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 The article is devoted to the methods of monitoring and control of vibration processes 
occurring in the structure and units of complex and unique electromechanical equipment. 
The monitoring object is considered as a dynamic multidimensional information object, for 
the study of which analytical and numerical methods of modeling and simulation of 
multidimensional chaotic systems are used in the context of the scientific direction of physics 
of open systems. The structure of research of signals of vibration activity of equipment, 
description of mathematical models and algorithms based on them are presented. 
Demonstrative results of experiments carried out to analyze and evaluate the possibilities of 
controlling the behavior of a complex system using methods of influencing signals of various 
nature are presented. Using the methodology of Visual Thinking will improve the quality and 
efficiency of monitoring the vibrational activity of a complex technical object. Such a 
technique will make it possible to reasonably interpret the decision made to control the 
vibration process. The calculated parameters and the constructed visual images of the 
processed signals are proposed for use in the Input Layer of the Recurrent Neural Network 
of the Deep Learning algorithm. 
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1. Introduction   

The analysis of vibration processes occurring in the 
interconnected nodes of complex power equipment is an urgent 
task to ensure its trouble-free, long-term and efficient operation. 
During operation, the equipment is exposed to electrical, 
mechanical, hydraulic, seismic and other forces and influences. 
Examples of devices with complex vibrational media are a 
hydraulic unit or a powerful pump design for pumping liquid. The 
operation of such devices is often accompanied by vibration 
processes with high intensity in a wide frequency range, the 
sources of which can be turbulent fluid flows, cavitation processes, 
friction in bearings of rotating assemblies, pressure pulsations on 
blades, etc. In the vibration signal of such devices, you can find 
information about the sources of vibration, beats, imbalances, 
resonances caused by them, or, conversely, false damping of 
intensity, in cases with antiphase influences from other sources of 
vibration. The situation becomes much more complicated when 
several such devices operate in parallel on the same platform, 
foundation. In this case, it becomes an important task to identify 
the cause-and-effect relationships of the true sources of vibration 
[1-10]. 

Traditionally, the process of operating complex electro-
mechanical equipment is accompanied by monitoring of the 
vibrational environment and searching for vibration sources that 
can be caused by design features, transients or scenarios of 
technological processes. In addition, as you know, along with 
internal processes, equipment is exposed to external influences in 
the form of unpredictable changes in load, environmental impact, 
etc. Thus, monitoring the main parameters of the equipment 
allows you to identify problem areas or trends in their 
development at an early stage. 

Monitoring the analyzed object from the standpoint of the 
information object will reveal previously unknown features of its 
dynamics, which will increase the reliability, argumentation and 
efficiency of the analysis. At the same time, its parameters can be 
presented in the form of information flows. Typically, complex 
dynamical systems exhibit non-linear behavior. Taking into 
account the nonlinear nature of the dynamic vibration processes 
occurring in the nodes and elements of complex technical means, 
their analysis and assessment should be carried out from the 
standpoint of the interaction of multidimensional chaotic systems 
[1-5, 8, 9, 11-16]. The main idea of the work is to apply the theory 
of chaotic systems, which connects mathematics and the studied 
physical processes, while the use of nonlinear recurrent analysis 
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makes it possible to simplify the study of objects presented in 2D 
and 3D formats.  

The use of analytical-numerical methods with computer 
modeling and simulating of various operating modes will allow 
you to safely test various control strategies. 

An important role is played by the visualization of the studied 
vibration processes, since along with the signals in the spectrum 
of the observed data, the use of modern methods of analysis will 
make it possible to reveal hidden oscillations, the effects of the 
manifestation of the system's memory, external influences and 
other information that is important for the development of a 
control strategy. 

For the studies of the vibration activity of the control object 
carried out in the work, the time series obtained from the devices 
for collecting measuring information, the processes and functions 
modeled in MATLAB, as well as surrogate data were used. [2, 10, 
11, 14, 15, 17, 18]. 

The issues of collecting measurement information and the 
equipment used for this are not considered in the work. 

2. Research Methods Used for Analysis and Control 

The research structure presented in Figure 1 [3, 19, 20, 21], 
covers a variety of iterative algorithms for the analysis, 
assessment and control of the dynamics of a complex system, the 
development of which takes place within the framework of an 
open system. 

