

www.astesj.com 127

BER Performance Evaluation Using Deep Learning Algorithm for Joint Source Channel Coding in
Wireless Networks

Nosiri Onyebuchi Chikezie1,*, Umanah Cyril Femi1, Okechukwu Olivia Ozioma2, Ajayi Emmanuel Oluwatomisin3, Akwiwu-Uzoma
Chukwuebuka1, Njoku Elvis Onyekachi1, Gbenga Christopher Kalejaiye3
1Department of Electrical and Electronic Engineering, Federal University of Technology, Owerri, 460114, Nigeria

2Department of Information System and Security Engineering, Concordia University Monstreal H3G 1M8, Canada

3Department of Electrical and Electronic Engineering, University of Lagos, 101017, Nigeria

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 21 May, 2022
Accepted: 18 August, 2022
Online: 29 August, 2022

 In the time past, virtually all the contemporary communication systems depend on distinct
source and channel encoding schemes for data transmission. Irrespective of the recorded
success of the distinct schemes, the new developed scheme known as joint source channel
coding technique has proven to have technically outperformed the conventional schemes.
The aim of the study is centered in developing an enhanced joint source-channel coding
scheme that could mitigate some of the limitations observed in the contemporary joint
source channel coding schemes. The study tends to leverage on recent developments in
machine learning known as deep learning techniques for robust and enhanced scheme,
devoid of explicit code dependence for the signal compression and as well in error
correction but learn automatically on end-to-end mapping structure for the source signals.
It primarily aimed at providing an improved channel performance approach for wireless
communication network. A deep learning algorithm was implemented in the study, the
scheme focused on improving the Bit Error Rate (BER) performance while reducing latency
and the processing complexity in Joint Source Channel Coding systems. The deep learning
autoencoder model was deployed to compare with the hamming code, convolution code,
and uncoded systems. JSCC using neural networks were simulated based on BER
performance over a range of energy per symbol to noise ratio (Eb/No). Training and test
error for the fully connected neural network autoencoder models on channels with 0.0dB
and 8.0dB were carried out. The results obtained showed that the autoencoder model had
a better BER performance when compared with the convolution code and uncoded systems,
it also outperformed the uncoded BFSK with an approximately equal BER performance
when compared with the hamming code (soft decision) decoding system.

Keywords:
JSCC
FCNN
Deep Learning
Bit Error Rate
Block Error Rate
Neural Network
BLSTM

1. Introduction

The world has recently witnessed a great revolution in the way
information is transmitted from one place to another. Wireless
communication has advanced from mere point-to-point
communication to becoming a viable tool to facilitate economic
development, security enhancement and reliable public service
delivery. The basic task for a communication system is to reliably
deliver information from the source to the destination, using a
transmitter and a receiver across a channel. The performance of

conventional communication techniques is seen limited in
operation and are sub-optimal due to the challenges which present
themselves in the form of latency, reliability, energy efficiency,
flexibility etc [1]. The fast emergence of many unprecedented
services such as artificial intelligence, smart homes, factories and
cities, wearable devices for physical challenged, robots,
autonomous vehicles, big data, internet-of-things etc. are
challenging the conventional approaches and mechanisms to
communication. Recent research and technology advancements
have contributed to an enviable progress in developing novel and
enhanced mechanisms in the layers of communication system.

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Nosiri Onyebuchi Chikezie, buchinosiri@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 127-139 (2022)

www.astesj.com

https://dx.doi.org/10.25046/aj070417

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj070417

N.O. Chikezie et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 127-139 (2022)

www.astesj.com 128

Despite that, more research is on the progress in providing optimal
performance for wireless communication networks.

It is important to note that emerging wireless communication
systems typically transmit high data rates to provide wide range
of services for better voice quality, improved data, images and
other multimedia applications. Conversely, during wireless signal
propagation, the systems usually encounter channel impairments,
resulting in data errors at the receiver end. To correct this, requires
adequate error correction codes to detect and correct symbol
errors during transmission.

