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 The use of a battery to power an electrical or electronic system is accompanied by battery 
management, i.e. a set of measures intended to preserve it for preventative maintenance, thus 
the cost reduction. This management is generally based on two key parameters, the 
(remaining useful life) RUL and the (State-of-health) SOH, which relate respectively to the 
charge output and the aging of the Lithium-ion battery. The issue will be resolved and 
advances in production, battery utilization, and optimization will be made possible by 
accurate SOH determination and dependable RUL prediction. The CNN-BGRU-DNN hybrid 
strategy, which we suggest in this study, integrates Convolutional Neural Networks (CNN), 
Bidirectional Gated Recurrent Units (BGRU), and Deep Neural Networks (DNN) to increase 
the precision of SOH and RUL estimates for Lithium-ion batteries. To that purpose, the 
performance of the prediction findings is assessed using the MAE, RMSE, AE, and RE as 
well as the NASA datasets of lithium-ion batteries for experimental validation. The 
verification tests' findings show that, in comparison to existing approaches in the literature, 
the suggested method may greatly reduce prediction error and achieve high estimation 
accuracy of the battery's state of health. 
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1. Introduction  

Electric vehicles are a promising technology for reducing the 
increasing air pollution such as decreasing CO2 emission from 
worldwide transportation. They are operated by battery packs [1]. 
The accelerated electrification of vehicles is significantly 
facilitated by batteries [2]. There are five key considerations for 
EV batteries: longevity, specific energy, specific power, cost, and 
safety. Over the past ten years, the first four factors have greatly 
aided in the optimization of electrode and electrolyte materials. 
Many researchers worldwide, however, have not fully addressed 
the question of safety [3]. The repeated operation of batteries 
leads to loss of capacity and increase the resistance, which allow 
some catastrophes to happen like explosion and combustion 
resulted on the excessive usage. The solution will enable 
advancements in battery production, use, and optimization 
through accurate state of health (SOH) determination and reliable 
remaining useful life (RUL) prediction. For instance, end users 
can make an estimation of the predicted battery life to ensure that 
batteries are used to their greatest capability before being replaced 
or discarded. To expedite the testing, validation, and production 

processes, manufacturers might group new cells according to their 
anticipated lifetime [4]. As a result, the complete electrification 
system requires an intelligent BMS capable of forecasting and 
monitoring battery behavior, which are very important for the 
safety and reliability of EVs and ESS [5]. Among different 
batteries, Li-Bs are widely regarded as potential options for a 
variety of applications, owing to their high energy density, power 
density, low self-discharge rate, and extended lifespan. Recently, 
many researches have started to focus on parameters of the BMS 
battery to estimate each of them. Many factors, including the state 
of charge (SOC), SOH, RUL, the charge capacity, and the internal 
resistance, must be monitored to ensure that Li-ion batteries are 
used efficiently and safely [6] [7]. Throughout the life cycle of 
lithium batteries in electrified vehicles, SOH is an essential 
parameter for problem diagnostics and safety early warnings in 
addition to its capacity to precisely predict the remaining mileage 
of EVs [8]. The RUL prediction of Li-Bs considers a significant 
choice for reliability, safety, and efficient battery operations, 
which is the number of cycles (charge/discharge) left before the 
battery fails, which is between 70 and 80% of its maximum 
capacity [7], [9], [10]. The equivalent circuit model [11], 
electrochemical model, data-driven model, and hybrid method 
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model are the four primary models that have been used in recent 
decades to perform substantial research on RUL estimate and 
SOH prediction of lithium batteries. The approach of the data 
model is receiving increasing amounts of attention as a result of 
the growth in lithium battery data [12], [13].   

An accurate state of health (SOH) estimate helps ensure 
dependability and safety while the battery is operating. There are 
several ways to estimate it, including hybrid techniques based on 
neural networks [14], [15]. In 2017 [16], the author proposed the 
OS-ELM method and they utilized the discharge time of equal 
voltage interval as the HI. In 2019 [17], the author focused on their 
paper on the SOH estimation of lithium-ion battery using PKNN 
and Markov Chain.  For verification, they compared the PKNN 
with other methods, which it obtained a high prediction accuracy. 
Besides, in [18], the author propose a method that combines the 
partial incremental capacity and ANN. Additionally, in [19], the 
author combine the ANN method with the PF algorithm for 
estimating the SOH, where they obtained an accurate estimation. 
In 2020 [20], the author integrated the deep Boltzmann machines 
and LSTM for obtaining the health prediction of a medical Li-ion 
battery. The empirical results obtain a good of SOH prediction. In  
[21], the author proposed a combination between GRU and CNN. 
While, in [8], the author combined the WNN with UPF. The 
performance results demonstrate their capability in improving the 
accuracy of SOH prediction. 

