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 The false nearest neighbors (FNN) method estimates the variables of a system by 
sequentially embedding a time series into a higher-dimensional delay coordinate system 
and finding an embedding dimension in which the neighborhood of the delay coordinate 
vector in the lower dimension does not extend into the higher, that is, a dimension in which 
no false neighbors or neighborhoods exist. However, the FNN method requires an arbitrary 
threshold value to distinguish false neighborhoods, which must be considered each time for 
each time series to be analyzed. In this study, we propose a robust method to estimate the 
minimum embedding dimension, which eliminates the arbitrariness of threshold selection. 
We applied the proposed approach to the van der Pol and Lorenz equations as 
representative examples of chaotic time series. The results verified the accuracy of the 
proposed variable estimation method, which showed a lower error rate compared to the 
minimum dimension estimates for most of the thresholding intervals set by the FNN method. 
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1. Introduction 

In our previous studies, we have studied the development of 
mathematical models and feature extraction using artificial 
intelligence for biological signals. We simulated biological signals 
using GAN [1,2], a deep-learning generative model. Then, from 
the trained generative model, we have statistically analyzed a huge 
number of optimized parameters and investigated the possibility of 
extracting new features from the biological signals that have not 
been discovered so far. Then, since deep learning handles a large 
number of parameters, the generated model can be said to be a 
multivariable-dependent system. On the other hand, it has been 
pointed out that the biological signals to be generated are not 
multivariable in nature, but may be relatively simple systems that 
depend on a few variables at most [3,4]. To investigate the 
variables on which the system depends, several methods have been 
proposed to estimate the minimum embedding dimension of the 
time series using attractors. 

The false nearest neighbor (FNN) method [5–7] estimates the 
variables of time series obtained from dynamical systems. The 

concept of false neighbors may be understood more clearly by 
reference to the Lorenz equation [8], as shown in Figures 1-3. A 
and B in the 1D attractor are no longer close to each other with 
increasing dimensionality of the attractor [9]. In the FNN method, 
the minimum embedding dimension is obtained using the 
following four steps. (ⅰ) Sequentially embed the time series into a 
higher-dimensional delay coordinate system. (ⅱ) Compare the 
neighborhood distance of the lower-dimensional delay coordinate 
vector with that of the next higher-dimensional delay coordinate 
vector. (ⅲ) If the rate of change of the neighborhood distance of 
the delay coordinate vector with increasing dimensionality of the 
delay coordinate system exceeds a given threshold value, the 
vector is considered a false neighborhood. (iv) The minimum 
embedding dimension is that in which all delay coordinate vectors 
are not false neighbors for the first time with increasing embedding 
dimensions. 

The primary advantage of this method is that it uses all samples 
and thus is not an estimator, and is computationally fast owing to 
the simplicity of the necessary calculations. However, the FNN 
method requires an arbitrary threshold value to determine whether 
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Figure 1: 1D attractor for the Lorenz equation 

Figure 2: 2D attractor for Lorenz equation 

Figure 3: 3D attractor for Lorenz equation 

neighborhoods are false. Although observed time series are 
typically mixed with noise, the FNN method requires the selection 
of a threshold value depending on the level of noise, even for a 
single series. That is, the value of this threshold must be considered 
for each time series to be analyzed. In this study, we propose a 
robust minimum embedding dimension estimation method that 
eliminates this arbitrariness in threshold selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. FNN Methods 

2.1.  Conventional Methods 

The authors proposed a method to estimate the minimum 
embedding dimension in 1992 [5]. Although this approach is 
simple in principle and works well for many nonlinear systems, it 
requires an appropriate threshold for every problem. The 
computational procedure of the FNN method is described in 
below. 

Step 1: Reconstruct the attractor of the time series to be 
analyzed using Takens' embedding method [10]. Assuming that 
the target time series with N samples is x, the lag time is τ, and the 
embedding dimension is d, the d-dimensional attractor for x is 
reconstructed by {𝑦𝑦𝑑𝑑(𝑡𝑡)} as follows. 

