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 In the time past, virtually all the contemporary communication systems depend on distinct 
source and channel encoding schemes for data transmission. Irrespective of the recorded 
success of the distinct schemes, the new developed scheme known as joint source channel 
coding technique has proven to have technically outperformed the conventional schemes. 
The aim of the study is centered in developing an enhanced joint source-channel coding 
scheme that could mitigate some of the limitations observed in the contemporary joint 
source channel coding schemes. The study tends to leverage on recent developments in 
machine learning known as deep learning techniques for robust and enhanced scheme, 
devoid of explicit code dependence for the signal compression and as well in error 
correction but learn automatically on end-to-end mapping structure for the source signals. 
It primarily aimed at providing an improved channel performance approach for wireless 
communication network. A deep learning algorithm was implemented in the study, the 
scheme focused on improving the Bit Error Rate (BER) performance while reducing latency 
and the processing complexity in Joint Source Channel Coding systems. The deep learning 
autoencoder model was deployed to compare with the hamming code, convolution code, 
and uncoded systems. JSCC using neural networks were simulated based on BER 
performance over a range of energy per symbol to noise ratio (Eb/No). Training and test 
error for the fully connected neural network autoencoder models on channels with 0.0dB 
and 8.0dB were carried out. The results obtained showed that the autoencoder model had 
a better BER performance when compared with the convolution code and uncoded systems, 
it also outperformed the uncoded BFSK with an approximately equal BER performance 
when compared with the  hamming code (soft decision) decoding system. 
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1. Introduction 

The world has recently witnessed a great revolution in the way 
information is transmitted from one place to another. Wireless 
communication has advanced from mere point-to-point 
communication to becoming a viable tool to facilitate economic 
development, security enhancement and reliable public service 
delivery. The basic task for a communication system is to reliably 
deliver information from the source to the destination, using a 
transmitter and a receiver across a channel. The performance of 

conventional communication techniques is seen limited in 
operation and are sub-optimal due to the challenges which present 
themselves in the form of latency, reliability, energy efficiency, 
flexibility etc [1]. The fast emergence of many unprecedented 
services such as artificial intelligence, smart homes, factories and 
cities, wearable devices for physical challenged, robots, 
autonomous vehicles, big data, internet-of-things etc. are 
challenging the conventional approaches and mechanisms to 
communication. Recent research and technology advancements 
have contributed to an enviable progress in developing novel and 
enhanced mechanisms in the layers of communication system. 
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Despite that, more research is on the progress in providing optimal 
performance for wireless communication networks.  

It is important to note that emerging wireless communication 
systems typically transmit high data rates to provide wide range 
of services for better voice quality, improved data, images and 
other multimedia applications. Conversely, during wireless signal 
propagation, the systems usually encounter channel impairments, 
resulting in data errors at the receiver end. To correct this, requires 
adequate error correction codes to detect and correct symbol 
errors during transmission.   

The introduction of Joint Source-Channel Coding (JSCC) 
technique in wireless communication has been able to address 
most of the challenges that are inherent in the separation-based 
schemes, (i.e., the conventional two-step encoding process for the 
image/video data transmission, source coding and channel coding) 
[2]. Recently, it became a considerable research topic in 
communication systems and information technology, with the 
application in areas like audio/video and satellite transmission, as 
well as in space exploration. Despite the successes recorded by 
JSCC techniques, it still encounters some performance flaws 
inherent in its fundamental assumptions that could prove very 
costly for modern communication systems. This flawed 
assumption ripples through the design of systems based on 
conventional JSCC techniques in the form of increased processing 
and algorithmic complexity to combat noise in its various forms 
and also cater for additive information. This complexity can 
introduce a certain level of latency which is detrimental to the 
actualization of low latency systems. Furthermore, other inherent 
limitations include inability to fulfil bulky data and very high-rate 
communication requirements in multifaceted conditions as seen 
in most complex channel models. Others include; in low latency 
communication systems, in rapid and reliable signal processing 
application and in limited and sub-optimal block structures, due 
to the fixed block configuration of the communication system etc 
[1]. However, the recent introduction of Deep Learning (DL) 
technique and its fundamental based autoencoder concept, 
characterized with its simplicity in implementation, flexibility and 
ability in adapting to complex channel models, has been able to 
handle most of the complexities due to the stated advantages it 
possesses [1]. It has recently been successfully applied in solving 
various real-life applications such as in pattern recognition, 
speech and language processing, media entertainment, medicine, 
biology and security systems. DL is quite robust and scalable in 
application. 

