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 Hackers on the Internet often send attacking commands through compromised hosts, called 
stepping-stones, for the purpose to be hidden behind a long interactive communication 
session. In a stepping-stone attack, an intruder uses a chain of stepping-stones as relay 
machines and remotely login these machines using a remote login program such as SSH 
(secure shell). A great number of detection methods for SSI have been proposed since 1995. 
Many of these existing detection approaches are either not easy to implement, or not 
efficient as a great number of packets have to be monitored and analyzed. Some of these 
detection methods for SSI are even not effective as their capabilities to detect SSI are very 
limited. In this paper, we propose an effective detection method for SSI by using packet 
crossover. Packet crossover ratios can be easily computed, and thus our proposed detection 
method for SSI cannot only be easily implemented, but also efficient. Well-designed network 
experiments are conducted and the effectiveness of the developed SSID algorithm is verified 
through the experiments. 
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1. Introduction 

Today hackers usually send attacking commands through 
compromised hosts in order to be hidden behind a long interactive 
communication session. These compromised hosts involved in 
attacks are referred to as stepping-stone ones. While launching a 
stepping-stone intrusion (SSI) attack, the intruder operates on a 
local host and sends attacking packets that will be relayed through 
the intermediate stepping-stones before they reach the final target 
system. 

The TCP protocol was designed in a way that every 
interactive TCP connection between the attacker host and the final 
target is independent of one another, even though they are relayed 
connections. Therefore, the target machine is only able to get 
information from the last stepping-stone host in the connection 
chain. That is, it is notoriously hard for the final victim host to 
obtain information about the geographic region of the origin of 
the intrusion. 

 Figure 1 shows a sample of a connection chain that can be 
exploit to send attacking commands with an SSI. Host 0 in the 

figure serves as the intruder machine, Host N the final victim 
machine, and Host 1, Host 2, . . . , Host i-1, Host i, Host i+1, . . . , 
and Host N -1 serve as the stepping stones for the attack. The 
purpose of SSI detection (SSID) is to determine whether a host in 
a network is employed as a stepping-stone one for an attack. In 
the process of SSID, any intermediate machine within the chain 
could be chosen as the sensor. A packet sniffing program such as 
TCPdump or Wireshark must be available on a sensor host. In this 
figure, Host i is employed as the sensor.  

 Next, we introduce some important concepts that are needed 
design detection algorithms for SSI. An incoming connection to 
Host i is defined to be a connection from Host i-1 to Host i. An 
outgoing connection from Host i is defined to be a connection 
from Host i to Host i+1. There is possibly an intrusion if an 
incoming connection of the sensor matches with one of its 
outgoing connections. 

 
Figure 1. A sample connection chain 
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A great number of methods for SSID have been proposed 
since the first seminar work [1] in 1995. These detection 
approaches for SSI can be divided into two different types. 
Compare the incoming connections to a machine with its outgoing 
connections, and then make a decision to determine whether there 
is an intrusion based on the comparison. This type of SSI detection 
approach is referred to as host-based detection [1]-[6]. It is well-
known that stepping-stone hosts can be used by some applications 
to access a remote server legally. Therefore, high false-positive 
errors could be generated by using host-based detection methods 
for SSI. 

In order to reduce the false-positive errors produced by host-
based detection approaches, another category of detection 
methods was developed to overcome the challenge by counting 
the number of stepping-stone machines contained in a connection, 
which is called the length of the connection chain. This category 
of SSID methods is called connection-chain based or network-
based detection [7]-[11], [14], [15]. Typically, there is no need to 
remotely access a sever via more than three stepping-stones as a 
lot of unnecessary network traffic will be produced and make the 
data communication much slower. The threshold number here is 
three as applications only uses one or two stepping-stone 
machines to access a remote server legitimately [12], [13]. 

Many of these existing detection approaches are either not 
easy to implement, or not efficient as a lot of packets have to be 
monitored and processed. Some of these SSID methods are even 
not effective as their detection capabilities for SSI are very limited. 
There is a need to propose an innovative detection algorithm for 
SSI that can be easily implemented without having to monitor a 
lot of TCP packets. Thus, such an algorithm for SSID is efficient 
in terms of processing time. In this paper, we propose an effective 
detection method for SSI by using packet crossover ratios. Packet 
crossover ratios can be easily computed, and thus our proposed 
detection method for SSI cannot only be easily implemented, but 
also efficient. 

In [16], the authors used the idea of packet crossovers to identify 
a “long” connection chain. However, this paper made two 
assumptions (1) there exist packet crossovers in a long connection 
chain, and (2) a shorter connection chain produces less packet 
crossovers and a longer connection chain generates more packet 
crossovers. The conclusion made in [16] was based on these two 
assumptions. In this paper, we verify the following important 
statements through network experiments: if the packet crossover 
ratio of an incoming connection of a sensor host is almost equal to 
that of an outgoing connection of the sensor, then these two 
connections are relayed ones, and vice versa.  