 𝒚𝒚𝑑𝑑(𝑡𝑡) = �𝑥𝑥(𝑡𝑡), 𝑥𝑥(𝑡𝑡 + 𝜏𝜏),⋯𝑥𝑥(𝑡𝑡 + (𝑑𝑑 − 1)𝜏𝜏)� . (1) 

Step 2: Calculate the time 𝑡𝑡′ of the nearest neighbor vector of 
𝒚𝒚𝑑𝑑(𝑡𝑡), 𝒚𝒚𝑑𝑑𝑛𝑛(𝑡𝑡), according to the distance criterion D. 

 
𝐷𝐷𝑑𝑑(𝑡𝑡, 𝑡𝑡′) = |𝒚𝒚𝑑𝑑(𝑡𝑡) − 𝒚𝒚𝑑𝑑(𝑡𝑡′)| ,   0 ≤ 𝑡𝑡′

≤ 𝑁𝑁 − (𝑑𝑑 − 1)𝜏𝜏 ,   𝑡𝑡 ≠ 𝑡𝑡′, 
(2) 

 𝑡𝑡′ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
0≤𝑖𝑖≤𝑁𝑁−(𝑑𝑑−1)𝜏𝜏

𝐷𝐷𝑑𝑑(𝑡𝑡, 𝑎𝑎) , (3) 

 𝒚𝒚𝑑𝑑𝑛𝑛(𝑡𝑡) = 𝒚𝒚𝑑𝑑(𝑡𝑡′) . (4) 

However, the set of x values for which the function 𝑓𝑓(𝑥𝑥) on 
some set 𝑨𝑨 is minimal is denoted as follows. 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑥𝑥∈𝑨𝑨

𝑓𝑓(𝑥𝑥) = {𝑥𝑥 ∈ 𝑨𝑨 | 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎
𝑦𝑦∈𝑨𝑨

𝑓𝑓(𝑦𝑦)} . (5) 

Step 3: Determine the distance 𝐷𝐷𝑑𝑑(𝑡𝑡, 𝑡𝑡′) between 𝒚𝒚𝑑𝑑+1(𝑡𝑡) and 
𝒚𝒚𝑑𝑑+1𝑛𝑛 (𝑡𝑡) when the embedding dimension is 𝑑𝑑 + 1. 

 𝑫𝑫𝑑𝑑+1(𝑡𝑡, 𝑡𝑡′) = |𝒚𝒚𝑑𝑑+1(𝑡𝑡) − 𝒚𝒚𝑑𝑑+1𝑛𝑛 (𝑡𝑡)| . (6) 

Step 4: Calculate the percentage of vectors in the attractor that 
are greater than or equal to the given threshold 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡  (false 
neighbor rate) relative to the rate of change in the neighbor point 
distance 𝐷𝐷𝑑𝑑+1(𝑡𝑡, 𝑡𝑡′)/𝐷𝐷𝑑𝑑(𝑡𝑡, 𝑡𝑡′)  with increasing embedding 
dimensions. 

 
𝑫𝑫𝑑𝑑+1(𝑡𝑡, 𝑡𝑡′)
𝑫𝑫𝑑𝑑(𝑡𝑡, 𝑡𝑡′)

> 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 . (7) 

Step 5: Repeat the operations in Step 1 to 4 for the given 
maximum number of embedding dimensions. Then, count from the 
lowest dimension to the first dimension for which the false 
neighbor ratio is zero and set the latter as the minimum embedding 
dimension. 
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2.2. Proposed Method 

According to this procedure, a neighborhood is considered false 
when the rate of increase exceeds the threshold value 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 in Step 
4. However, this value must be set for each time series to be 
analyzed. Therefore, in this study, we propose a false 
neighborhood reduction rate 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 as a new criterion to replace the 
threshold 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 . In Step 4, the rate of increase in the nearest 
neighbor distance with increasing dimensionality is calculated, and 
the percentage of vectors the rates of increase of which exceed the 
threshold value 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 is calculated. In the proposed approach, the 
analysis is performed in the same manner up to the point at which 
the rate of increase of the nearest neighbor distance is obtained, 
except that the following calculation procedure is used for 
computable times: 𝑻𝑻 = {𝑡𝑡|0 ≤ 𝑡𝑡 ≤ 𝑁𝑁 − (𝑑𝑑 − 1)𝜏𝜏}. 

