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 This paper builds on the realization that since mobile devices have become a common tool 
for researchers to collect, process, and analyze large quantities of data, we are now entering 
a generation where the creation of solutions to difficult real-world problems will mostly 
come in the form of mobile device apps. One such relevant real-life problem is to accurately 
and cheaply detect the over-consumption of alcohol, since it can lead to many problems 
including fatalities. Today, there are several expensive and/or tedious alternative 
procedures in the market that are used to test subjects’ Blood Alcohol Content (BAC). This 
paper explores a cheaper and more effective alternative to address this problem by 
classifying if subjects have consumed too much alcohol by using accelerometer data from 
the subjects’ mobile devices while they perform physical activity. In order to create the most 
accurate classification system, we conduct experiments with five different supervised 
machine learning methods and use them on two features derived from accelerometer data of 
two different male subjects. We then share our experiment results that support why 
“Decision Tree Learning” is the supervised machine learning method that is best suited for 
our mobile device sobriety classification system. 
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1. Introduction 

This paper is an extension of work originally presented in the 
2021 17th International Conference on Wireless and Mobile 
Computing, Networking and Communications (WiMob) [1].   

1.1. Problem and Motivation 

Alcohol misuse and abuse is responsible for great personal and 
economic harm in the United States (US) and around the world, 
where more than 88,000 people die from alcohol-related issues 
each year, which makes it the third leading preventable cause of 
death in the US [2].  Excessive drinking has been proven to damage 
the heart, liver, pancreas, and immune system [3]. In addition to 
the detrimental health effects, alcohol misuse has cost the US 
$223.5B in economic loss in 2006 alone [2].  

The consumption of alcohol negatively affects individuals’ 
brains and their central nervous systems. These effects only 
become worse with larger alcohol concentrations in the 
individuals’ blood. More specifically, judgment, reaction time, 

balance, and psycho-motor performance start becoming 
compromised above a BAC of 0.02 – 0.05 [2]. These abilities are 
necessary to operate vehicles, so it is not surprising that almost 
50% of traffic fatalities involve the (mis)use of alcohol.  

Currently, there are a couple of different methods to test 
intoxication levels. These tests can be administered by drawing 
blood, monitoring breath (breathalyzer), and collecting 
urine/saliva/short strands of hair. All of these methods try to 
directly measure alcohol’s presence in the individuals’ bodies. On 
the other hand, field sobriety tests that are performed by law 
enforcement officials typically include physical tasks to gauge 
individuals’ levels of impairment. Most  of these physical 
movements involve performing tasks such as individuals walking 
backwards in a straight line or maintaining a steady posture while 
touching their noses with their arms stretched out. The advantages 
of such physical tests are that they are convenient and cheap. On 
the other hand, devices like the breathalyzer are fairly expensive, 
where costs typically range from $3,000-$5,000 per unit, and 
require frequent device calibration, comprehensive maintenance, 
and expensive repairs. However, physical tests are considered to 
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be subjective since they are based on the officers’ observation of 
the individuals, but are still cheaper than chemical tests.  

As a result, we believe that mobile device-based systems can 
give individuals the best of both worlds by providing low-cost 
portable devices, which also measure individuals’ sobriety levels 
objectively. The advantage of mobile computing is due to the fact 
fact that mobile devices can sense real-world data and respond to 
trends based on the data and/or their surrounding environments. If 
mobile devices can signal individuals that they are intoxicated by 
their physical responses, then fatalities can be mitigated across the 
world. 

1.2. Proposed Solution 

As seen in Figure 1, we propose a multi-stage detection 
system that makes use of mobile devices’ accelerometers to 
capture real-time data from individuals. This data is then processed 
and fed into a data classifier, which can internally determine 
whether the individuals are intoxicated by comparing their data to 
an existing classification model that is based on historical data. 

 
Figure 1: Block diagram of the system used for the experiments 

 In this paper, we take the first step towards implementing such 
a system by proposing robust accelerometer data features that can 
distinguish between sober and intoxicated individuals. We then 

test these features using five Supervised Machine Learning models 
to see their accuracy in predicting individuals’ sobriety levels: 
Support Vector Machines (SVM), Decision Tree Learning, 
Boosting, K-Nearest Neighbors (KNN), and Neural Networks 
(NN) [4]. 

2. Related Works  

Several researchers have focused their prior research on 
movement-pattern recognition by using accelerometers, especially 
since these days all mobile devices are embedded with highly 
accurate and precise accelerometers [5]. There have been many 
interesting mobile applications developed, which can detect the 
individuals’ activities, such as daily exercises or crossing the 
street, by solely analyzing the accelerometer data. 