 

 
Figure 1: Structure of the study of dynamical systems 

Legend:  
fBm – fractional Brownian motion; fLevy – fractional Levy motion; Imp – 
impulsive function; fCN – fractional Colored noise; P-W – piecewise function; 
fGn – fractional Gaussian noise; q – p – quasi-periodic; ch – q-p – chaos – quasi-
periodic; ch-stoch – chaos – stochastic; ch – hyp-ch – chaos – hyper-chaos; hyp – 
ch – hyp - hyper-chaos - chaos - hyper-chaos; bifur – bifurcation; F T E – fractional 
time evolution. 

It is known that the evolution of a dynamic chaotic system is 
sensitive to initial conditions, the influence of system memory, as 
well as to minor disturbing influences. 

In this work, we propose to use, for example, functions such 
as Brownian motion, fractional Levy motion, fractional color 
noise, fractional Gaussian noise, anti-synchronization, and others, 
as acting to correct or control the behavior of the simulated 
process [6, 17, 21-24]. In this case, the spectrum of changes in the 
nature of dynamic processes can vary from quasiperiodic to hyper 
chaotic processes. The choice of a particular type depends on the 
goals and objectives of the research. 

The analysis and study of the dynamics of vibration processes 
was carried out according to the algorithms described below. The 
analysis results are visualized in the form of recurrent plots, 
Finite-time Lyapunov Exponent (FTLE), dependences of the 
Poincare return times, Lyapunov exponents, Tsallis entropy, etc. 
[2, 11, 12, 25-29]. 

The proposed mathematical model covers the most significant 
components affecting processes of interconnections and 
interactions of information flows circulating in the investigated 
dynamic system [10]: 

( )expq,T,,,d,GMS stfq

def

T −= εττ α                  (1) 

where ατT  - thermodynamically spectrum of the dimensions of 

the Poincare’s return time in an open space; qS  - entropy of 

Tsallis; GM – generalized memory; fd  - fractal dimensions in 
the function of entropy of Tsallis; τ  - mean return time for 
Poincare; ε  - stability of Tsallis entropy; stT  - stability of 
thermodynamics; q -exp - exponential of Tsallis. [6, 8, 18, 19, 
30-32]. 

The idea of modeling dynamic processes evolving within the 
framework of an open system is based on the thermodynamic-
informational paradigm, which made it possible to connect the 
informative and operational components of data and knowledge. 

3. Research Algorithm 

Let's imagine a complex technical system as a set of 
interconnected pieces of equipment that demonstrate the 
nonlinear nature of dynamics. The structure of the research 
algorithm is shown in Figure 2. 

Each of the components of the system is influenced as well as 
influenced by others. To study the behavior of such a system, it is 
necessary to carry out a set of measurements and calculations of 
informative parameters, on the basis of which it will be possible 
to make a decision on the continuation of monitoring or the choice 
of control actions for correction.  

The list of measured, calculated and graphically presented 
data can be expanded, which will increase their overall 
information content. The figure 2 also shows a library of 
influencing functions designed to correct and control the 
dynamics of the observed processes. This list can also be 
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supplemented in the process of analyzing the response of the 
system in order to obtain satisfactory characteristics. 

 
Figure 2: The structure of the research algorithm. 

3.1. Interaction of System Components 

Numerical modeling of the processes under study begins with 
the presentation of fragments of the observed time series and the 
selection of areas of interest. The generalized structure of the 
algorithm for studying the interrelationships and mutual influence 
of the system components, assessing the situation that has arisen 
and choosing the control actions [3, 11, 15, 33, 34]. 

Recurrent diagrams obtained as a result of non-linear recurrent 
analysis of observables of a connected controlled system can be 
used to visually assess the current situation and its dynamics: 

 

ηεθε /)(,
, ji
m
ji xxPD −−= , mRx ∈ , Nji ,1, = , (2) 

 
where N is the number of states under consideration; ix ; ε  - 

the size of the neighborhood of the point x  at the moment  i ; 

⋅ - norm; )( ⋅θ - Heaviside function [11, 29, 35]. 
Considering that the time of the First Poincare recurrence 

times (FPRs) corresponds to a Recurrence Plot (RP) of a certain 
process, that is, FPRs or [8, 16]: 
 

)(~)( RPsFRPs                                  (3) 
 

Next, the most informative parameters of the system behavior 
are calculated, such as the Lyapunov characteristic exponents, 
fractional dimension, Tsallis entropy, stability indicator, etc. 
According to the results of the analysis of the constructed RP-s, 
we search for areas that meet the objectives of the research by the 
criterion: 