Deep learning is a subset of Machine Learning (ML) that 
exhibits greater potentials in building complex concept from 
simpler concepts.  It has useful tools to process ultra-high data and 
shows high performance accuracy in recognition and prediction. 
Deep learning algorithm is seen to outperform machine learning 
algorithm, especially in handling difficult and complex  tasks such 
as in image and voice recognition, it is considered to be more 
valuable in cases where needful reduction in  computational 
complexities and overhead processing are preferred. Deep 
learning tends to rely on its intelligence to define its own finest 
features, it does not require humans to perform any feature-
creation activity. Among the existing DL models, Deep Neural 
Networks (DNNs) are considered to be the most known model, 
other deep architectures such as  Neural Processes(NPs), Deep 

Gaussian Processes (DGPs) and  Deep Random Forests (DRFs) 
could be categorized as deep models made up of multiple layered 
structures [1,3].   

Based on the research motivations, the study focuses on 
implementing JSCC using DL approach without the need for 
explicit codes. The study aims to develop a Deep Neural Network 
(DNN) symbol models for JSCC in an end-to-end pattern. 
Python/Keras and TensorFlow backend are simulation tools used 
to evaluate the error correction performance and data 
reconstruction. Bit Error Rate (BER) and Block Error Rate (BLER) 
are the selected parameters for the system analysis. Simulations 
were carried out to perform the BER/BLER and its reliability 
compared to the conventional communication approach with 
preference in reducing the processing complexity and latency. 
The performance analysis of the developed deep joint source-
coding algorithm with different Signal-to-Noise Ratio (SNR) 
values were also evaluated.  

In our study, the motive is to extend the preceding study on 
autoencoder-based end-to-end learning of communications 
system, evaluate its characteristic performance in varying system 
configurations and also realize the potentials of autoencoder-based 
end-to-end learning mechanisms for communications systems.  

1.1 Model of A Simple Communication System  

A typical communication system in its most fundamental form 
consists of a transmitter, channel, and receiver as illustrated in 
figure1. The communication system facilitates the transfer of 
information signal from one point to another through a process 
that involves three basic stages; coding, mapping and decoding. 
Firstly, the information signal is encoded into a message x of 
block length k. Each message x can be represented in the block 
length  k = 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑀𝑀) number of bits. The transmitter can transmit 
any of the acceptable messages out of M possible messages x ∈ M 
= {1, 2, ..., M} of block length k through n discrete users of the 
allocated communication channel. The transmitter on the other 
hand, performs the mapping fθ: 𝐶𝐶𝑘𝑘  → 𝐶𝐶𝑛𝑛  [4]. A vector g of n 
complex symbols is transmitted across the channel to facilitate the 
sending of the message x to the receiver[1]. The presence of noise 
in the channel causes signal distortions to the transmitted symbols.  
The receiver stage is concerned with mapping the transmitted 
signal to the receiver. The mapping of the transmitted signal is 
actualized using the transformation g𝜃𝜃: 𝐶𝐶𝑛𝑛 → 𝐶𝐶𝑘𝑘, portraying the 
fact that the decoding function inverts the operation of the 
encoding function. At the receiving end, as the signal is 
intercepted by the receiver, that is the signal  i ∈  𝐶𝐶𝑛𝑛, the receiver 
generates the estimate 𝑥𝑥� of the originally transmitted message x.  
Figure 1 shows the structure of a simple communication system 
which could be modelled using an autoencoder. A communication 
system can in its simplest term be described as an autoencoder 
that tries to reconstruct the transmitted message at the receiver as 
accurately as possible with the least possible errors[1]. For clarity 
sake, we can further describe the encoder function of the 
autoencoder as the transmitter  block while the decoder function 
as the receiver block of the system. A block diagram of an 
autoencoder is represented in figure 2.  

From figure 2, the encoder attempts to transform the input 
value 𝑥𝑥 into a low dimensional latent vector  𝑧𝑧 = 𝑓𝑓(𝑥𝑥). The latent 
vector is usually characterized of low dimension with a  
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Figure 1:  Block diagram of  a Communication System  

 

Figure 2: A block diagram representing an Autoencoder 

compressed representation of the input distribution. The decoder 
in contrast, tries to recover the input signal from the latent vector, 
g\left(z\right)=\widetilde{x} . The expectation should be that the 
output recovered by the decoder could only approximate the input 
(i.e. making \widetilde{x}\ as close as possible to x)[5]. The 
variations between the input and the output is measured as a loss 
function. It is necessary to note that both the encoder and the 
decoder are non-linear functions. 