The introduction of Joint Source-Channel Coding (JSCC)
technique in wireless communication has been able to address
most of the challenges that are inherent in the separation-based
schemes, (i.e., the conventional two-step encoding process for the
image/video data transmission, source coding and channel coding)
[2]. Recently, it became a considerable research topic in
communication systems and information technology, with the
application in areas like audio/video and satellite transmission, as
well as in space exploration. Despite the successes recorded by
JSCC techniques, it still encounters some performance flaws
inherent in its fundamental assumptions that could prove very
costly for modern communication systems. This flawed
assumption ripples through the design of systems based on
conventional JSCC techniques in the form of increased processing
and algorithmic complexity to combat noise in its various forms
and also cater for additive information. This complexity can
introduce a certain level of latency which is detrimental to the
actualization of low latency systems. Furthermore, other inherent
limitations include inability to fulfil bulky data and very high-rate
communication requirements in multifaceted conditions as seen
in most complex channel models. Others include; in low latency
communication systems, in rapid and reliable signal processing
application and in limited and sub-optimal block structures, due
to the fixed block configuration of the communication system etc
[1]. However, the recent introduction of Deep Learning (DL)
technique and its fundamental based autoencoder concept,
characterized with its simplicity in implementation, flexibility and
ability in adapting to complex channel models, has been able to
handle most of the complexities due to the stated advantages it
possesses [1]. It has recently been successfully applied in solving
various real-life applications such as in pattern recognition,
speech and language processing, media entertainment, medicine,
biology and security systems. DL is quite robust and scalable in
application.

Deep learning is a subset of Machine Learning (ML) that
exhibits greater potentials in building complex concept from
simpler concepts. It has useful tools to process ultra-high data and
shows high performance accuracy in recognition and prediction.
Deep learning algorithm is seen to outperform machine learning
algorithm, especially in handling difficult and complex tasks such
as in image and voice recognition, it is considered to be more
valuable in cases where needful reduction in computational
complexities and overhead processing are preferred. Deep
learning tends to rely on its intelligence to define its own finest
features, it does not require humans to perform any feature-
creation activity. Among the existing DL models, Deep Neural
Networks (DNNs) are considered to be the most known model,
other deep architectures such as Neural Processes(NPs), Deep

Gaussian Processes (DGPs) and Deep Random Forests (DRFs)
could be categorized as deep models made up of multiple layered
structures [1,3].

Based on the research motivations, the study focuses on
implementing JSCC using DL approach without the need for
explicit codes. The study aims to develop a Deep Neural Network
(DNN) symbol models for JSCC in an end-to-end pattern.
Python/Keras and TensorFlow backend are simulation tools used
to evaluate the error correction performance and data
reconstruction. Bit Error Rate (BER) and Block Error Rate (BLER)
are the selected parameters for the system analysis. Simulations
were carried out to perform the BER/BLER and its reliability
compared to the conventional communication approach with
preference in reducing the processing complexity and latency.
The performance analysis of the developed deep joint source-
coding algorithm with different Signal-to-Noise Ratio (SNR)
values were also evaluated.

In our study, the motive is to extend the preceding study on
autoencoder-based end-to-end learning of communications
system, evaluate its characteristic performance in varying system
configurations and also realize the potentials of autoencoder-based
end-to-end learning mechanisms for communications systems.

1.1 Model of A Simple Communication System

A typical communication system in its most fundamental form
consists of a transmitter, channel, and receiver as illustrated in
figure1. The communication system facilitates the transfer of
information signal from one point to another through a process
that involves three basic stages; coding, mapping and decoding.
Firstly, the information signal is encoded into a message x of
block length k. Each message x can be represented in the block
length k = 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑀𝑀) number of bits. The transmitter can transmit
any of the acceptable messages out of M possible messages x ∈ M
= {1, 2, ..., M} of block length k through n discrete users of the
allocated communication channel. The transmitter on the other
hand, performs the mapping fθ: 𝐶𝐶𝑘𝑘 → 𝐶𝐶𝑛𝑛 [4]. A vector g of n
complex symbols is transmitted across the channel to facilitate the
sending of the message x to the receiver[1]. The presence of noise
in the channel causes signal distortions to the transmitted symbols.
The receiver stage is concerned with mapping the transmitted
signal to the receiver. The mapping of the transmitted signal is
actualized using the transformation g𝜃𝜃: 𝐶𝐶𝑛𝑛 → 𝐶𝐶𝑘𝑘, portraying the
fact that the decoding function inverts the operation of the
encoding function. At the receiving end, as the signal is
intercepted by the receiver, that is the signal i ∈ 𝐶𝐶𝑛𝑛, the receiver
generates the estimate 𝑥𝑥� of the originally transmitted message x.
Figure 1 shows the structure of a simple communication system
which could be modelled using an autoencoder. A communication
system can in its simplest term be described as an autoencoder
that tries to reconstruct the transmitted message at the receiver as
accurately as possible with the least possible errors[1]. For clarity
sake, we can further describe the encoder function of the
autoencoder as the transmitter block while the decoder function
as the receiver block of the system. A block diagram of an
autoencoder is represented in figure 2.