The goal of this paper is to estimate the SOH and RUL of a 
lithium-ion battery using a hybrid method named CNN-BGRU-
DNN. The comparison is performed between the proposed hybrid 
method and various prediction methods. The experiment obtained 
good results for the proposed method that achieved high 
predictive accuracy for the SOH and estimation compared to the 
other results. 

The remaining parts of this essay are written as follows: The 
tools and methods for forecasting the RUL and SOH of battery 
lithium-ion batteries using the suggested method are presented in 
Section 2. A comparison of the SOH estimate accuracy is shown 
in Section 3. A conclusion is then offered. 

2. RUL and SOH Prediction 

2.1.  CNN-BGRU-DNN architecture 

The SOH and RUL of Li-ion batteries have been predicted 
using the CNN, BGRU, and DNN methods in prior literary works, 
where they performed well. By merging CNN, BGRU, and DNN, 
our study aims to enhance and attain high accuracy of SOH and 
RUL estimate.  

In terms of feature extraction, CNN is proficient and benefits 
from both scale invariance and local dependence. Its feature 
extraction process is organized hierarchically. Through the use of 
many feature planes and neurons, the first layer of convolution 
extracts various input characteristics. In order to acquire 
continuous spatial features, the second layer, known as secondary 
feature extraction, decreases the feature surface dimension and its 
resolution. The outputs of the convolution layer are the inputs of 
the pooling layer, and the two layers are mapped one to one and 
each to the other. The data from the first two levels can be 

combined in the third layer. Full connection outputs are delivered 
to the last layer. [22]. 

 
Figure 1: CNN structure 

The RNN is one of the most well-liked deep learning (DL) 
algorithms since it makes use of the temporal correlations 
between neurons, although it suffers from the gradient vanishing 
issue [23]. Two RNN variations, LSTM and GRU, are utilized to 
regulate the propagation of gradient information and remember 
the parameters as successive inputs during the long-term sequence 
in order to solve this problem. [13].  

GRU is classified as one of the RNN's variants. Its ability to 
regulate the propagation of gradient information and retain the 
parameters as future inputs over the long-term sequence is a core 
element. GRU consists of two gates: update gate 𝑧𝑧, which 
regulates the updating of the hidden state, and reset gate 𝑟𝑟, which 
determines whether or not to ignore the prior hidden state. 

GRU's equations can be defined as follow: 

𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊 𝑧𝑧[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]) 

 rt = 𝜎𝜎(𝑊𝑊 𝑟𝑟[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡])  (1) 

ℎ�𝑡𝑡 = tanh(𝑊𝑊 ℎ[𝑟𝑟𝑡𝑡 ∗  ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]) 

ℎ𝑡𝑡 = ((1 − 𝑧𝑧 𝑡𝑡) ∗ ℎ𝑡𝑡−1) + (𝑧𝑧𝑡𝑡 ∗ ℎ�𝑡𝑡) 

where, ℎ�𝑡𝑡 is the candidate gate and ℎ𝑡𝑡 is output activation, the 
unit output as (h), 𝑊𝑊 is the weight matrices, and 𝜎𝜎 is the sigmoid 
function represented [24]. 

 

Figure 2: GRU structure 

A GRU neural network with a two-layer structure is known as 
a Bidirectional Gate Recurrent Unit (BGRU) neural network. 
They have the ability to process the data inputs in both directions, 
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i.e. the forward and backward temporal sequences, with the 
outputs of both connected in the same output layer, allowing these 
bidirectional algorithms to be more efficient with defining the 
relationship between the sequences and its model. BGRU can save 
cost and time by reducing the amount of calculations required. 

To benefit from the advantages of each algorithm and enhance 
the performance, they were combined with each other. The results 
of the integration of CNN, bidirectional of GRU, and DNN into 
one framework obtained good performance. The DL technology 
uses multiple layers to extract higher-level features from the raw 
input progressively. 

Data processing is the initial step. We chose the discharge data 
from datasets that we extract from specific batteries that comprise 
charge, discharge, and impedance features. For each cycle of our 
experiment, where the input is the prior capacity and the output is 
the current capacity, we only choose one feature from this data, 
the capacity. We then used a window size of eight values to 
organize this data for the training step, which predicts data 
sequences. Finally, we split the data into test and training sets 
using the same split ratios for each battery. To predict the RUL of 
the Li-ion battery, we used the CNN-BGRU-DNN technique 
based on univariate time series. 

