree models), is the most interpretable 
estimator amongst the considered regression estimators; it has 
comparable accuracy to MLP in simple-medium datasets like 
Auto MPG and Servo. 

The Decision Tree algorithm has the highest interpretability 
compared to other evaluated models due to its simplicity on 
classification task. It outperforms MLP on Iris and shows 
competitive results on Diabetes dataset. However, it has the 
lowest accuracy on MNIST with a large gap from other 
algorithms. 

This paper demonstrates the tradeoff method between 
accuracy and interpretability using SOC metric. SOC is a model 
agnostic quantitative metric, hence it allows fair comparison 
between different types of estimators. In our experiments 
decreasing SOC leads to a simpler model with less memory 
requirement and faster inference speed. However, in general 
lower SOC may not always result in models with small memory 
requirement (i.e. replacing complex operation with simpler one) 
and faster inference speed (parallelizable model with high SOC 
can be faster than purely sequential model with low SOC on 
parallel hardwares). 
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