3/inf)ˆ,ˆ,ˆ( aIsumzyxAI
Vsemdef

=                   (4) 

where )( ⋅⋅⋅AI  is the area of interest, formed on the thesis of 
the selection of information in such a way that it is the most 

meaningful from the semantic point of view 
sem
sup  and the 

minimum 
V

inf  in terms of the amount of information; 3a  - 

adequately AI  taking into account reflexivity, while taking into 
account that the measure of recurrence [8, 16]: 
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1 ε                                (5) 

 
represents the probability of repeating trajectories when 
implementing a mapping  
 

)()( ηrefCI ⇒⋅⋅⋅                              (6) 
 
The next stage is associated with the calculation of informative 

parameters and making a decision on the relevance of the 
application of impacts and, accordingly, the choice of their type. 
The structure shown in Figure 1 shows examples of influencing 
functions [3, 19, 20]. As is known, in the practice of using 
algorithms for controlling the behavior of chaotic systems, they 
are guided by the principles of actions based on the extreme 
sensitivity of chaotic dynamical systems to small disturbances, the 
effectiveness of which depends on falling into the required area. 
The work also used the principles of selecting areas of interest (AI) 
and types of impacts. In our case, the following functions were 
used as impacting functions: Levy flight, Chimera states, Color 
noise, Jerk, Anti-synchronization and others [3, 17, 22, 23]. 
 
3.2. Algorithm “Measurement – Recognition – Decision 

Making” 

An important part of the study of the dynamics of a chaotic 
system are the stages: “measurement - recognition - decision 
making” [18, 19, 33]. Nonlinear recurrent analysis can serve as a 
catalyst for the implementation of the control task due to its visual 
images in the form of RP and their characteristic features in the 
form of topology, texture, color palette. The use of the Visual 
Thinking methodology will allow you to quickly comprehend the 
current situation, increase the reliability of the analysis and justify 
the decision on the impact on the controlled system. 

The structure of the adaptive system for analyzing and 
controlling the behavior of fractional-order chaotic systems is 
shown in Figure 3.  

 
Figure 3: The structure of the adaptive system. 
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This structure demonstrates the application of the adaptive 
algorithm to the processes observed in the nodes of the power 
equipment of hydroelectric power plants [3, 19]. The operation of 
the algorithm is based on the principles of synergetic, Poincare’s 
return time theorem, covers the stages of analysis of measurement 
information, nonlinear recurrent analysis with the construction of 
RP, calculations of informative parameters of the system under 
study. 
Legend: 

• SChM – stochastic and chaotic mappings; 
• F – filter;  
• RFS – phase space reconstruction; 
• RP – recurrent diagramming; 
• RQA – recurrent quantitative analysis; 
• ChV – characteristic vector generation; 
• ARP – analysis of recurrent diagrams; 
• AChV – analysis of characteristic vector; 
• N – norm setting ),,( 21 ∞LLL ; 

• C – calculation of: correlation integral )(εC , new fractional dimension 

of Kaplan-Yorke KYD  and implementation filtering chaotic 
information, recurrent analysis of controlled processes. 

3.3. Thermodynamic Information Paradigm 

It is known that in an open system the issues of energy and 
matter transformation are considered from the standpoint of 
thermodynamics. The formation of an information-theoretical 
approach to modeling processes in open systems contributes to 
the combination of dynamic and informational components, as a 
result of which the development of complex systems begins to be 
determined by its information properties as well as their 
relationship to the external environment [3, 10, 18, 20, 36]. 

The theory of dissipative structures that determine 
physicochemical processes was developed as an “exchange of 
information”, which made it possible to universalize 
thermodynamic categories [10, 36].  

It is pertinent to note that the dynamics of nonlinear processes 
of dissipative systems is also described by Poincare’s theory, 
although they were developed for Hamiltonian systems. Also 
noteworthy is the relationship between metric entropy and 
Poincare recurrence. 

3.4. Nonlinear Recurrence Analysis, Recurrence Plots 

Visualization of nonlinear recurrent analysis with the 
representation of RP allows you to visually assess the dynamics 
of the system under study by its texture, topology and color scale, 
to study the AI allocated to test the hypothesis about the use of a 
control or corrective action [3, 11, 37-41]. As an example, in 
Figure 4 shows the operation of the algorithm for searching for 
the Area of Interest and extracting it on the sections of the time 
series of the chaotic process signal that are of interest to the 
researcher (color noise affects the Chen fractional system). The 
corresponding recurrent diagrams and distance matrices of the 
nonlinear recurrent analysis are constructed for the Areas of 
Interest highlighted on the time series chart. [37-39]. 