Step 4’: For the vector 𝒚𝒚𝑑𝑑𝑛𝑛(𝑇𝑇) = 𝒚𝒚𝑑𝑑(𝑻𝑻′)  that is the nearest 
neighbor to the vector 𝒚𝒚𝑑𝑑(𝑻𝑻) of the attractor at time 𝑻𝑻, find the 
rate of change of the nearest neighbor distance with increasing 
embedding dimensions. After applying the ordinary logarithm, 
the median value is 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡, as given below. 

 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑑𝑑 �log10
𝑫𝑫𝑑𝑑+1�𝑻𝑻,𝑻𝑻′�
𝑫𝑫𝑑𝑑(𝑻𝑻,𝑻𝑻′)

� . (8) 

Step 5’: With increasing embedding dimension d, the 
dimension in which 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 first becomes less than 1 is considered 
the minimum embedding dimension, being that in which 
embedding without false neighbors is established. 

Generally, time series may contain noise. Even for time series 
generated from systems of the same type, noise levels may vary 
considerably depending on the observation method. For example, 
consider the case in which the minimum embedding dimension is 
estimated using the FNN method for a time series with a higher 
noise level. Owing to the higher noise level, the trajectory of the 
reconstructed attractor becomes unstable. In this case, the 
variance of the rate of change of the distance to the nearest 
neighbor increases with increasing dimensionality. Therefore, the 
number of points that exceed the given threshold (false nearest 
neighbors) increases, and the estimated minimum embedding 
dimension is expected to be high compared to observed time 
series with less noise. However, because the proposed method 
refers to the median of the rate of change of the nearest neighbor 
distance with increasing dimensionality, the effect of increasing 
variance is expected to be small. Therefore, the proposed 
approach could serve as a more objective evaluation criterion by 
eliminating the arbitrariness of the threshold value. 

3. Evaluation Method 

To compare the FNN method with the proposed method, we 
used a time series of numerical solutions calculated from a 
mathematical model in which the variables of the system were 
known in advance. We considered the van der Pol equation, which 

depends on two variables, and the Lorenz equation, which depends 
on three, to investigate whether the estimated embedding 
dimension was affected by changing the nonlinearity of the time 
series by setting multiple decay coefficients for the van der Pol 
equation. In addition, Gaussian noise of 0%, 1%, 10%, and 100% 
of the standard deviation of the signal was added to the numerical 
solutions computed from both equations to comprehensively 
examine their robustness to noise. The minimum embedding 
dimension was estimated for the time series generated with each 
parameter setting using both the FNN method and the proposed 
method, and the difference from the expected minimum 
embedding dimension was evaluated using the error rate described 
below. 

To demonstrate its applicability to general time series, we 
applied the proposed approach to time series data recorded from 
electrooculograms to evaluate how many factors or variables could 
be identified as underlying nystagmus movements in the system. 

3.1. Van der Pol Equation 

The van der Pol oscillator is among the first examples of 
deterministic chaos discovered [11]. Van der Pol found a stable 
oscillation in an electrical circuit using vacuum tubes, which he 
referred to as the relaxation oscillation. The van der Pol equation 
is a two-variable differential equation in x and y described by the 
following equations (9) and (10) with the damping coefficient μ. 

 �̇�𝑥 = 𝜇𝜇 �𝑦𝑦 + 𝑥𝑥 − 𝑥𝑥3

3
� , (9) 

 �̇�𝑦 = − 𝑥𝑥
𝜇𝜇
 . (10) 

In this work, we evaluated whether the numerical solution of 
the van der Pol equation could be calculated as a second-order 
system with a minimum embedding dimension for the numerical 
solution of van der Pol equation. A total of 80 van der Pol time 
series were generated, including 20 with decay coefficients μ = 0.1, 
0.2, ... 2.1, and 4 with noise levels of 0%, 1%, 10%, and 100% of 
the standard deviation of the original time-series signal. For all 
generated time series, the initial values of x and y were set to 0.1, 
with a time-step width dt = 0.01, and a time-series length l = 10000 
(Figure 4). 