There have also been several papers that have proposed 
different variations of mobile systems to detect individuals’ 
intoxication levels: 

1. Detecting abnormalities in individuals’ gaits while they walk 
intoxicated [6–9].  

2. Evaluating eye (iris) movements of individuals who are 
intoxicated [10,11]. 

3. Monitoring the steadiness of postures of intoxicated 
individuals [12]. 

 These mobile systems can sense individuals’ intoxication 
levels and log the location/time of the incidents. Although these 
papers show the individual differences in step variance time among 
individuals, the differences are relative to everyone’s unique 
baseline, so the differences cannot be used to cleanly separate any 
intoxicated and sober individuals in the general population.  

3. Methodology 

3.1. Physiological Basis 

 One of the first symptoms that individuals exhibit as they 
become intoxicated is that they have decreased balance and motor 
coordination.  This is because of the effect of alcohol on the brain’s 
chemistry that it achieves by changing the neurotransmitters’ 
levels. These neurotransmitters are entities that act as chemical 
messengers, which send critical human signals throughout the 
body. These signals include those that control thought processes, 
behaviors, and emotions. Many believe that out of all the 
neurotransmittors, alcohol specifically targets the GABA 
neurotransmitter [13]. 

3.2. Physical Activity Data Collection 

With these factors in mind, we planned our experiments such 
that we could easily distinguish between intoxicated and sober 
subjects based on the subjects’ abilities to balance their bodies and 
maintain steady postures. Our proposed mobile-based system logs 
subjects’ accelerations along the x-, y-, and z-axes.  

In order to collect the subjects’ data, we created an Android 
app that runs on a Motorola Moto G mobile phone. This device 
contains a built-in API, which outputs the device’s linear 
acceleration after negating the effects of gravity. Our Android app 
has a built-in button, which is used to start and stop data collection 
periods during our experiments.  

      Data Classifier 

 

Accelerometer Data 

         Decision  
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For our experiments, we recruited two subjects, Subject 1 and 
Subject 2, to grip the mobile devices in their right hands, keep their 
right arms outstretched, and maintain those steady postures for 10 
seconds. The subjects’ right arms form 90-degree angles with their 
bodies while their left arms are kept by their sides. Additionally, 
their right feet are in front of the left feet in straight lines, so that 
their left toes are touching their right heels. During the 
experiments, the subjects keep their eyes to better test their balance 
and motor skills. 

We first tested both subjects in sober states, before they 
consumed any alcohol. After that, both subjects consumed 3, 6, 
and 9 drinks of alcohol over a period of 120 minutes, while we 
recorded their data. To keep results consistent, we defined one 
drink in this paper to be 1.25 oz of 80 proof liquor i.e., vodka. 

4. Results 

After we finished our experiments with both subjects, we had 
four data points per subject, which came out to eight total data 
points for our initial analysis. For each of the data points, we 
plotted the subjects’ accelerations across the x-, y- and z-axes 
against their times, which can be seen above in Figures 2 – 9. 

 
Figure 2: Accelerometer reading when Subject 1 has had 0 drinks 

.  
Figure 3: Accelerometer reading when Subject 1 has had 3 drinks 

 
Figure 4: Accelerometer reading when Subject 1 has had 6 drinks 

 
Figure 5: Accelerometer reading when Subject 1 has had 9 drinks 

 
Figure 6: Accelerometer reading when Subject 2 has had 0 drinks 

 
Figure 7: Accelerometer reading when Subject 2 has had 3 drinks 

 
Figure 8: Accelerometer reading when Subject 2 has had 6 drinks 

 
Figure 9: Accelerometer reading when Subject 2 has had 9 drinks 
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5. Supervised Learning Model Results 

Based on the results of our experiments, we clearly see a 
distinction between the sober data (0 - 3 drinks) and intoxicated 
data (6 - 9 drinks). Additionally, there is a relationship between the 
number of drinks the subjects consumed and the “unsteadiness” of 
their corresponding data. In order to capture this change, we 
examined two features: variance and highest frequency.  

Table 1: Tabulation of variance, highest frequency, and BAC for Subject 1 

Number of 
Drinks 

Estimated 
BAC Variance 

Highest 
Frequency 

0 0 0.0382 0.1227 

3 0.06 0.06059 0.11793 

6 0.19 1.749063 2.860169 

9 0.28 9.80903 1.5984 

Table 2: Tabulation of variance, highest frequency, and BAC for Subject 2 

Number of 
Drinks 

Estimated 
BAC Variance 

Highest 
Frequency 

0 0 0.0556 0.1092 

3 0.06 0.06059 0.11793 

6 0.19 0.214869 2.216312 

9 0.28 12.0609 0.92764 

The first distinguishing feature we found was the variance in 
the amplitude (as can be seen in Table 1). We calculated it for each 
axis, and then we selected the maximum variance from all the three 
axes. This helped make the feature more stable as the subjects held 
the phones in different positions, since we noticed that the 
variances transferred amongst the axes.  