 

 

Figure 4: Interaction systems fractional Chen and Color noise: 
a –time series; b, c, d, e – distance matrix; f, g, h, i –recurrence plots. 

3.5. Mixing Issues 

Stirring is one of the key concepts in dynamical systems 
theory. The analysis of mixing processes of phase trajectories is 
an important part of studies of the behavior of chaotic systems. 
Lyapunov exponents, FTLE, Lagrangian coherent structures 
(LCS) are considered effective visual-informative indicators of 
the dynamics of chaotic systems, visual images of which allow 
one to assess the chaotic nature of the system, the presence of 
features on the trajectories of the system in the phase space. 

An example of the spatial structure of FTLE, presented below 
(Figure 5), illustrates the features of phase trajectories and 
transitions of various states of a chaotic process during mixing 
and / or interaction of systems. [27, 28, 32].  

 
Figure 5: Visualization of characteristic parts of complex system behavior 

using FTLE. 
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4. Application of Artificial Intelligence Methodology for 
Research of Complex Technical Systems 

The examples of visual information presented above are 
necessary for a comprehensive analysis and diagnostics of 
ongoing processes and making, on their basis, an informed 
decision to control or correct the behavior of a complex system. 

Analysis, assessment of the situation and decision-making is 
the final stage of research, and is mainly based on various 
analytical and visual information (the value and information 
content of which is known to everyone), which complements 
knowledge based on Visual Thinking. All this predetermined 
further steps in the need to use artificial intelligence to solve the 
urgent problem of studying the behavior of complex technical 
systems [11, 39, 41, 42]. 

The above was a reasoned prerequisite for the application of 
the methodology Deep Learning methods based on Recurrence 
NN in the study of vibration processes in complex mechanical 
systems [11, 42-50]. 

The results of preliminary measurements, analyzes, 
simulations and transformations are used as input information for 
the Input Layer of Deep Learning architecture. The presented data 
are generalized and used as new knowledge for further analysis 
and evaluation using the Neural Network, which is part of the 
Deep Learning algorithm. As showed in Figure 6, the middle - 
Hidden Layer, is presented as a Recurrence NN algorithm, the 
work of which is to assess the dynamics of vibration processes 
taking into account the manifestations of system memory.  

 

Figure 6: The structure of a recurrent neural network algorithm 
 
 

Legend:  
Input Layer components - time series of observed vibration processes, Levy's 
movements or other influences, recurrent plots of a fragment of the processes 
under study, stability of selected Areas of Interest, FTLE-graph of the information 
flow interaction area, calculated informative parameters and others; the Hidden 
Layer is represented by a recurrent algorithm and system memory, on which the 
dynamics and behavior of the system depend; the Output Layer - is the solution 
generated by the algorithm. 
 

In addition, the Recurrence Neural Network algorithm in its 
work analyzes and uses the results of the calculated informative 
system parameters and the choice of control or corrective forces, 
taking into account the requirements of operating scenarios, etc. 
These algorithms may include the above-described iterative and 
evaluation algorithms for analyzing measurement information, 
visual images, time series, RP and FTLE plots, Lyapunov 
exponents, Tsallis entropy, fractal dimensions and other 
information that complements and contributes to a better 
understanding of the ongoing processes [27, 42, 44, 46, 48]. The 
solution to the problem posed to ensure the reliable operation of 
the monitored equipment can be represented as an output layer, in 
the form of recommendations to a person who decides on further 
actions to operate the equipment. 

5. Conclusion 

The article presents the main fragments of a large research 
work devoted to the problems of analyzing the vibration activity 
of complex power electromechanical equipment, presented in the 
form of an information model of nonlinear multidimensional 
chaotic processes. To generalize a large amount of parametric and 
visual information, modern methods of analysis and decision-
making based on them were used. The structure of a deep learning 
algorithm based on Recurrence NN and Memory of system is 
substantiated and presented. Using DL to analyze and diagnose 
the state of a complex electromechanical system subject to 
vibration processes will increase the accuracy and speed of 
drawing conclusions about its condition and will facilitate 
informed decision-making based on all monitoring parameters. 

Conflict of Interest 

The authors declare that there is no conflict of interest 
regarding the publication of this paper. 

Acknowledgment 

The author expresses his deep gratitude to Vladimirsky E.I., for 
advice and assistance at the stages of writing the manuscript. 