From figure 2, the encoder attempts to transform the input
value 𝑥𝑥 into a low dimensional latent vector 𝑧𝑧 = 𝑓𝑓(𝑥𝑥). The latent
vector is usually characterized of low dimension with a

http://www.astesj.com/

N.O. Chikezie et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 127-139 (2022)

www.astesj.com 129

Figure 1: Block diagram of a Communication System

Figure 2: A block diagram representing an Autoencoder

compressed representation of the input distribution. The decoder
in contrast, tries to recover the input signal from the latent vector,
g\left(z\right)=\widetilde{x} . The expectation should be that the
output recovered by the decoder could only approximate the input
(i.e. making \widetilde{x}\ as close as possible to x)[5]. The
variations between the input and the output is measured as a loss
function. It is necessary to note that both the encoder and the
decoder are non-linear functions.

2. Related Works

In recent years, DL-based techniques were introduced for
different processing blocks of the wireless communication
systems as substitutes to conventional applications such as
modulation recognition[6], channel encoding and decoding[7,8],
and channel estimation and detection [9–11], owing to the
development of DL algorithms and system architectures.

Authors of [1], investigated the DL-based end-to-end
communications performance models when deployed in a single
user communication network under an Additive White Gaussian
Noise (AWGN) channel. An autoencoder-based end-to-end
communications system was implemented in the system
validation. In[12], considered the challenges of JSCC of text
/structured data using deep learning approach from natural
language processing over noise channel. Their proposed
technique is said to have an edge over the existing distinct source
and channel coding, particularly in scenarios when a smaller
number of bits were used in describing each sentence. Their
scheme achieved lower word error rates from the developed deep
learning-based encoder and decoder system. The developed
system uses a fixed bit length for enconding sentences of different
length. This was observed to be a major drawback of their
algorithm.

The authors of[13], proposed the use of neural networks to
address the design of systems with block length when k =1. In
[14], used simple neural network architecture in encoding and
decoding of Gauss-Markov sources over additive white Gaussian
noise channel. Authors of [15,16], proposed neural network for
signal compression devoid of a noisy channel (i.e. only source
coding), where image compression algorithms were developed

using RNNs. In[17], used neural networks, in particular,
Variational Autoencoders (VAEs) to design neural network based
Joint Source Channel Coding and extended the system design to
where k ≠1. However, their performance was reasonable but a lot
was required to improve upon their performance in order to meet
up with the benchmark set by[18] . The authors of,[18] developed
a new scheme for JSCC of Gaussian sources over AWGN
channels. VAEs was implemented in their design but with a novel
encoder architecture for the VAE specifically developed for zero-
delay Gaussian JSCC over AWGN channels, a situation where the
source dimension (m) is greater than the channel dimension (k).
Their proposed scheme was able to improve on works of [17] with
about 1dB.

Our study therefore seeks to evaluate the performance of Bit
Error Rate in wireless networks using Deep Neural Network
(DNN) system model for joint source channel coding in an end-
to-end manner without the need for explicit codes to provide error
correction. The approach is envisaged to minimize the block
length of transmitted data with maximal utilization of bandwidth,
increased data rate and power efficiency. Simulation models such
as Python/Keras and TensorFlow backend will be implemented to
oversee the process of error correction improvement and data
reconstruction.

3. Method

The proposed deep learning approach for JSCC is
implemented by simulation in Keras using TensorFlow as its
backend. TensorFlow provides a robust environment, creating a
relatively easy-to-use package. A model is trained to mimic the
conventional end-to-end communication system under certain
conditions and constraints. The trained model is then tested
against random data under varying conditions to determine its
performance in practical scenarios.

3.1. Autoencoder Implementation for the Proposed Scheme

An autoencoder’s main objective is to actualize a compressed
representation of a given input data. An autoencoder is a neural
network architecture, comprised of two distinct units; Encoder
and Decoder functional units. The encoder unit primarily converts
the input data into a different representation while the decoder unit

http://www.astesj.com/

N.O. Chikezie et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 127-139 (2022)

www.astesj.com 130

Figure 3: The FCNN Autoencoder Block Diagram

converts the new representation back into the original format,
trying to recover the input data. The input data could be in
different configurations such as in speech, text, image or video
format. Figure 3 represents the functional block diagram of a
Fully Connected Neural Network (FCNN) autoencoder.