The second distinguishing feature we found was the highest 
frequency component of the time-series data (as can be seen in 
Table 2). However, the relationship was not easy to detect as in the 
case of the previous correlation between BAC and variance, 
despite the fact that the highest frequency for intoxicated data was 
still higher than the highest frequency for sober data. 

 
Figure 10: Breakdown of data in terms of datapoints across both subjects 

 

Figure 11: Density plots of the raw data for both subjects 

Both the variance analysis and the highest frequency analysis 
were performed on Subject 1’s data and Subject 2’s data. Figures 
10 – 11 given above indicate different levels of increasing variance 
and highest frequency, which we use to estimate the BAC of 
Subjects 1 and 2. The BAC is calculated using the number of 
drinks consumed and the body mass of each subject. 

Based on these results, we tried the following Supervised 
Machine Learning methods to determine which methods were 
most effective at distinguishing between sober and intoxicated 
subjects, where we used Subject 1’s data as the training dataset and 
Subject 2’s data as the test dataset. 

5.1. SVM 

For the SVM implementation, we used the Python class 
“sklearn.svm.SVC” [14]. For our implementation, we used two 
different SVM models to see the different effects on the datasets 
(as shown in the Table 3). First, we used the original SVM model 
with the values of “random_state=None, kernel=poly”. However, 
to see the effect of hyperparameter tuning the original SVM model, 
we updated several different parameters “random_state=0, 
kernel=rbf” [15,16]. 

Table 3: SVM model statistics  

SVM Type 
Accuracy 

(%) 
Execution 
Time (s) 

Default SVM 100 0.18 

Adjusted SVM 67 0.19 

 

5.2. Decision Tree Learning 

For the decision tree implementation, we used the Python class 
“sklearn.tree.DecisionTreeClassifier” [17]. For our 
implementation, we used two different decision trees to see the 
different effects on the datasets (as shown in the Table 4).  First, 
we used the regular decision tree with the default values of “gini” 
for the Gini impurity and “None” for the “max-depth”. However, 
to see the effect of pruning the trees, we tested two different 
parameters: setting “entropy” for the information gain and setting 
the “max_depth” to “3” [18]. 
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Table 4: Decision Tree Learning model statistics 

Decision Tree Type 
Accuracy 

(%) 
Execution 
Time (s) 

Default Decision Tree 67 0.71 

Pruned Decision Tree 100 0.81 

 

5.3. Boosting 

For the decision tree implementation, we used the Python class 
“sklearn.tree. GradientBoost-ingClassifier” [19]. For our 
implementation, we used two different boosting classifiers to see 
the different effects on the datasets (as shown in the Table 5). First, 
we used regular gradient boosting with the default values of 
“n_estimators=100, learning_rate=0.1, max_depth=3” [20]. 
However, to see the effect of hyperparameter tuning the boosted 
model, we updated several different parameters 
“n_estimators=1000, learning_rate=1.0, max_depth=1” [16,18]. 

Table. 5. Gradient Boosting model statistics 

Gradient Boosting Type 
Accuracy 

(%) 
Execution 
Time (s) 

Default Gradient Boosting 67 1.13 

Adjusted Gradient Boosting 67 1.12 

 

5.4. KNN 

For the KNN implementation, we used the Python class 
“sklearn.neighbors.KNeighborsClassifier” [21]. For our 
implementation, we used two different KNN models to see the 
different effects on the datasets (as shown in the Table 6). We 
created a loop to test the models on our dataset by performing 
hyperparameter tuning and updating the “n_neighbors” value to 
values 2 through 8 [16,22]. 

Table 6: KNN model statistics 

KNN Type 
Accuracy 

(%) 
Execution 
Time (s) 

Default KNN 75 0.54 

Adjusted KNN 80 0.53 

 

5.5. Neural Networks 

For the neural network implementation, we used the Python 
class “keras.Sequential” [22]. For our implementation, we used 
two different models to see the different effects on the datasets (as 
shown in the Table 7). First, we used the regular keras model with 
two layers and 1000 epochs for the number of iterations across the 
data. However, to see the effect of an additional layer in my model, 

we tested the same keras model with a third layer and “epochs” 
value of “1000” for the number of cycles across the data [13,23]. 