Funding 

The work was not funded by third-party organizations, grants or 
sponsors, and was completely performed by the author as part of 
his research work. 

References 

[1]  A. Alimasi Low Frequency Vibration Visual Monitoring System Based on 
Multi-Modal 3DCNN-ConvLSTM. Sensors 2020, 20, 5872. 13. doi: 
10.3390/s20205872 

[2]  B. Goswami, A Brief Introduction to Nonlinear Time Series Analysis and 
Recurrence Plots. Vibration. 2019, 2, 332–368.  doi: 
10.3390/vibration2040021  

[3]  B. Ismailov, An Analysis and Control of Dynamic Processes in Mechanical 
Parts of Power Equipment. International Journal of Mechanical and 

http://www.astesj.com/
https://doi.org/10.3390/s20205872
https://doi.org/10.3390/s20205872
http://dx.doi.org/10.3390/vibration2040021
http://dx.doi.org/10.3390/vibration2040021


B.I. Israfil / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 5, 10-16 (2022) 

www.astesj.com     15 

Production Engineering Research and Development (IJMPERD). 8(5), 2018. 
347-352. doi: 10.24247/ijmperdoct201839 

[4]  M. Ghazali, Vibration Analysis for Machine Monitoring and Diagnosis: A 
Systematic Review. Hindawi, Shock and Vibration.  2, 2021, 25 p. doi: 
10.1155/2021/9469318 

[5]  G. Wojnar, R., Wieczorek A.N. and Konieczny Ł. Multidimensional Data 
Interpretation of Vibration Signals Registered in Different Locations for 
System Condition Monitoring of a Three-Stage Gear Transmission 
Operating under Difficult Conditions. Sensors (Basel). 2021; 21, 7808.   doi: 
10.3390/s21237808 

[6]  X. Zhang, Sui T., Zhang H., Zhang Y., Liu L., Zhang Sh. An Active 
Vibration Control Method for Typical Piping System of Nuclear Power Plant.  
2021 IEEE 10th Data Driven Control and Learning Systems Conference 
(DDCLS). doi: 10.1109/DDCLS52934.2021.9455612 

[7]  B. Ismailov, Visualization of Measuring Experiments in a Context of 
Acceptance of the Decisions. 2nd world conference on soft computing. 
WconSC’12. Baku, 2012, 97-102.  

[8]  E. Vladimirsky, Ismailov B.I. Synergetic methods of control of chaotic 
systems. Baku, "ELM" 2011. 240.  

[9]  B.I. Ismailov The Visual Control of Vibration Dynamic System. Eastern-
European Journal of Enterprise Technologies. 2012(59). 25-30.  

[10]  B.I. Ismailov. Thermodynamic – Informational Paradigm in the Context of 
the Formation of a Mathematical Model of Transient Processes in an Open 
System. European Journal of Engineering Research and Science, 2(10), 2017. 
17-20. doi: 10.24018/ejers.2017.2.10.494 

[11]  J. Eckmann, Kamphorst S.O., Ruelle D., Recurrence Plots of Dynamical 
Systems. // Europhysics Letters., 4, 1987. 973-977.  

[12]  H. Poincaré, Sur la problème des trois corps et les équations de la dynamique. 
Acta Mathematica. 13, 1–271. https://projecteuclid.org/journals/acta-
mathematica/volume-13/issue-1-2 

[13]  G. Robinson, Recurrence determine the dynamics. Chaos 19, 023104. (2009). 
1-6. doi: 10.1063/1.3117151 

[14]  Sprott J.C. Chaos and Time Series Analysis. Oxford University Press, 2003. 
507p. https://sprott.physics.wisc.edu/chaostsa/  

[15]  J.C. Sprott, Do We Need More Chaos Examples? Chaos Theory and 
Applications (CHTA). 2, Issue №: 2. 2020. 
https://dergipark.org.tr/en/pub/chaos/issue/54264 

[16]  E.I. Vladimirsky, Poincare returns time in the interaction of chaotic and 
stochastic systems. Eastern-European Journal of Enterprise Technologies. 
№6/4 (60). 2012.  4-8. doi: 10.15587/1729-4061.2012.5673 

[17]  D. Chen, Zhang R., Ma X., Liu S. Chaotic synchronization and anti-
synchronization for a novel class of multiple chaotic systems via a sliding 
mode control scheme. Nonlinear Dynamics. 69,  35–55, 2012. doi: 
10.1007/s11071-011-0244-7 