2. Related Works 

In recent years, DL-based techniques were introduced for 
different processing blocks of the wireless communication 
systems as substitutes to conventional applications such as 
modulation recognition[6], channel encoding and decoding[7,8], 
and channel estimation and detection [9–11], owing to the 
development of DL algorithms and system architectures. 

Authors of [1], investigated the DL-based end-to-end 
communications performance models when deployed in a single 
user communication network under an Additive White Gaussian 
Noise (AWGN) channel. An autoencoder-based end-to-end 
communications system was implemented in the system 
validation. In[12], considered the challenges of JSCC of text 
/structured data using deep learning approach from natural 
language processing over noise channel. Their proposed 
technique is said to have an edge over  the existing distinct source 
and channel coding, particularly in scenarios when a smaller 
number of bits were used in describing each sentence. Their 
scheme achieved lower word error rates from the developed deep 
learning-based encoder and decoder system. The developed 
system uses a fixed bit length for enconding sentences of different 
length. This was observed to be a major drawback of their 
algorithm. 

The authors of[13], proposed the use of neural networks to 
address the design of systems with block length when k =1. In 
[14], used simple neural network architecture in encoding and 
decoding of Gauss-Markov sources over additive white Gaussian 
noise channel. Authors of [15,16], proposed neural network for 
signal compression devoid of a noisy channel (i.e. only source 
coding), where image compression algorithms were developed 

using RNNs. In[17], used neural networks, in particular, 
Variational Autoencoders (VAEs) to design neural network based 
Joint Source Channel Coding and extended the system design to 
where k ≠1. However, their performance was reasonable but a lot 
was required to improve upon their performance in order to meet 
up with  the benchmark set by[18] . The authors of,[18] developed 
a new scheme for JSCC of Gaussian sources over AWGN 
channels. VAEs was implemented in their design but with a novel 
encoder architecture for the VAE specifically developed for zero-
delay Gaussian JSCC over AWGN channels, a situation where the 
source dimension (m) is greater than the channel dimension (k). 
Their proposed scheme was able to improve on works of [17] with 
about 1dB. 

Our study therefore seeks to evaluate the performance of Bit 
Error Rate in wireless networks using Deep Neural Network 
(DNN) system model for joint source channel coding in an end-
to-end manner without the need for explicit codes to provide error 
correction. The approach is envisaged to minimize the block 
length of transmitted data with maximal utilization of bandwidth, 
increased data rate and power efficiency. Simulation models such 
as Python/Keras and TensorFlow backend will be implemented to 
oversee the process of error correction improvement and data 
reconstruction.  

3. Method  

The proposed deep learning approach for JSCC is 
implemented by simulation in Keras using TensorFlow as its 
backend. TensorFlow provides a robust environment, creating a 
relatively easy-to-use package. A model is trained to mimic the 
conventional end-to-end communication system under certain 
conditions and constraints. The trained model is then tested 
against random data under varying conditions to determine its 
performance in practical scenarios. 

3.1. Autoencoder Implementation for the Proposed Scheme 

An autoencoder’s main objective is to actualize a compressed 
representation of a given input data. An autoencoder is a neural 
network architecture, comprised of two distinct units; Encoder 
and Decoder functional units. The encoder unit primarily converts 
the input data into a different representation while the decoder unit  
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Figure 3: The FCNN Autoencoder Block Diagram  

converts the new representation back into the original format, 
trying to recover the input data. The input data could be in 
different configurations such as in speech, text, image or video 
format. Figure 3 represents the functional block diagram of a 
Fully Connected Neural Network (FCNN) autoencoder. 

To illustrate the performance characteristics of the deep JSCC 
scheme, the functional block diagram of the Fully Connected 
Neural Network in Fig. 3 is implemented in our simulation.  The 
autoencoder in this context was implemented as a fully connected 
feedforward Neural Network, enabled to propagate the 
information realized from the input, through a sequence  of non-
linear transformations to get to the output. 