Table. 7. NN model statistics 

NN Type Accuracy (%) Epoch 

Default NN 100 1000 

Adjusted NN 67 1000 

6. Analysis 

6.1. SVM 

This algorithm gave us some of the better results in both 
subjects’ datasets, as can be seen in Figure 12 below. This was 
potentially due to the fact that this algorithm is a good general-
purpose classification algorithm, especially since we used the “rbf” 
kernel, which is known for its general and wide-spread use across 
many types of datasets [24]. 

 
Figure 12: Confusion Matrix for SVM model 

The main goal of this algorithm is to divide datasets into 
several classes in order to find a maximum marginal hyperplane 
(MMH). This can be done in the following two steps where first 
Support Vector Machines will generate hyperplanes iteratively that 
separate the classes in the best way and thereafter, they will choose 
the hyperplane that segregate the classes correctly [25]. 

We decided to perform hyperparameter tuning on our SVM 
and test between the rbf and polynomial kernels. We tested these 
because we know that the polynomial kernel is typical considered 
more generalized and therefore less efficient and accurate, but the 
rbf kernel is considered to be one of the most preferred kernel 
functions in SVM [24]. 

Based on the average runtime for our runs, we got 0.18 seconds 
per run as per wall clock time. 

Unlike other algorithms, we didn’t do too many modifications. 
We only tested with different kernels, since we wanted to test a 
kernel that was good with generalized results to avoid overfit-
ting/underfitting the long-tailed tailed variables. We didn’t show 
the results for the “poly” kernel because the “rbf” kernel performed 
better on the non-uniform datasets. 
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6.2. Decision Tree Learning 

We generally got better training results with decision trees, as 
can be seen in Figures 12 – 13 above. This might be due to our 
pruning methods, or it could be because of the bi-directional tails 
in some of the attributes in the dataset that rendered the algorithm 
less effective. 

 
Figure 13. Node breakdown of Decision Tree model 

This represents a flowchart-like tree structure, in that each 
internal node signifies a test on an attribute, each branch represents 
an outcome of the test, and each leaf node (terminal node) holds a 
class label [26]. This algorithm performs bests on non-linear 
datasets, which makes it a good choice (in theory) for our non-
linear datasets  

We decided to prune our trees using “criterion=entropy, 
max_depth=3”. We chose entropy because there are features that 
have “uncertainty” as they the values are clustered very close to 
each other [23]. Additionally, we did not want to overfit the model 
based on the training data, so we limited the max_depth to 3 [23]. 

Based on the average runtime for our runs, we got 1.12 seconds 
per run as per wall clock time. 

As we mentioned above, we decided to prune our trees using 
“criterion=entropy, max_depth=3”. The results for the classifier 
for the default values were due to the fact that the model overfit on 
the training data and didn’t give as good performance on the testing 
data. 

 

Figure 14: Confusion Matrix for Decision Tree model 

6.3. Boosting 

This algorithm provided interesting results because for both 
datasets because the larger the training data size, the better the test 

predictions, as can be seen in Figures 14 – 15 below. This could be 
due to the fact that, similar to our neural network algorithm 
implementation, we used a large number of iterations. 

 
Figure 15: Breakdown for Boosting model 

Since we were doing a Binary Classification problem, we used 
Gradient Boosting, which builds an additive model in a forward 
stage-wise fashion. This allows it to optimize arbitrary 
differentiable loss functions, where in each stage n_classes, 
regression trees are fit on the negative gradient of the binomial or 
multinomial deviance loss function [27]. 

We decided to perform hyperparameter tuning on our 
GradientBoostingClassifier and set “n_estimators=1000, 
learning_rate=1.0, max_depth=1”. We chose these values because 
we know that Boosting algorithms are prone to overfitting, so by 
choosing a high number of boosting stages to perform while 
shrinking the contribution of each tree by learning_rate, we 
thought we could counteract that tendency [19]. 

We set “n_estimators=1000”, so there were 1000 iterations per 
run. We decided to test with different values for “learning_rate” 
and “n_estimators” and only showed the results for 
“n_estimators=1000” and “learning_rate=1.0”, because this 
combination showed the best performance. This is because we can 
have a large "large learning rate" with iterations or have a "slow 
learning rate" with more iterations. This combination was a good 
middle choice to get the best of both parameters [24]. 