[18]  B.I. Ismailov , Simulation of Influences on the Dynamics of Transitional and 
Recurrent Processes of Complex Technical Systems. International Journal of 
Innovative Technology and Exploring Engineering. 9(1), 2019. 4929- 4932.  
doi: 10.35940/ijitee.A8116.119119 

[19]  B.I. Ismailov, Poincare recurrence in open systems. Journal of 
Multidisciplinary Engineering Science and Technology (JMEST).  3(9), 
2016. 5565-5569. chrome-
extension://mhjfbmdgcfjbbpaeojofohoefgiehjai/index.html  

[20]  E.I. Vladimirsky , Ismailov B.I. Transient and recurrence processes in open 
system. International Journal of Advanced and Applied Sciences (IJAAS), 
4(10) 2017, 106-115. doi: 10.21833/ijaas.2017.010.015 

[21]  A. Daitche and Tél T. Memory effects in chaotic advection of inertial 
particles. New Journal of Physics. 16, 2014. 31, 073008 doi: 10.1088/1367-
2630/16/7/073008  

[22]  A. Dubkov, Spagnolo B., and Uchaikin V. Levy flight superdiffusion: An 
introduction. International Journal of Bifurcation and Chaos. (2008). 1-33. 
doi: 10.1142/S0218127408021877 

[23]  S. Murray, Metastable chimera states in community-structured oscillator 
networks. Chaos 20, 013108, 2010. 1-5. doi: 10.1063/1.3305451 

[24]  T. Peng and Yan O. Torsional vibration analysis of shaft with multi inertias. 
Scientific Reports. 2022. 12:7333. doi: 10.1038/s41598-022-11211-x 

[25]  D. Marius-F., Kuznetsov N., Matlab code for Lyapunov exponents of 
fractional order systems. International Journal of Bifurcation and Chaos. 
28(05), 1850067 (2018). doi: 10.1142/S0218127418500670 

[26]  R.W. Ibrahim, and Maslina Daru. Analytic Study of Complex Fractional 
Tsallis’ Entropy with Applications in CNNs. Entropy, 2018, 20, 722; doi: 
10.3390/e20100722 

[27]  B. Sanjeeva Uncertainty in Finite-time Lyapunov Exponent computations. 
Journal of Computational Dynamics.  American Institute of Mathematical 
Sciences  7, №: 2, 2020. 313–337. doi: 10.3934/jcd.2020013 

[28]  S.L. Brunton and Rowley C.W. Fast computation of finite-time Lyapunov 

exponent fields for unsteady flows. Chaos 20, 017503 (2010). doi: 
10.1063/1.3270044 

[29]  P. Varandas, Entropy and Poincare Recurrence from a Geometrical 
Viewpoint. Nonlinearity, 22(10), 2009. 2365. doi: 10.1088/0951-
7715/22/10/003 

[30]  B.I. Ismailov Numerical methods of control the hidden oscillations of 
fractional-order chaotic systems. Journal of Multidisciplinary Engineering 
Science and Technology (JMEST).  3(8), 2016. 5490-5494. chrome-
extension://mhjfbmdgcfjbbpaeojofohoefgiehjai/index.html   

[31]  E.I. Vladimirsky, Ismailov B.I. Fractional-order Chaotic Filter with 
Generalized Memory. International Journal of Contemporary Applied 
Sciences.   3, No. 4, 2016. 46-61. chrome-
extension://mhjfbmdgcfjbbpaeojofohoefgiehjai/index.html  

[32]  E.I. Vladimirsky Ismailov B.I. “Synchronization, control and stability of 
fractional order Hyperchaotic systems in the context of the generalized 
memory”. International Journal, of New Technology and Research (IJNTR), 
Volume-1, Issue-8, 2015. 42-48. 
https://www.neliti.com/publications/263636/synchronization-control-and-
stability-of-fractional-order-hyperchaotic-systems-i 

[33]  Ismailov B.I. Research of Dynamics of Coherent Behavior of a Complex 
Related Heterogeneous Structures. Sciences of Europe # 27, 2018. 60-64. 
https://cyberleninka.ru/article/n/research-of-dynamics-of-coherent-
behavior-of-a-complex-related-heterogeneous-structures  

[34]  E.I. Vladimirsky Ismailov B.I. Fractional Structure «MIXING – 
TRANSPORT» as open system. Eastern-European Journal of Enterprise 
Technologies. №4/4 (70). 2014. 4-9. doi: 10.15587/1729-4061.2014.26199  