3.2. Lorenz Equation 

The Lorenz equation [8] is a nonlinear ordinary differential 
equation of three variables x, y, and z that exhibits chaotic behavior, 
as given below. The equations depend on three variables, as shown 
in the following equations (11), (12), and (13). Lorenz presented 
this classical equation in 1963 while working on a model of 
atmospheric variability as a meteorologist at the Massachusetts 
Institute of Technology [8]. 
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Figure 4: Typical example of van der Pol time series 

Figure 5: Typical example of Lorenz time series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 �̇�𝑥 = −𝑝𝑝𝑥𝑥 + 𝑝𝑝𝑦𝑦, (11) 

 �̇�𝑦 = −𝑥𝑥𝑥𝑥 + 𝑎𝑎𝑥𝑥 − 𝑦𝑦, (12) 

 �̇�𝑥 = 𝑥𝑥𝑦𝑦 − 𝑏𝑏𝑥𝑥, (13) 

where p, r, and b are constants that determine the behavior of the 
system. 

Numerical solutions of the fourth-order Runge-Kutta method 
for the Lorenz equation were also obtained for reference, and the 
displacement x over time was plotted. For the parameter settings 
p=10, r=28, and b=8/3, the time interval was set to 0.01 second, 
and the initial values of x, y, and z were set to 0.1. 

In this study, the numerical solution of the Lorenz equation was 
used to evaluate whether it could be calculated as a third-order 
system with a minimum embedding dimension. To evaluate the 
Lorenz time series, each parameter value was set to p=10, r=28, 
b=8/3, and four time series were generated with noise levels of 0%, 
1%, 10%, and 100% of the standard deviation. For all generated 
time series, the initial values of x, y, and z were set to 0.1, the width 
of the time step dt = 0.01, and length of the time series l = 10000, 
respectively (Figure 5). 

3.3. Electrooculogram data 

An electrooculograms(EOG) is a time series recording changes 
in the distribution of electric potential around the eye caused by 
eye movements in two variables x and y. EOG are commonly used 
to examine the function of the retinal pigment epithelium and 
analyze eye movements. The electrical characteristics of the data 
involve a positive potential produced in the cornea closer to the 

environment and a negative potential produced closer to the retina. 
During measurement, single electrodes are affixed to a subject’s 
inner and outer cornea, and their eye movements are recorded 
electrically via the potential difference between the electrodes [12]. 

Eye movements are divided into four types, including fixation, 
in which the eye concentrates on a single spot, pursuit, in which 
the eye slowly follows an object in the central fossa, saccadic and 
impulsive movements, in which the eye immediately detects 
anomalies, and vestibular movements, in which the eye responds 
to body movements when the body moves. The ocular muscles 
attached to the eyeballs move the eye and include the lateral rectus, 
medial rectus, superior rectus, inferior rectus, superior oblique, and 
inferior oblique muscles, as well as the upper eyelid elevator 
muscle, which is responsible for eye-opening action. Of the ocular 
muscles, the lateral rectus muscle is innervated by the abducens 
nerve, the superior oblique muscle by the pulmonic nerve, and all 
other muscles by the oculomotor nerve [13–15]. 

The EOG data used in this study were obtained from 11 healthy 
subjects (three men and eight women) aged 20-23 years. The 
subjects viewed experimental 3D images for 180 s each, and the 
angular velocity of their eye movement during this time was 
measured [16] (Figure 6). 

3.4. Evaluation: definition of error value 

We defined the error value as an index to evaluate the 
minimum embedding dimension obtained using the FNN 
algorithm and the proposed method. In this study, we used formula 
(14), where 𝑫𝑫 is the minimum embedding dimension expected for 
the time series generated for each parameter setting, 𝑫𝑫𝒆𝒆𝒔𝒔𝒔𝒔 is the 
minimum embedding dimension estimated from each method for 
those time series, and K is the total number of parameters when 
varying the attenuation coefficient and the amount of noise added 
using the error value E. 

 𝐸𝐸 = 1
𝐾𝐾
∑ �𝑫𝑫𝒊𝒊 − 𝑫𝑫𝒆𝒆𝒔𝒔𝒔𝒔𝒊𝒊�
𝐾𝐾−1
𝑖𝑖=0 . (14) 

 

4. Results 

For Van der Pol Equation and Lorenz Equation, we report the 
estimated minimum embedding dimension and the error values of 
the expected minimum embedding dimension and the estimated 
values from the FNN method and the proposed method. However, 
for the Van der Pol Equation and Lorenz Equation, multiple time 
series were prepared under various conditions, so the estimated 
minimum embedding dimension is reported as an aggregate using 
the median value for each noise level. For the error between the 
expected minimum embedding dimension and the estimated value, 
we also report the error values aggregated by 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡  for the FNN 
method. The proposed method reports one error value per equation, 
since there is no threshold such as 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡. 
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Next, we report the results of estimating the minimum 
embedding dimension by each method for EOGs as an example of 
actual observed data. 