To illustrate the performance characteristics of the deep JSCC
scheme, the functional block diagram of the Fully Connected
Neural Network in Fig. 3 is implemented in our simulation. The
autoencoder in this context was implemented as a fully connected
feedforward Neural Network, enabled to propagate the
information realized from the input, through a sequence of non-
linear transformations to get to the output.

 The autoencoder models is assumed to have undergone
training for a predetermined message size (M) with its
accompanying communication rate. We have two hidden
feedforward DNN layers situated at the encoder end as shown in
Fig.3. The first layer is 𝑓𝑓3 having 3 neuros while the second layer
is 𝑓𝑓6which constitute 6 neurons. It is designed in such a way that
the output of the first layer feeds into the input of the second layer
etc. The two-layer blocks are connected to the batch normalization
layer as represented. The batch normalization layer is introduced
in the representation to satisfy the average power constraint. An
activation function known as Rectified Linear Activation Unit
(ReLU) was employed by the convolutional layers (each dense
layer) in order to apply nonlinearities to the model. A SoftMax
activation function was implemented at the output layer in order
to output the probability distributions for each of the output
category. We used the Gaussian noise layer to simulate an
additive white Gaussian noise channel which in this case is
represented as the noise layer.

The autoencoder is trained at full length over the stochastic
channel model. The Stochastic Gradient Descent (SGD) method
of optimization is used and the Adam optimizer is the preferred
choice for the optimizer. The Adam optimizer’s learning rate is
set at 0.001. The steps taken to select the energy per symbol to
noise ratio (Eb/No) values for the AWGN channel during training
are shown thus:

i. Training was done at a fixed Eb/N0 value, 0 dB and 8 dB in
this case.

ii. Testing of the trained model using random Eb/N0 values
picked from a predetermined Eb/N0 range for each training
epoch. This is done to determine the BER performance
during varying channel conditions.

iii. The testing is initiated using a higher Eb/N0 value which
decreases gradually along training epochs. In the case of the
8 dB training value, the test starts from 8 dB and is reduced
by 2 dB after every 10 epochs.

We applied autoencoder model for our training and testing
analysis in Keras using the TensorFlow application as its default
tensor backend engine. The model was trained for fifty (50)
epochs using sixty thousand (60,000) images, generated
randomly with Eb/N0 values for Additive White Gaussain Noise
(AWGN) channel in the model training. The BER performance
for the 0dB and 8dB were then compared with the Hamming code
utilizing a BPSK modulation scheme.

The Bidirectional Long Short-Term Memory (BLSTM)
autoencoder is also trained and tested in this simulation. It exhibits
a parallel architecture to FCNN autoencoder, though, it has
dissimilar structural components as shown in figure 4.

Figure 4:The BLSTM autoencoder Block diagram.

http://www.astesj.com/

N.O. Chikezie et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 127-139 (2022)

www.astesj.com 131

Figure 5: Snapshot of FCNN generated codes showing imports

In figure 4, the encoder with a BLSTM has its dimension of
the hidden units set to 32, while 32 refers to the number of features
in each input sample. The BLSTM cell comprise of seven (7)
hidden states units. In the context, each input character or element
is linked to each neuron in the hidden layer. The product of the
input feature and the size of the hidden layer is evaluated as the
total number of connections established. The time distributed
layer at the encoder section is introduced to help in flattening the
output from the previous layer. At the decoder unit is
implemented with a DNN layer constituting 8 neurons.

3.2 Deep Learning Algorithm for Fully Connected Neural
Network (FCNN) Model

The basic steps followed to train and test the designed model
in section 3.2 are highlighted as follows:

A. The imports for the model are specified. A snapshot of the
code in figure 5 shows that lots of TensorFlow modules were
imported. The snapshot also showed that the Labelled Faces
in the Wild (LFW) dataset was utilized to train the model.

B. The dataset was loaded from its location on the internet and
normalized. This entails converting the raw matrix into an
image and changing the color system to RGB. The
screenshots of the system functions are shown in figures 6
and 7.

Figure 6: Snapshot of function that converts raw matrix to image

Figure 7: Snapshot of function that loads LFW dataset.

Figure 8: Snapshot of dataset normalization

http://www.astesj.com/

N.O. Chikezie et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 127-139 (2022)

www.astesj.com 132

The images could have large values for every pixel from 0 to
255 range. Usually, in ML, the focus is to make sure the values
are small and concerted around 0. This concept adopted enabled
our model to train faster with optimal results. This task is achieved
through normalization of the dataset as shown in figure 8.

The dataset was split into training and test data sets. The
training data is used in building the autoencoder. The algorithm
for this is shown in figure 9.
C. The model was compiled in order to enable us train the model.