[35]  K. Majumdar, Jayachandran S. A Geometric Analysis of Time Series 
Leading to Information Encoding and A New Entropy Measure. Journal of 
Computational and Applied Mathematics. 2018, 328: 469 – 484. doi: 
10.48550/arXiv.1810.05900 

[36]  R. Chandrashekar, Ravikumar C. and Segar J. A Fractional entropy in Fractal 
phase space: properties and characterization. 2014. 22p. doi: 
10.1155/2014/460364 

[37]  B.I. Ismailov,  Nonlinear recurrent analysis in signal processing problems. 
Sciences of Europe.  1, № 45. 2019. 16-21. 
https://cyberleninka.ru/article/n/nonlinear-recurrent-analysis-in-signal-
processing-problems  

[38]  Y. Hirata,  Recurrence plots for characterizing random dynamical systems. 
Commun Nonlinear Sci Numer Simulat 94 (2021) 105552. 20p. doi: 
10.1016/j.cnsns.2020.105552 

[39]  B. Hobbs and Ord A. Nonlinear dynamical analysis of GNSS data: 
quantification, precursors and synchronization. Progress in Earth and 
Planetary Science. 2018. 35p. doi: 10.1186/s40645-018-0193-6 

[40]  A. Fragkou, Charakopoulos A., Karakasidis T. and Liakopoulos A. Non-
Linear Analysis of River System Dynamics Using Recurrence Quantification 
Analysis. AppliedMath. 2022, 2, 1–15. doi: 10.3390/appliedmath2010001 

[41]  Y. Li and Li Z. Research on Recurrence Plot Feature Quantization Method 
Based on Image Texture Analysis. Hindawi. Journal of Environmental and 
Public Health. Volume 2022, Article ID 2495024, 12p. doi: 
10.1155/2022/2495024 

[42]  M. Evagorou, Erduran S. and Martyla T. The role of visual representations 
in scientific practices: from conceptual understanding and knowledge 
generation to ‘seeing’ how science works. International Journal of STEM 
Education (2015). 13p. doi: 10.1186/s40594-015-0024-x 

[43]  T. Duries, Brunton S.L, Noack B.R. Machine Learning Control - Taming 
Nonlinear Dynamics and Turbulence. Springer, 2017. 211p. 

[44]  S. Lee, Yu H.T., Yang H.J., Song I.S., Choi J.M., Yang J.H., Lim G.M., Kim 
K-S., Choi B.K. and Kwon J.W. A Study on Deep Learning Application of 
Vibration Data and Visualization of Defects for Predictive Maintenance of 
Gravity Acceleration Equipment. Applied Sciences 2021.  11, Issue 4.  doi: 
10.3390/app11041564  

[45]  W.S. Lee, Flach S. Deep Learning of Chaotic Classification. Computing 
Science > Machine Learning. Science and Technology. 2020. Volume 1, 
Number 4. doi: 10.1088/2632-2153/abb6d3  

[46]  O. Avci, Abdeljaber O., Kiranyaz S., Hussein M., Gabbouj M., Imman D.J. 
A review of vibration-based damage detection in civil structures: from 
traditional methods to Machine Learning and Deep Learning applications. 
Mechanical Systems and Signal Processing. 2021. 147, 107077. doi: 
10.1016/j.ymssp.2020.107077 

[47]  J. Pathak, Zhixin Lu, Brian R. Hunt, Michelle Girvan, Edward Ott. Using 
machine learning to replicate chaotic attractors and calculate Lyapunov 
exponents from data. Chaos. 27 (12), 2017. doi: 10.1063/1.5010300 

[48]  T. Wang et al., Fault diagnosis of rotating machinery under time-varying 
speed based on order tracking and deep learning. Journal of 
Vibroengineering,  22(2), 2020, 366-382.  doi: 10.21595/jve.2019.20784 