  The autoencoder models is assumed to have undergone 
training for a predetermined message size (M) with its 
accompanying communication rate. We have two hidden 
feedforward DNN layers situated at the encoder end as shown in 
Fig.3. The first layer is 𝑓𝑓3 having 3 neuros while the second layer 
is 𝑓𝑓6which constitute 6 neurons. It is designed in such a way that 
the output of the first layer feeds into the input of the second layer 
etc. The two-layer blocks are connected to the batch normalization 
layer as represented. The batch normalization layer is introduced 
in the representation to satisfy the average power constraint.  An 
activation function known as Rectified Linear Activation Unit 
(ReLU) was employed by the convolutional layers (each dense 
layer) in order to apply nonlinearities to the model. A SoftMax 
activation function was implemented at the output layer in order  
to output the probability distributions for each of the output 
category. We used the Gaussian noise layer to simulate an 
additive white Gaussian noise channel which in this case is 
represented as the noise layer. 

The autoencoder is trained at full length over the stochastic 
channel model. The Stochastic Gradient Descent (SGD) method 
of optimization is used and the Adam optimizer is the preferred 
choice for the optimizer. The Adam optimizer’s learning rate is 
set at 0.001. The steps taken to select the energy per symbol to 
noise ratio (Eb/No) values for the AWGN channel during training 
are shown thus: 

i. Training was done at a fixed Eb/N0 value, 0 dB and 8 dB in 
this case. 

ii. Testing of the trained model using random Eb/N0 values 
picked from a predetermined Eb/N0 range for each training 
epoch. This is done to determine the BER performance 
during varying channel conditions. 

iii. The testing is initiated using a higher Eb/N0 value which 
decreases gradually along training epochs. In the case of the 
8 dB training value, the test starts from 8 dB and is reduced 
by 2 dB after every 10 epochs. 

We applied autoencoder model for our training and testing 
analysis in Keras using the TensorFlow application as its default 
tensor backend engine. The model was trained for  fifty (50) 
epochs using  sixty thousand (60,000) images, generated 
randomly with Eb/N0 values for Additive White Gaussain Noise 
(AWGN) channel in the model training. The BER performance 
for the 0dB and 8dB were then compared with the Hamming code 
utilizing a BPSK modulation scheme.  

The Bidirectional Long Short-Term Memory (BLSTM) 
autoencoder is also trained and tested in this simulation. It exhibits 
a parallel architecture to FCNN autoencoder, though, it has 
dissimilar structural components as shown in figure 4.  

 
Figure 4:The BLSTM autoencoder Block diagram. 
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Figure 5:  Snapshot of FCNN generated codes showing imports 

In figure 4, the encoder with a BLSTM has its dimension of 
the hidden units set to 32, while 32 refers to the number of features 
in each input sample. The BLSTM cell comprise of seven (7) 
hidden states units. In the context, each input character or element 
is linked to each neuron in the hidden layer. The product of the 
input feature and the size of the hidden layer is evaluated as the 
total number of connections established. The time distributed 
layer at the encoder section is introduced to help in flattening the 
output from the previous layer. At the decoder unit is 
implemented with a DNN layer constituting 8 neurons. 

3.2 Deep Learning Algorithm for Fully Connected Neural 
Network (FCNN) Model  

The basic steps followed to train and test the designed model 
in section 3.2 are highlighted as follows: 

A. The imports for the model are specified. A snapshot of the 
code in figure 5 shows that lots of TensorFlow modules were 
imported. The snapshot also showed that the Labelled Faces 
in the Wild (LFW) dataset was utilized to train the model. 

B. The dataset was loaded from its location on the internet and 
normalized. This entails converting the raw matrix into an 
image and changing the color system to RGB. The 
screenshots of the system functions are shown in figures 6 
and 7. 

 
Figure 6: Snapshot of function that converts raw matrix to image 

 
Figure 7: Snapshot of function that loads LFW dataset. 

 

Figure 8: Snapshot of dataset normalization 
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The images could have large values for every pixel from 0 to 
255 range. Usually, in ML, the focus is to make sure the values 
are small and concerted around 0. This concept adopted enabled  
our model to train faster with optimal results. This task is achieved 
through normalization of the dataset as shown in figure 8. 

The dataset was split into training and test data sets. The 
training data is used in building the autoencoder. The algorithm 
for this is shown in figure 9. 
C. The model was compiled in order to enable us train the model. 