 

Figure 16: Confusion Matrix for Boosting model 

6.4. KNN 

This algorithm gave us expected results in that as our training 
dataset size increased, our test performance decreased 
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significantly, as can be seen in Figures 16-17 below. This is a clear 
case of the algorithm overfitting on the training dataset and 
suffering as a result on the testing dataset. 

 

Figure 17: Confusion Matrix for KNN model 

This algorithm uses the nearest neighbors in a dataset, where 
those data points that have minimum distance in feature space from 
our new data point. In this algorithm, “K” is the number of such 
data points we consider as part of our implementation of the 
algorithm. As a result, distance metric and K value are two 
important considerations while using the KNN algorithm [14]. 

We decided to perform hyperparameter tuning on our KNN 
model and test the k values from two through five. We tested these 
because we wanted to test the underfitting vs overfitting nature of 
our model and realized that each of the two datasets had different 
k values that performed the best. 

Based on the average runtime for my runs, we got 0.54 seconds 
per run as per wall clock time. 

The only tuning we did on our KNN classifier was testing the 
k values from two through eight. We didn’t show the results for 
the other values because the performance was degrading after 
certain “k” values for both datasets. 

6.5. Neural Networks 

We noticed that this algorithm gave us the most consistent 
results across both datasets, as can be seen in Figure 18 below. This 
might be due to the large number of cycles we ran the algorithm 
on both datasets. 

 

Figure 18: Loss function for NN model 

This represents a mind-like algorithm which has different 
layers of nodes, or neurons, that get activated based on different 
parameters. In the case of classification datasets, like both of ours, 
the output layer classifies each example, applying the most likely 
label. Each node on the output layer represents one label. In turn, 
that node turns on or off according to the strength of the signal it 
receives from the previous layer’s input and parameters [28]. 

We decided to perform hyperparameter tuning on our neural 
networks using two activation functions: “relu” and “sigmoid”. We 
chose sigmoid because “the use of a single Sigmoid/Logistic 
neuron in the output layer is the mainstay of a binary classification 
neural network” [27]. 

We set epoch to 1000 for our tests, so there were 1000 cycles 
per run and we decided to test with two different stopping criteria: 
epoch 200 and epoch 1000. We didn’t choose to show the results 
for the epoch 200 because both the accuracy was higher for the 
epoch 1000 neural networks due to the higher number of cycles 
that all of the data was being processed [29]. Additionally, we 
tested with two and three activations layers, but only showed 
results for two activation layers because the adding the third 
activation layer hurt accuracy on the test dataset due to the fact that 
we used “softsign” as our third layer, which skewed results 
negatively [30]. 
7. Conclusion 

The data we collected from our two subjects confirms that the 
effect of alcohol consumption by individuals can be strong enough 
to alter accelerometer readings. These readings can then be used to 
classify individuals’ sobriety levels. One of the limitations of our 
approach is that clear distinctions are mostly visible only for 
subjects who are well beyond the regular drinking amount, 
therefore, for intoxicated individuals who are not well beyond that 
drinking amount, the classifier model that we built is not as 
successful in establishing a clear difference between sober and 
intoxicated states. Additionally, in order to be able to classify “less 
intoxicated” vs “more intoxicated”, we will require larger and 
more diverse datasets. 

7.1. Effect of Cross-Validation 

There is tremendous benefit to use a K-folds cross-validation 
over the standard random data splits because when we build K 
different models, we are able to make predictions on all of our data. 
This is especially helpful in smaller data sets so that the algorithm 
can recognize better patterns [24]. 

7.2. Definition of Best 

For our analysis, we defined “best” as the algorithm that gave 
us the best balance of the highest test accuracy (not necessarily 
highest training accuracy) based on a training set size and the 
fastest execution time.  

7.3. Best Classifier 
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Each algorithm has its own strengths and weaknesses and is 
therefore good/bad on different types of datasets. That being said, 
we saw that for datasets that contain both uniform and tailed 
distributions, such as our subjects’ accelerometer data, the 
Decision Tree Learning was the best Supervised Machine 
Learning method and should be used as part of our mobile device 
sobriety classification system. 

8. Future Work 

In order to build on our research, we want to address the issue 
of limited test subjects and expand the experiments to include a 
larger sample size that is comprised of individuals with varied 
genders, body compositions, backgrounds, etc. [31]. 

Additionally, we want to explore real world-use cases that can 
be addressed by our research results. For example, our system can 
be used with data from any accelerometer, such as those found in 
car steering wheels. This means that if our system is embedded into 
cars, then cars’ internal systems will potentially be able to warn 
drivers if their BAC levels are above the legal driving limit, which 
will directly reduce traffic fatalities caused by alcohol 
consumption. 
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