4.1. Van der Pol Equation 

First, we report on the estimated minimum embedding 
dimension for each method: the FNN method shows two 
dimensions when the noise level is 0%. The FNN method shows 2 
dimensions when the noise level is 0%, 4 dimensions when the 
noise level is 1%, 5 dimensions when the noise level is 10%, and 
6 dimensions when the noise level is 100%. On the other hand, the 
proposed method shows two dimensions when the noise level is 
0% and 1%, and three dimensions when the noise level is 10% or 
higher. 

Next, we report the error values for the estimated and expected 
minimum embedding dimension. When 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 was set in the range 
of 1, 2, 4, and 1024 in the FNN method, the error value was 
minimized when 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡=1024. In addition, the proposed method 
exhibited the same error value as when 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡=1024 (Figure 7). 

4.2. Lorenz Equation 

First, we report on the estimated minimum embedding 
dimension for each method: the FNN method shows 6 dimensions 
for all noise levels from 0% to 100%, while the proposed method 
shows 2 dimensions for noise levels of 0% and 1%, and 3 
dimensions for noise levels above 10%. On the other hand, the 
proposed method shows two dimensions for noise levels of 0% and 
1%, and three dimensions for noise levels above 10%. 

Next, we report the error values for the estimated and expected 
minimum embedding dimension. When 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 was set in the range 
of 1, 2, 4, and 1024 in the FNN method, the error value was the 
smallest when 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡=512,1024. In the proposed method, the error 
value was smaller than 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡=256 and larger than 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡=512, 1024 
(Figure 8). 

4.3. Electrooculogram data 

For the variation in the horizontal axis, the minimum 
embedding dimensions were estimated using the FNN and 
proposed methods. With the FNN method, 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 was estimated to 
be 1, 2, 4..., 1024. Assuming that the error value of the estimated 
minimum embedding dimension was smallest when 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡=1024 in 
4.1 and that 4.2 and can be applied to EOG data, the horizontal 
variation of EOG data by the FNN method was estimated and was 
considered as a system consisting of approximately 4 to 6 variables. 
In the vertical direction, the same can be considered as a system 
consisting of 8 to 11 variables. In contrast, using the proposed 
method, the minimum embedding dimension was estimated as two 
to three dimensions in the horizontal direction and two dimensions 
in the vertical direction, suggesting that the system is composed of 
approximately two to three variables (Figure 9-10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Discussion 

To compare the FNN method with the proposed approach, we 
considered a time series of numerical solutions calculated from a 
mathematical model in which the number of variables constituting 
the system is known in advance. In this study, the van der Pol 
equation consisting of two variables and the Lorenz equation 

Figure 6: Typical example of an electrooculogram time series 

Figure 7: Error rate in estimating the minimum embedding dimension for van der 
Pol time series using the FNN method and the proposed method 

Figure 8: Error rate in estimating the minimum embedding dimension for Lorenz 
time series using the FNN method and the proposed method 
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consisting of three variables were used, and the difference between 
the expected minimum embedding dimension and the minimum 
embedding dimension calculated using each method was evaluated 
as an error value. First, we discuss the estimation results of the 
minimum embedding dimension by the proposed method and the 
FNN method. Next, we discuss the error values between the 
minimum embedding dimension estimated by each method and the 
actual minimum embedding dimension. Finally, we discuss the 
results of estimating the minimum embedding dimension by each 
method for EOGs as an example of actual observed data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Van der Pol Equation 

The estimates of the minimum embedding dimension are 
discussed: both the FNN method and the proposed method show a 
minimum embedding dimension of 2 dimensions when the noise 
level is 0%. This is also the case for the FNN method in [17]. 
However, the FNN method suggested that the estimate may be 
vulnerable to noise, since an increase in the noise level to 1% 
resulted in a three-dimensional estimate. On the other hand, the 
proposed method did not affect the estimates until the noise level 
exceeded 10%, suggesting that it may be more robust against noise 
when compared to the FNN method.  