The optimizer and loss function are specified in this stage. 
Figure 10 shows a snapshot of the algorithm used to 
accomplish the task 

D. A summary of the model was generated to inspect the model 
in greater detail. The generated model summary is shown in 
figure 11. 

E. Finally, the model was trained and tested by simulating 
practical channel conditions. Noise was introduced into the 
model prior to testing the model. Figure 12, shows the 
function used to introduce noise into the model while figure 
13, shows the algorithm for training of the model at a set SNR. 

The result for the simulation over 50 epochs is captured in 
figure 14. 

 
Figure 9:  Snapshot of algorithm for building the FCNN autoencoder 

 

Figure 10:  Snapshot of algorithm for compiling model 

 
Figure 11:  Snapshot of FCNN model summary 
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Figure 12: Snapshot of algorithm to introduce noise into the FCNN model 

 
Figure 13: Snapshot of algorithm to train the FCNN model 

 
Figure 14. Snapshot of training results for the FCNN model 

The steps to implement the algorithm for the LSTM and 
BLSTM autoencoder follow the same process and pattern that had 
earlier been elaborated. The only key difference is the 
introduction of state in the LSTM and BLSTM. 

3.3 Performance Measure  

 The model was trained using the mean squared error (MSE) 
and categorical cross-entropy. The MSE together with two other 
error metrics were used to give an insight into the performance of 
the model. The average mean squared-error between the original 
input image 𝑥𝑥 and reconstruction 𝑥𝑥� at the output of the decoder is 
taken to be the loss function[2]. The loss function is given as[2]: 

   ℒ =  1
𝑁𝑁
∑ 𝑑𝑑(𝑥𝑥𝑖𝑖 , 𝑥𝑥�)𝑁𝑁
𝑖𝑖=1              (2) 

Where 𝑑𝑑(𝑥𝑥, 𝑥𝑥�)  = 1
𝑛𝑛

||x −  𝑥𝑥 � ||2   is the mean squared-error 
distortion and N = 7 in the simulation. This represents the distance 
apart the approximation is far from the original input.  The other 
two error metrics factored into the simulation are the Bit Error 
Rate (BER) and the Block Error Rate (BLER) on channels with 
0.0 dB and 8.0 dB Eb/No respectively. The BER is the number of 
bit errors divided by the total number of transferred bits during a 

studied time interval (https://en.wikipedia.org/wiki/Bit_error_rate). Bit 
errors in this context is simply the number of bits that are 
incorrectly reconstructed. Block Error Rate (BLER) refers to as 
the ratio of the number of blocks with error to the total number of 
blocks transmitted on a digital circuit. BER is affected by several 
factors including noise in the channel, code rate and the 
transmitter power level. The BLSTM autoencoder model was 
simulated and compared with the Hamming codes for soft and 
hard decoder. 

The code rate R is given as[19]: 

𝑅𝑅 =  𝑘𝑘
𝑛𝑛
                                                (3) 

where k refers to the number of bits at the encoder input and n is 
the number of bits at the encoder output. The variance of additive 
white Gaussian noise is given as[19]: 

𝛽𝛽 =  (2𝑅𝑅𝐸𝐸𝑏𝑏/𝑁𝑁𝑜𝑜)−1                 (4) 

The Mean Square Error (MSE) is the variance around the 
fitted regression line at the decoder. It could also be referred as 
the Euclidean distance between the reconstructed vector 𝑣𝑣�𝑖𝑖 and 
the input vector 𝑣𝑣𝑖𝑖  and indicates the distance apart the 
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approximation is from the original input. The MSE which could 
be refered to as an example of a loss function is represented in 
equation 5[4].  

𝑀𝑀𝑀𝑀𝐸𝐸 = 1
𝑁𝑁
∑(𝑣𝑣𝑖𝑖 − 𝑣𝑣�𝑖𝑖)               (5) 

To evaluate the reconstruction accuracy of the deep JSCC 
algorithm in a noisy channel, an additive white Gaussian noise is 
modelled in the system. The average power constraint, P, is set to 
one (i.e. P = 1), and vary the channel SNR by varying the noise 
variance N0. The channel SNR is computed as[20]:  

𝑀𝑀𝑁𝑁𝑅𝑅 = 10𝑙𝑙𝑙𝑙𝑙𝑙10
𝑃𝑃
𝑁𝑁0
𝑑𝑑𝑑𝑑                                     (6) 