The optimizer and loss function are specified in this stage.
Figure 10 shows a snapshot of the algorithm used to
accomplish the task

D. A summary of the model was generated to inspect the model
in greater detail. The generated model summary is shown in
figure 11.

E. Finally, the model was trained and tested by simulating
practical channel conditions. Noise was introduced into the
model prior to testing the model. Figure 12, shows the
function used to introduce noise into the model while figure
13, shows the algorithm for training of the model at a set SNR.

The result for the simulation over 50 epochs is captured in
figure 14.

Figure 9: Snapshot of algorithm for building the FCNN autoencoder

Figure 10: Snapshot of algorithm for compiling model

Figure 11: Snapshot of FCNN model summary

http://www.astesj.com/

N.O. Chikezie et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 127-139 (2022)

www.astesj.com 133

Figure 12: Snapshot of algorithm to introduce noise into the FCNN model

Figure 13: Snapshot of algorithm to train the FCNN model

Figure 14. Snapshot of training results for the FCNN model

The steps to implement the algorithm for the LSTM and
BLSTM autoencoder follow the same process and pattern that had
earlier been elaborated. The only key difference is the
introduction of state in the LSTM and BLSTM.

3.3 Performance Measure

 The model was trained using the mean squared error (MSE)
and categorical cross-entropy. The MSE together with two other
error metrics were used to give an insight into the performance of
the model. The average mean squared-error between the original
input image 𝑥𝑥 and reconstruction 𝑥𝑥� at the output of the decoder is
taken to be the loss function[2]. The loss function is given as[2]:

 ℒ = 1
𝑁𝑁
∑ 𝑑𝑑(𝑥𝑥𝑖𝑖 , 𝑥𝑥�)𝑁𝑁
𝑖𝑖=1 (2)

Where 𝑑𝑑(𝑥𝑥, 𝑥𝑥�) = 1
𝑛𝑛

||x − 𝑥𝑥 � ||2 is the mean squared-error
distortion and N = 7 in the simulation. This represents the distance
apart the approximation is far from the original input. The other
two error metrics factored into the simulation are the Bit Error
Rate (BER) and the Block Error Rate (BLER) on channels with
0.0 dB and 8.0 dB Eb/No respectively. The BER is the number of
bit errors divided by the total number of transferred bits during a

studied time interval (https://en.wikipedia.org/wiki/Bit_error_rate). Bit
errors in this context is simply the number of bits that are
incorrectly reconstructed. Block Error Rate (BLER) refers to as
the ratio of the number of blocks with error to the total number of
blocks transmitted on a digital circuit. BER is affected by several
factors including noise in the channel, code rate and the
transmitter power level. The BLSTM autoencoder model was
simulated and compared with the Hamming codes for soft and
hard decoder.

The code rate R is given as[19]:

𝑅𝑅 = 𝑘𝑘
𝑛𝑛
 (3)

where k refers to the number of bits at the encoder input and n is
the number of bits at the encoder output. The variance of additive
white Gaussian noise is given as[19]:

𝛽𝛽 = (2𝑅𝑅𝐸𝐸𝑏𝑏/𝑁𝑁𝑜𝑜)−1 (4)

The Mean Square Error (MSE) is the variance around the
fitted regression line at the decoder. It could also be referred as
the Euclidean distance between the reconstructed vector 𝑣𝑣�𝑖𝑖 and
the input vector 𝑣𝑣𝑖𝑖 and indicates the distance apart the

http://www.astesj.com/
https://en.wikipedia.org/wiki/Bit_error_rate

N.O. Chikezie et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 127-139 (2022)

www.astesj.com 134

approximation is from the original input. The MSE which could
be refered to as an example of a loss function is represented in
equation 5[4].

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑(𝑣𝑣𝑖𝑖 − 𝑣𝑣�𝑖𝑖) (5)

To evaluate the reconstruction accuracy of the deep JSCC
algorithm in a noisy channel, an additive white Gaussian noise is
modelled in the system. The average power constraint, P, is set to
one (i.e. P = 1), and vary the channel SNR by varying the noise
variance N0. The channel SNR is computed as[20]:

𝑆𝑆𝑆𝑆𝑆𝑆 = 10𝑙𝑙𝑙𝑙𝑙𝑙10
𝑃𝑃
𝑁𝑁0
𝑑𝑑𝑑𝑑 (6)

The performance of the deep JSCC algorithm is measured in
terms of the Peak Signal-to-Noise Ratio (PSNR) of the
reconstructed images at the output of the decoder, defined as
follows[20]:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 20𝑙𝑙𝑙𝑙𝑙𝑙10 �
255
√𝑀𝑀𝑀𝑀𝑀𝑀

�𝑑𝑑𝑑𝑑 (7)

All simulations were conducted on 24-bit depth RGB images
(8 bits per pixel per color channel), thus, maximum power signal
is given by 28 − 1 = 255.