We try to profit from their advantages where CNN is applied 
to extract local features, capture the spatial relationship, and use 
shared weights structure to reduce the amount of the weights and 
try to find the shared information from the measurement of data. 
Where we use one convolutional layer with 64 filters inclusive of 
the kernel size of 4, also we employ in this structure one default 
stride, causal padding, and Relu activation function. Then, the 
BGRU is applied to understand the temporal relationships in the 
feature sequence and it uses their internal state (memory) to learn 
features and time dependencies from the sequential data, and 
capture temporal features. Where we utilize two layers from each 
of them, which consist of 160 nodes then a flatten layer comes 
next. While DNN maps the features by choosing 3 dense layers, 
containing the Relu activation functions of each layer, with 128 
nodes. Then we use one dense layer with one node to employ as a 
regression layer for getting the final SOH output and contribute to 
accurate prediction. Thus, the architecture of the proposed method 
shown in figure 3 is chosen after numerous experiments. 

 

Figure 3 : The framework of proposed method 

2.2. Experiment description 

This research validates its findings using experimental data 
from the NASA Prognostics Center of Excellence [25], which 
includes of aging information 18650 Li-ion batteries. Where 
Table 1 provides the following information regarding these 
batteries: 

Table 1:  NASA Lithium-Ion Batteries description 

Batteries NASA 

Temperature ( C ) 24 

Constant charge current 1.5 (A) 

Cut-off voltage of Charge/Discharge  4.2 /  2.5 (V) 

Minimum charge current 20 (mA) 

Rated capacity ( Ah ) 2 

Cycles 168 (B5,B6,B7) 

The proposed approach, CNN-BGRU-DNN, was implemented 
using the hyper-parameters presented in table 2 and using the 
following environment and tools: 

• Google Colaboratory notebook 
• 1 CPU Core: Intel(R) Xeon(R) CPU @ 2.20GHz 
• Physical memory: 12G 
• GPU: Tesla K80 - 11441MiB memory 
• CUDA Version: 11.2 
• TensorFlow version: 2.7.0 
• Python version: 3.7.12. 

Table 2:   Hyper-parameters values 

Hyper parameters values 

Window size 8 

Batch size 32 

Shuffle buffer size 1000 

Epochs 1400 

Learning rate 8e-4 

Regularization without 

Activation function ReLU 

Optimizer Adam 

Loss function Huber 

We utilize MAE  and RMSE [24]  to assess how well the 
algorithms execute SOH estimation, while AE and RE are used to 
assess RUL prediction accuracy. These are their definitions [26] : 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝐾𝐾
∑ |𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑘𝑘�|𝑘𝑘
𝑘𝑘=1              (2) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ (𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑘𝑘�)²𝑁𝑁
𝑖𝑖=1               (3) 

AE=|RULreal − RULpredicted |             (4)  

RE= |RULreal−RULpredicted | / RULreal × 100%. |       (5) 

Inputs

•Remaining 
capacity

Model

•CNN-BGRU-DNN

Outputs

•SOH
•RUL
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Where 𝑦𝑦𝑘𝑘� is the predicted value and 𝑦𝑦𝑘𝑘  is the actual value. The 
accuracy of the SOH forecast is greater when the MAE and RMSE 
are near to zero. 

2.3. RUL and SOH estimation 

The major of this section is to present the ability of the 
proposed hybrid method CNN-BGRU-DNN to estimate the SOH 
and RUL of different Li-ion batteries; it is also for confirming our 
method's prediction accuracy.  

The battery's capacity, performance, and state of health are 
shown by SOH indicator. It is the ratio of a battery's actual 
capacity (Ca) to its rated capacity (Cr), where actual capacity 
refers to how much of the battery's capacity is actually used when 
it is fully charged. The rated capacity of a totally charged battery 
is 100%, whereas the capacity of a totally failed battery is 0%. 
The battery's SOH is defined as follows [27]:  

  SOH = Ca 
Cr

   (6) 

The remaining number of cycles of battery capacity to reach at 
its failure threshold that means the time between now and the end-
of-life "EOL" is defined as RUL, showing as follows [7]:      

  RUL = CEOL – Ccc      (7) 

Ccc is the number of cycle at the actual capacity and CEOL is the 
cycle number when the capacity of battery arrives at the EOL. 

The experiment were terminated only when battery attained 
their EOL, as seen in figure 4, where the line of EOL represented 
by a red color, which considered as the time when the capacity 
reaches 70% in rated capacity for the NASA batteries. The EOL 
is calculated as:   

  EOL = Cr * 0.7 = 1.4 Ah (8) 

In this study, we separated the datasets into training and 
prediction data with the identical beginning prediction point of 
each dataset, which is 80 cycles. We utilized three batteries, 
B0005, B0006, and B0007, to establish the degradation sample of 
the battery's capacity. 