Next, we discuss the error between the estimated first 
embedding dimension and the expected minimum embedding 
dimension for each method: the FNN method showed the smallest 
error when 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡=1024. At this time, the proposed method also 
showed a comparable error. In other words, the proposed method 
does not require any threshold adjustment and shows the same 
error as the optimal value in the FNN method. Of course, since the 
error tends to decrease as 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 increases, it is conceivable that the 
error would decrease more when the threshold is further increased. 
However, since the decrease in error stalls when 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 exceeds 256, 
the decrease in threshold value is considered to be limited even if 
the threshold value is increased. In addition, it is difficult to 
determine the optimal value of 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡  because there are situations 
where the nature and data noise level are unknown in the actual 
time series to be analyzed. Even if the threshold is set in advance 
with a large value, it is believed that there may be cases where the 
minimum embedding dimension is underestimated. 

5.2. Lorenz Equation 

The estimates of the minimum embedding dimension are 
discussed: the FNN method estimated the minimum embedding 
dimension to be 6 under all noise levels of 0%, 1%, 10%, and 
100%. It can be seen that even when the noise level is 0%, the 
results are very different from what one would expect. To reiterate, 
this estimate uses the median of the output values estimated for 
various 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 settings, so it may output 3, the expected minimum 
embedding dimension, when the appropriate 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡  is set. 
Conversely, if an appropriate 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 cannot be set, it is difficult to 
estimate the appropriate minimum embedding dimension. On the 
other hand, the proposed method is considered to be tolerant to 
noise because it could output the expected minimum embedding 
dimension even when relatively large noise levels of 10% and 
100% were introduced. On the other hand, when the noise levels 
were relatively low (0% and 1%), the proposed method estimated 
one dimension less than the expected minimum embedding 
dimension. This may indicate that the minimum embedding 
dimension may be underestimated for time series with little 
disturbance. 

Next, we discuss the error between the estimated embedding 
dimension and the expected minimum embedding dimension for 
each method: the FNN method showed the smallest error when 
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 = 512 and 1024. In this case, when 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 is set to a value of 512 
or 1024, the optimal minimum embedding dimension can be 
obtained even after considering the effects of various noises. On 
the other hand, if 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 is set to a value higher than 1024, there is a 
possibility that the minimum embedding dimension will be 
underestimated. On the other hand, the proposed method had a 
smaller error value than the FNN method when 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 was less than 
512, but the FNN method had a smaller error value when 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 was 
greater than 512. From these results, it can be said that if the 
optimal 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 can be set, the FNN method has a smaller error value, 

Figure 9: Estimation of the minimum embedding dimension for the horizontal-
axis electrooculogram data 

Figure 10: Estimation of the minimum embedding dimension for the vertical-axis 
electrooculogram data 
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i.e., a more accurate estimation of the minimum embedding 
dimension, but in most cases, the proposed method has a more 
accurate estimation value. 

5.3. Electrooculogram data 

To demonstrate an application to general time series, we 
applied both the FNN method and the proposed method to EOG 
data to determine the minimum embedding dimension and 
examined how many variables the eye movements consist of in the 
system. The results show that the FNN method found 4 to 6 
dimensions in the horizontal direction and 8 to 11 dimensions in 
the vertical direction. In contrast, the proposed method suggested 
2 to 3 dimensions in the direction of the horizontal axis and 2 
dimensions in the vertical direction. Several mathematical models 
of eye movements have been devised, and the Westheimer model 
s[18–20] is a representative example. In this model, human eye 
movements are described by a third-order differential equation, 
which is also close to the minimum embedding dimension 
calculated by the method proposed in this work. 

6. Conclusion 

In this study, we have proposed a method to solve the 
arbitrariness of the threshold used in the FNN method for time 
series. We have also applied the proposed method to EOG data as 
an example, and compared the performance of the FNN method 
and the proposed method in estimating the number of factors that 
determine eye movements. Compared to the FNN method, the 
minimum embedding dimension calculated by the proposed 
method exhibited a lower error value than expected under various 
conditions. The proposed approach mitigates the difficulty of 
setting appropriate parameters for a time series of unknown nature 
and obviates the need for an arbitrary threshold value. In future 
research, we intend to verify the effectiveness of the proposed 
method by applying it to a wider range of general time series. 
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