The performance of the deep JSCC algorithm is measured in 
terms of the Peak Signal-to-Noise Ratio (PSNR) of the 
reconstructed images at the output of the decoder, defined as 
follows[20]: 

𝑃𝑃𝑀𝑀𝑁𝑁𝑅𝑅 = 20𝑙𝑙𝑙𝑙𝑙𝑙10 �
255
√𝑀𝑀𝑀𝑀𝑀𝑀

�𝑑𝑑𝑑𝑑   (7) 

All simulations were conducted on 24-bit depth RGB images 
(8 bits per pixel per color channel), thus, maximum power signal 
is given by 28 − 1 = 255. 
 

4. Simulation Results 

The performance of the JSCC for wireless image transmission 
were evaluated using computer simulations. Simulation results of 
the JSCC using neural networks were based on the bit error rate 
(BER) performance over a range of signal-to-noise ratios. The 
results of the simulations were captured and displayed using 
graphical plots of errors versus epoch units (the number of passes 
through the complete dataset) for a given SNR value.  

Figures 15 and 16 showed the training and test error results for 
the fully connected neural network autoencoder models trained on 
channels with 0.0dB and 8.0dB respectively. We trained the 
models using 60,000 samples of data, tested on 10,000 samples. 
Checkpointing, a fault tolerance technique for long running 
processes was used to retain the model state that yielded the best 
loss. It is an approach where a snapshot of the state of the system 
is taken in case of system failure.

 

Figure 15: Bit Error Rate vs Training Epochs  for FCNN Autoencoder at (SNR= 0.0 dB) channel. 

 
Figure 16: Bit Error Rate vs Training Epochs  for FCNN Autoencoder at  (SNR= 8.0 dB) channel 
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Figures 17 and 18 represent the error results from the 
training/test for the BLSTM Autoencoder model for SNR of 0dB 
and 8 dB respectively. From the graphical representation, it was 

observed that BLSTM autoencoder converges at a bit faster rate 
compare with the FCNN and appears to have a better solution to 
the problem of effective input reconstruction.  

 
Figure 17:  Mean Squared Error vs Training Epochs for BLSTM Autoencoder at (SNR= 0.0 dB) channel 

 
Figure 18: Mean Squared Error vs Training Epochs for BLSTM Autoencoder at (SNR= 8.0 dB) channel 

4.1 Discussion 

The simulated results shown in section 4, highlighted the 
robustness of the proposed coding scheme to various channel 
conditions. Figures 15-18 illustrate the number of errors in the 
reconstructed images versus the number of Epoch units for two 
different SNR values of the AWGN channel. Each curve in the 
figure is obtained by training the end-to-end system using a 
specific channel signal to noise ratio value. The performance of 
the learned encoder/decoder parameters on the 10,000 test images 
for slightly varying SNR value due to varying channel conditions 
were also evaluated. When the SNRtest  is  less than the SNRtrain, 
our deep Joint Source Channel Coding algorithm is seen to 
demonstrate a robust scheme performance over channel 
deterioration and failed to experience recurrent cliff effect 
observed in digital systems, where the quality of the decoded 
signals experience nongraceful degradation whenever the SNRtest 
drops below a critical value close to the SNRtrain. The deep JSCC 

design performance is more tolerable with a better stable state in 
the presence of channel fluctuations and exhibits a graceful 
degradation as the channel deteriorates. The performance is due 
to the autoencoder’s potential to map analogous images to nearby 
points in the channel’s input signal space.  On the other hand, 
when SNRtest is said to increase above SNRtrain, a gradual 
improvement is observed in the quality of the reconstructed 
images. It is important to note that the performance in the 
saturation region is obtained majorly by the level of compression 
realized during the training phase for a given value of SNRtrain. 
 

4.1.1 Deep Learning JSCC Versus Hamming Code  

The deep JSCC algorithm is compared with the channel 
uncoded BPSK and Hamming code. A version of the (7,4) 
hamming code was implemented in the study as a measure for the 
experimental simulation comparison as shown in figure 19.  
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Figure 19: Bit Error Rate  for BPSK in AWGN Channel Hamming Code and Autoencoder

Figures 20 and 21 represent the comparison of the BER and 
BLER respectively with Hamming code and uncoded BPSK. It 
can be observed that, the binary long short-term memory 
autoencoder (BLSTM) exhibited a slight match with the 
Hamming code in terms of performance. The BLSTM 

autoencoder was able to learn the proposed joint-coding scheme 
by leveraging its non-linearity property. This is in direct contrast 
with the Hamming code which relies on a linear transformation. 