4. Simulation Results

The performance of the JSCC for wireless image transmission
were evaluated using computer simulations. Simulation results of
the JSCC using neural networks were based on the bit error rate
(BER) performance over a range of signal-to-noise ratios. The
results of the simulations were captured and displayed using
graphical plots of errors versus epoch units (the number of passes
through the complete dataset) for a given SNR value.

Figures 15 and 16 showed the training and test error results for
the fully connected neural network autoencoder models trained on
channels with 0.0dB and 8.0dB respectively. We trained the
models using 60,000 samples of data, tested on 10,000 samples.
Checkpointing, a fault tolerance technique for long running
processes was used to retain the model state that yielded the best
loss. It is an approach where a snapshot of the state of the system
is taken in case of system failure.

Figure 15: Bit Error Rate vs Training Epochs for FCNN Autoencoder at (SNR= 0.0 dB) channel.

Figure 16: Bit Error Rate vs Training Epochs for FCNN Autoencoder at (SNR= 8.0 dB) channel

http://www.astesj.com/

N.O. Chikezie et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 127-139 (2022)

www.astesj.com 135

Figures 17 and 18 represent the error results from the
training/test for the BLSTM Autoencoder model for SNR of 0dB
and 8 dB respectively. From the graphical representation, it was

observed that BLSTM autoencoder converges at a bit faster rate
compare with the FCNN and appears to have a better solution to
the problem of effective input reconstruction.

Figure 17: Mean Squared Error vs Training Epochs for BLSTM Autoencoder at (SNR= 0.0 dB) channel

Figure 18: Mean Squared Error vs Training Epochs for BLSTM Autoencoder at (SNR= 8.0 dB) channel

4.1 Discussion

The simulated results shown in section 4, highlighted the
robustness of the proposed coding scheme to various channel
conditions. Figures 15-18 illustrate the number of errors in the
reconstructed images versus the number of Epoch units for two
different SNR values of the AWGN channel. Each curve in the
figure is obtained by training the end-to-end system using a
specific channel signal to noise ratio value. The performance of
the learned encoder/decoder parameters on the 10,000 test images
for slightly varying SNR value due to varying channel conditions
were also evaluated. When the SNRtest is less than the SNRtrain,
our deep Joint Source Channel Coding algorithm is seen to
demonstrate a robust scheme performance over channel
deterioration and failed to experience recurrent cliff effect
observed in digital systems, where the quality of the decoded
signals experience nongraceful degradation whenever the SNRtest
drops below a critical value close to the SNRtrain. The deep JSCC

design performance is more tolerable with a better stable state in
the presence of channel fluctuations and exhibits a graceful
degradation as the channel deteriorates. The performance is due
to the autoencoder’s potential to map analogous images to nearby
points in the channel’s input signal space. On the other hand,
when SNRtest is said to increase above SNRtrain, a gradual
improvement is observed in the quality of the reconstructed
images. It is important to note that the performance in the
saturation region is obtained majorly by the level of compression
realized during the training phase for a given value of SNRtrain.

4.1.1 Deep Learning JSCC Versus Hamming Code

The deep JSCC algorithm is compared with the channel
uncoded BPSK and Hamming code. A version of the (7,4)
hamming code was implemented in the study as a measure for the
experimental simulation comparison as shown in figure 19.

http://www.astesj.com/

N.O. Chikezie et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 127-139 (2022)

www.astesj.com 136

Figure 19: Bit Error Rate for BPSK in AWGN Channel Hamming Code and Autoencoder

Figures 20 and 21 represent the comparison of the BER and
BLER respectively with Hamming code and uncoded BPSK. It
can be observed that, the binary long short-term memory
autoencoder (BLSTM) exhibited a slight match with the
Hamming code in terms of performance. The BLSTM

autoencoder was able to learn the proposed joint-coding scheme
by leveraging its non-linearity property. This is in direct contrast
with the Hamming code which relies on a linear transformation.