http://www.astesj.com/
http://dx.doi.org/10.24247/ijmperdoct201839
https://doi.org/10.1155/2021/9469318
https://doi.org/10.1155/2021/9469318
https://doi.org/10.3390/s21237808
https://doi.org/10.3390/s21237808
https://doi.org/10.1109/DDCLS52934.2021.9455612
http://dx.doi.org/10.24018/ejers.2017.2.10.494
https://projecteuclid.org/journals/acta-mathematica/volume-13/issue-1-2
https://projecteuclid.org/journals/acta-mathematica/volume-13/issue-1-2
http://dx.doi.org/10.1063/1.3117151
https://sprott.physics.wisc.edu/chaostsa/
https://dergipark.org.tr/en/pub/chaos/issue/54264
https://doi.org/10.15587/1729-4061.2012.5673
http://dx.doi.org/10.1007/s11071-011-0244-7
http://dx.doi.org/10.1007/s11071-011-0244-7
http://dx.doi.org/10.35940/ijitee.A8116.119119
https://doi.org/10.21833/ijaas.2017.010.015
https://doi.org/10.1088/1367-2630/16/7/073008
https://doi.org/10.1088/1367-2630/16/7/073008
http://dx.doi.org/10.1142/S0218127408021877
http://dx.doi.org/10.1063/1.3305451
https://doi.org/10.1038/s41598-022-11211-x
http://dx.doi.org/10.1142/S0218127418500670
http://dx.doi.org/10.3390/e20100722
http://dx.doi.org/10.3390/e20100722
http://dx.doi.org/10.3934/jcd.2020013
http://dx.doi.org/10.1063/1.3270044
http://dx.doi.org/10.1063/1.3270044
http://dx.doi.org/10.1088/0951-7715/22/10/003
http://dx.doi.org/10.1088/0951-7715/22/10/003
https://www.neliti.com/publications/263636/synchronization-control-and-stability-of-fractional-order-hyperchaotic-systems-i
https://www.neliti.com/publications/263636/synchronization-control-and-stability-of-fractional-order-hyperchaotic-systems-i
https://cyberleninka.ru/article/n/research-of-dynamics-of-coherent-behavior-of-a-complex-related-heterogeneous-structures
https://cyberleninka.ru/article/n/research-of-dynamics-of-coherent-behavior-of-a-complex-related-heterogeneous-structures
https://doi.org/10.15587/1729-4061.2014.26199
https://doi.org/10.48550/arXiv.1810.05900
https://doi.org/10.48550/arXiv.1810.05900
http://dx.doi.org/10.1155/2014/460364
http://dx.doi.org/10.1155/2014/460364
https://cyberleninka.ru/article/n/nonlinear-recurrent-analysis-in-signal-processing-problems
https://cyberleninka.ru/article/n/nonlinear-recurrent-analysis-in-signal-processing-problems
https://doi.org/10.1016/j.cnsns.2020.105552
https://doi.org/10.1016/j.cnsns.2020.105552
http://dx.doi.org/10.1186/s40645-018-0193-6
https://doi.org/10.3390/appliedmath2010001
https://doi.org/10.1155/2022/2495024
https://doi.org/10.1155/2022/2495024
http://dx.doi.org/10.1186/s40594-015-0024-x
http://dx.doi.org/10.3390/app11041564
http://dx.doi.org/10.3390/app11041564
https://doi.org/10.1088/2632-2153/abb6d3
https://doi.org/10.1016/j.ymssp.2020.107077
https://doi.org/10.1016/j.ymssp.2020.107077
http://dx.doi.org/10.1063/1.5010300
https://doi.org/10.21595/jve.2019.20784


B.I. Israfil / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 5, 10-16 (2022) 

www.astesj.com     16 

[49]  L. Xiong Liu J., Song B., Dang J., Yang F. and Lin H. Deep learning 
compound trend prediction model for hydraulic turbine time series. 
International Journal of Low-Carbon Technologies 2021, 00, 1–7. Published 
by Oxford University Press. doi: 10.1093/ijlct/ctaa106 

[50]  J. Xu, Hugelier S., Zhu H., Gowen A.A., Deep learning for classification of 
time series spectral images using combined multi-temporal and spectral 
features. Analytica Chimica Acta 1143, 2021. 9-20.  doi: 
10.1016/j.aca.2020.11.018 

http://www.astesj.com/
https://doi.org/10.1093/ijlct/ctaa106
https://doi.org/10.1016/j.aca.2020.11.018
https://doi.org/10.1016/j.aca.2020.11.018

	2. Research Methods Used for Analysis and Control
	3. Research Algorithm
	3.1. Interaction of System Components
	3.2. Algorithm “Measurement – Recognition – Decision Making”
	3.3. Thermodynamic Information Paradigm
	3.4. Nonlinear Recurrence Analysis, Recurrence Plots
	3.5. Mixing Issues

	4. Application of Artificial Intelligence Methodology for Research of Complex Technical Systems
	5. Conclusion
	Conflict of Interest
	Acknowledgment

	References