 

 
 

Figure 20: BER Performance comparison with Hamming code and Uncoded BPSK 

 
Figure 21: BLER performance comparison with Hamming code and Uncoded BPSK  
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From figure 20, it could be seen that autoencoder BER 
performance demonstrated better performance than the uncoded 
BPSK over the full Eb/No deployed. Hamming code 
implementation was closely matched by the autoencoder BER 
performance. It can also be observed from figures 20 and 21 that, 
the BLSTM configuration have almost a matched BER 
performance across the full Eb/N0 range. The performance is very 
phenomenal owing to the fact that Hamming code is just a channel 
coding technique. It can also be observed from figure 20 that as 
the SNR improves, the BLSTM gets closer to matching the 
Hamming code in terms of BER performance.    
 

4.1.2 Comparison of Bit Error Rate Performance  

Figures 22-24, show the BER performance of BPSK coding 
schemes and the implementation of convolution code at 1/2 and 

1/3 code rate and the uncoded systems respectively. When 
comparing the results with the results obtained from simulations 
of deep learning JSCC algorithm for various models, it can be 
observed that the convolutional codes have a similar BER 
performance to the deep learning JSCC based systems 
implemented in the study. However, as can be deduced from 
figure 20, the deep learning JSCC algorithm for the optimized 
BLSTM model was slightly better than the convolution code for 
R=1/3 in figure 22 and also with an improved performance over 
the convolution code for R=1/2 in figure 23. Under adverse 
channel conditions (SNR = 0), the BLSTM has a BER far lower 
than the convolutional codes for 𝑅𝑅 = 1/3  , 𝑅𝑅 = 1/2   and the 
uncoded system. This shows that the autoencoder outperforms the 
the convolution codes. 

 
Figure 22: Result showing the Convolution Code for 1/3 

 
Figure 23:  Result showing the Convolution Code for 1/2 
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Figure 24: Result showing the uncoded system 

4.2 Significance of Results  

The results illustrated in figures 15-18, demonstrate the robust 
performance of the proposed deep learning JSCC algorithm. 
These results showed that the proposed algorithm has an 
acceptable BER performance without the need for explicitly 
specified codes. The comparative analyses results in figures 20 
and 21 illustrated that, the BLSTM autoencoder exhibits 
robustness and performs favorably when compared with the 
Hamming code with different values on channel SNR. Owing to 
the fact that the autoencoder-based system does not require input 
block sizes of a larger dimension to operate as the input size to the 
model[1], it still has the capacity to achieve an acceptable BER 
performance with only k bits  at k = 8,  which exhibits quite a 
small block size length in comparison with the existing systems 
that usually operate within the range of 100s to 1000s bits long 
block sizes[19]. A system that exhibits such performance would 
be preferable, and stand a good characteristic advantage for low 
latency and low throughput communication systems. In such 
scenario, it is believed that short message transmission is possible 
to achieve even at a very low error rate, with minimal 
computational and processing complexities and delay response 
compare with the existing technique(s)[19]. This could also 
reduce the transmitter or antenna cost, with improved data rates 
for the same transmitter power and antenna size. 
 

5. Conclusion  

The study was primarily aimed at providing an improved 
channel performance approach for wireless communication 
network. The study sought to achieve this aim by focusing on 
improving the BER performance, reducing latency and the 
processing complexity in Joint Source Channel Coding systems. 
The study implemented a deep learning algorithm to enhance on 
the limiting performance of the conventional systems. 

The Deep learning autoencoder system models were applied 
as an equivalent to existing models. The hamming and 
convolution codes in addition to the uncoded system were 
carefully analyzed with deep learning autoencoder models. The 
deep learning autoencoder model demonstrated a performance 

that compared favorably with the hamming code and better than 
the convolution codes, and uncoded systems. The results obtained 
showed that the autoencoder model exhibits better and or 
approximately equal BER performance even when hamming code 
(soft decoding) was utilized.  

Further studies could be focused towards exploiting more 
advanced deep learning architectures and models in the 
autoencoder that could further enhance the compression 
performance of data with minimal BER.  
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