Figure 20: BER Performance comparison with Hamming code and Uncoded BPSK

Figure 21: BLER performance comparison with Hamming code and Uncoded BPSK

http://www.astesj.com/

N.O. Chikezie et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 127-139 (2022)

www.astesj.com 137

From figure 20, it could be seen that autoencoder BER
performance demonstrated better performance than the uncoded
BPSK over the full Eb/No deployed. Hamming code
implementation was closely matched by the autoencoder BER
performance. It can also be observed from figures 20 and 21 that,
the BLSTM configuration have almost a matched BER
performance across the full Eb/N0 range. The performance is very
phenomenal owing to the fact that Hamming code is just a channel
coding technique. It can also be observed from figure 20 that as
the SNR improves, the BLSTM gets closer to matching the
Hamming code in terms of BER performance.

4.1.2 Comparison of Bit Error Rate Performance

Figures 22-24, show the BER performance of BPSK coding
schemes and the implementation of convolution code at 1/2 and

1/3 code rate and the uncoded systems respectively. When
comparing the results with the results obtained from simulations
of deep learning JSCC algorithm for various models, it can be
observed that the convolutional codes have a similar BER
performance to the deep learning JSCC based systems
implemented in the study. However, as can be deduced from
figure 20, the deep learning JSCC algorithm for the optimized
BLSTM model was slightly better than the convolution code for
R=1/3 in figure 22 and also with an improved performance over
the convolution code for R=1/2 in figure 23. Under adverse
channel conditions (SNR = 0), the BLSTM has a BER far lower
than the convolutional codes for 𝑅𝑅 = 1/3 , 𝑅𝑅 = 1/2 and the
uncoded system. This shows that the autoencoder outperforms the
the convolution codes.

Figure 22: Result showing the Convolution Code for 1/3

Figure 23: Result showing the Convolution Code for 1/2

http://www.astesj.com/

N.O. Chikezie et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 127-139 (2022)

www.astesj.com 138

Figure 24: Result showing the uncoded system

4.2 Significance of Results

The results illustrated in figures 15-18, demonstrate the robust
performance of the proposed deep learning JSCC algorithm.
These results showed that the proposed algorithm has an
acceptable BER performance without the need for explicitly
specified codes. The comparative analyses results in figures 20
and 21 illustrated that, the BLSTM autoencoder exhibits
robustness and performs favorably when compared with the
Hamming code with different values on channel SNR. Owing to
the fact that the autoencoder-based system does not require input
block sizes of a larger dimension to operate as the input size to the
model[1], it still has the capacity to achieve an acceptable BER
performance with only k bits at k = 8, which exhibits quite a
small block size length in comparison with the existing systems
that usually operate within the range of 100s to 1000s bits long
block sizes[19]. A system that exhibits such performance would
be preferable, and stand a good characteristic advantage for low
latency and low throughput communication systems. In such
scenario, it is believed that short message transmission is possible
to achieve even at a very low error rate, with minimal
computational and processing complexities and delay response
compare with the existing technique(s)[19]. This could also
reduce the transmitter or antenna cost, with improved data rates
for the same transmitter power and antenna size.

5. Conclusion

The study was primarily aimed at providing an improved
channel performance approach for wireless communication
network. The study sought to achieve this aim by focusing on
improving the BER performance, reducing latency and the
processing complexity in Joint Source Channel Coding systems.
The study implemented a deep learning algorithm to enhance on
the limiting performance of the conventional systems.

The Deep learning autoencoder system models were applied
as an equivalent to existing models. The hamming and
convolution codes in addition to the uncoded system were
carefully analyzed with deep learning autoencoder models. The
deep learning autoencoder model demonstrated a performance

that compared favorably with the hamming code and better than
the convolution codes, and uncoded systems. The results obtained
showed that the autoencoder model exhibits better and or
approximately equal BER performance even when hamming code
(soft decoding) was utilized.

Further studies could be focused towards exploiting more
advanced deep learning architectures and models in the
autoencoder that could further enhance the compression
performance of data with minimal BER.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

The authors extend their appreciation to Federal University of
Technology, Owerri for providing the enabling environment for
learning and to all the colleagues that contributed in various ways
towards the success of the research study.

References
[1] R.N.S. Rajapaksha, “Master’s Thesis: Potential Deep Learning Approaches

for the Physical,” (July), 1–59, 2019.
[2] E. Bourtsoulatze, D. Burth Kurka, D. Gunduz, “Deep Joint Source-Channel

Coding for Wireless Image Transmission,” IEEE Transactions on Cognitive
Communications and Networking, 5(3), 567–579, 2019,
doi:10.1109/tccn.2019.2919300.