Figure 4 above displays the outcomes of the SOH and RUL 
predictions, where Real values are displayed in blue and predicted 
values are shown in orange.  The SOH and RUL predictions for 
NASA batteries demonstrate how the suggested hybrid technique, 
CNN-BGRU-DNN, practically always results in almost identical 
actual and predicted curves for all batteries. As a result, the hybrid 
method's SOH estimation accuracy is good. The point of failure 
at the end of life (EOL) for all batteries is when both curves almost 
exactly meet. As a result, CNN-BGRU-DNN achieves the 
maximum level of RUL prediction accuracy. 

 

 

 
Figure 4: The SOH and RULprediction results using CNN-BGRU-DNN. 

Table 3: SOH estimation results 

Batteries Methods RMSE MAE 

B0005 CNN-BGRU-DNN 0.01165 0.00884 

B0006 CNN-BGRU-DNN 0.00884 0.01334 
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B0007 CNN-BGRU-DNN 0.00990 0.00667 

Table 4: RUL estimation results 

CNN-BGRU-DNN 

Batteries RULreal RULpredicted AE RE % 

B0005 123 116 7 5.69 

B0006 107 112 5 4.67 

B0007 165 160 5 3.03 

The values for MAE, AE, and RMSE are extremely low, as 
seen in Tables 3 and 4. The CNN-BGRU-DNN approach helps 
minimize error during SOH deterioration, as this experiment 
shows. Furthermore, the Li-ion battery RUL estimation using the 
CNN-BGRU-DNN method is accurate. This demonstrates that 
CNN-BGRU-DNN approach is the best at predicting battery 
SOH, and the experiment illustrates perfectly the hybrid method's 
capacity for having greater forecast accuracy. 

3. Comparison between proposed method and other 
methods in literature 

This subsection provides a comparison of the SOH prediction 
accuracy of different other studies' predictions. We use 
performance method findings from earlier papers to compare 
more widely with other forms of prediction, since these 
approaches use the same NASA datasets and performance 
measures. 

Table 5: SOH estimation results of some papers 

Batteries Methods RMSE 

B0005 

UPF 
Elman NN   

WNN-UPF  [8] 

1.088 
0.210 
0.027 

GPR- LSTM [28] 0.012 

CNN-BGRU-DNN 0.011 

B0006 

CGTSSA_Cat_Boost [29] 
SSA_Cat_Boost 
PSO_Cat_Boost 

Cat_Boost 
CGTSSA-SVM 
CGTSSA-ELM 

0.0268 
0.0317 
0.0531 
0.0708 
0.0362 
0.0579 

UPF 
Elman NN   

WNN-UPF  [8] 

1.115 
0.223 
0.050 

GPR- LSTM [28]  0.013 

CNN-BGRU-DNN 0.008 

B0007 UPF 1.161 

Elman NN   
WNN-UPF  [8] 

0.145 
0.024 

CGTSSA_Cat_Boost  [29] 
SSA_Cat_Boost 
PSO_Cat_Boost 

Cat_Boost 
CGTSSA-SVM 
CGTSSA-ELM 

0.0118 
0.0147 
0.0263 
0.0465 
0.0178 
0.0447 

GPR- LSTM [28] 0.009 

CNN-BGRU-DNN 0.009 

From the results of table 5, we can clearly see that the RMSE 
value of our proposed method is smaller than the values reported 
by the studies, the RMSE metric is widely used in regression 
problems where we predict continues values, which is the case is 
the prediction of the SOH of Ion-Lithium batteries. 

We can conclude based on the results of table 5 that the 
proposed suggested named CNN-BGRU-DNN is a good 
estimator with its high accuracy for predicting the RUL and SOH. 

Conclusion 

This study proposes a hybrid approach known as CNN-BGRU-
DNN to predict Li-ion battery SOH and RUL. A dataset received 
from NASA is used to experimentally validate the suggested 
strategy. The results of the proposed hybrid method demonstrate 
that we achieved a big performance improvement and satisfying 
results evaluated by the performance indicators called MAE, RE 
%, AE and RMSE, where error rates are reduced and accuracy 
increased. In comparison to the outcomes of previous 
publications, four prediction performance indices show that 
CNN-BGRU-DNN has the greatest accuracy. 

Nomenclature 

AE   absolute error  
ANN  artificial neural network 
BMS   battery management system 
BGRU   bidirectional gated recurrent units 
CNN  convolutional neural network 
DNN   deep neural networks 
DL   deep Learning 
ELM  extreme learning machine 
LSTM  long short-term memory  
Li-B   lithium-ion battery 
MAE  mean absolute error 
ML  machine learning 
NASA   national aeronautics and space administration 
PF  particle filter 
RE  relative error 
RNN   recurrent neural network 
RMSE  root mean square error  
RUL   remaining useful life 
ReLU  rectified linear unit 
UKF  unscented Kalman filter 
WNN   wavelet neural network 
UPF   unscented Kalman particle filter 
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