[3] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.
[4] I.I. Akpabio, “Joint Source-Channel Coding Using Machine Learning,”

(May), 2019.
[5] R. Atienza, Advanced Deep Learning with Keras: Apply deep learning

techniques, autoencoders, GANs, variational autoencoders, deep
reinforcement learning, policy gradients, and more, 2018.

[6] T. O’Shea, J. Hoydis, “An Introduction to Deep Learning for the Physical
Layer,” IEEE Transactions on Cognitive Communications and Networking,
3(4), 563–575, 2017, doi:10.1109/TCCN.2017.2758370.

[7] E. Nachmani, Y. Be’Ery, D. Burshtein, “Learning to decode linear codes
using deep learning,” 54th Annual Allerton Conference on Communication,
Control, and Computing, Allerton 2016, 341–346, 2017,
doi:10.1109/ALLERTON.2016.7852251.

[8] E. Nachmani, E. Marciano, D. Burshtein, Y. Be’ery, “RNN Decoding of
Linear Block Codes,” 2017.

[9] N. Samuel, T. Diskin, A. Wiesel, “Deep MIMO detection,” in 2017 IEEE

http://www.astesj.com/

N.O. Chikezie et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 127-139 (2022)

www.astesj.com 139

18th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), 1–5, 2017,
doi:10.1109/SPAWC.2017.8227772.

[10] N. Farsad, A. Goldsmith, “Detection Algorithms for Communication
Systems Using Deep Learning,” 2017.

[11] H. Ye, G.Y. Li, B.H. Juang, “Power of Deep Learning for Channel
Estimation and Signal Detection in OFDM Systems,” IEEE Wireless
Communications Letters, 7(1), 114–117, 2018,
doi:10.1109/LWC.2017.2757490.

[12] N. Farsad, M. Rao, A. Goldsmith, “Deep Learning for Joint Source-Channel
Coding of Text,” ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, 2018-April, 2326–2330, 2018,
doi:10.1109/ICASSP.2018.8461983.

[13] Y.M. Saidutta, A. Abdi, F. Fekri, “M to 1 Joint Source-Channel Coding of
Gaussian Sources via Dichotomy of the Input Space Based on Deep
Learning,” in 2019 Data Compression Conference (DCC), 488–497, 2019,
doi:10.1109/DCC.2019.00057.

[14] L. Rongwei, W. Lenan, G. Dongliang, “JOINT SOURCE CHANNEL
CODING MODULATION BASED ON BP,” 156–159, 2003.

[15] G. Toderici, S.M. O’Malley, S.J. Hwang, D. Vincent, D. Minnen, S. Baluja,
M. Covell, R. Sukthankar, “Variable rate image compression with recurrent
neural networks,” 4th International Conference on Learning Representations,
ICLR 2016 - Conference Track Proceedings, 1–12, 2016.

[16] G. Toderici, D. Vincent, N. Johnston, S.J. Hwang, D. Minnen, J. Shor, M.
Covell, “Full resolution image compression with recurrent neural networks,”
Proceedings - 30th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, 2017-Janua, 5435–5443, 2017,
doi:10.1109/CVPR.2017.577.

[17] D.P. Kingma, M. Welling, “Auto-encoding variational bayes,” 2nd
International Conference on Learning Representations, ICLR 2014 -
Conference Track Proceedings, (Ml), 1–14, 2014.

[18] Y.M. Saidutta, A. Abdi, F. Fekri, “Joint Source-Channel Coding of Gaussian
sources over AWGN channels via Manifold Variational Autoencoders,”
2019 57th Annual Allerton Conference on Communication, Control, and
Computing, Allerton 2019, 514–520, 2019,
doi:10.1109/ALLERTON.2019.8919888.

[19] N. Rajapaksha, N. Rajatheva, M. Latva-Aho, “Low Complexity
Autoencoder based End-to-End Learning of Coded Communications
Systems,” IEEE Vehicular Technology Conference, 2020-May, 2020,
doi:10.1109/VTC2020-Spring48590.2020.9128456.

[20] A.D. Setiawan, T.L.R. Mengko, A.B. Suksmono, H. Gunawan, “Low-bitrate
medical image compression,” Proceedings of the 12th IAPR Conference on
Machine Vision Applications, MVA 2011, 544–547, 2011.

http://www.astesj.com/

	1.1 Model of A Simple Communication System
	2. Related Works
	3. Method
	3.1. Autoencoder Implementation for the Proposed Scheme

	4. Simulation Results
	Conflict of Interest
	Acknowledgment