The remaining of this paper is organized as follows. A 
literature review for existing approaches for SSID is discussed in 
section 2. Preliminary knowledge needed in this paper is 
presented in section 3. In Section 4, an innovative algorithm to 
match TCP packets using packet crossover is proposed. In Section 
5, we design and conduct network experiments to verify the 

correctness of Proposition 1 described in Section 4. Section 6 
gives a conclusion and future research direction for this paper. 

2. Literature Reviews 

Let us begin our reviews with the existing host-based 
detection methods that have been proposed for SSI since 1995. 
The content thumbprint approach to detect SSI was proposed in 
[1]. This method determines whether a communication session is 
an intrusion by comparing the content of the packets from the 
outgoing connection of the sensor host with that of the packets 
from its incoming connection. It is highly possible that the session 
is an intrusion if there is a relayed pair between them. However, 
this approach cannot be used to detect SSI for computer networks 
with encrypted traffic. To overcome the drawback of this method, 
a time-thumbprint based approach for SSID was developed in [2]. 
This approach utilized the timestamps of the monitored packets. 
This approach for SSID can be used for networks with encrypted 
traffic as packet timestamps are not encrypted. An example of 
encrypted traffic is to login to a remote server using SSH.  

If the network traffic is encrypted, it is much harder to detect 
SSI, and even more difficult if a communication session is 
manipulated by attackers using hacking tools. The packet 
counting method proposed in [5] was to address such a challenge 
in detecting SSI through counting the number of packets in both 
the incoming and outgoing connections. The methods proposed in 
this paper were to identify stepping-stone connections when the 
traffic is encrypted and the packet timestamps are jittered. This 
method also allows an attacker to inject certain amount of 
meaningless chaff packets into an attacking stream. However, in 
order for this method to work effectively, both the amount of 
chaffed meaningless packets and the percentage of the packets 
with jittered timestamps must be small. Therefore, the capability 
of the detection approach proposed in [5] is very limited to handle 
session manipulation by hackers. 

Next, we provide a literature review on network-based 
approaches for SSID that estimate a connection-chain length. In 
2002, the authors of [7] developed the 1st network-based approach 
for SSID to estimate the length of a connection chain. Yung’s 
method calculated the ratio between the Send-Echo RTT and of 
Send-Ack RTT. The RTTs of an Echo and a Send packet stand for 
the length of the connection chain from the sensor to the final 
victim host. On the other hand, an RTT for a Send packet and an 
Ack packet can only stand for the length from the sensor to its next 
adjacent machine in the downstream connection sub-chain. 
Therefore, a high false-negative error was generated by Yung’s 
method in [7] because of the adoption of the acknowledgement 
packets. The issues of the method proposed in [7] was addressed 
in the work [8], which is the 2nd network-based approach for SSID 
proposed in 2004. The detection algorithm proposed in [8] uses the 
step-function approach to calculate the length of a connection 
chain in a local area network (LAN). An improvement of the 
approach in [8] over Yung’s one in [7] is that the authors of [8] 
changed the way to set up the connection chain so that every Send 
packet can be possibly matched with a corresponding Echo packet. 
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In a LAN, the step-function method for SSID worked well and 
reduced both the false positive error and the false negative error, 
compared to Yung’s method proposed in [7]. However, a major 
drawback of the detection method proposed in [8] is that this 
method only worked well within a LAN, but wasn’t working in the 
Internet environment. With the context of the Internet, a 
conservative and greedy packet matching algorithm for SSID was 
proposed [14]. However, this method in [14] only very few Send 
packets can be matched with corresponding Echo packets. 
Therefore, the method in [14] did not work effectively either in the 
Internet environment. 

To address this issue, a clustering and partitioning data mining 
detection approach for SSI was proposed in [9]. In [9], the packet 
RTTs were computed by utilizing the clustering and partitioning 
data mining approach. The packet matching method proposed in 
this paper is accurate as it went through all the possible Echo 
packets for every Send packet to be matched. A major issue of the 
detection method in [9] is that we have to monitor a great number 
of TCP packets. Therefore, in terms of packet processing time, the 
detection method proposed in [9] is not efficient. 

One of our earlier works [10] addressed the issue of the SSID 
method proposed in [9] and developed a detection approach via 
mining network traffic by utilizing the k-Means clustering data 
mining algorithm. This k-Means based approach proposed in [10] 
does not need to capture and analyze a huge number of packets, 
and thus it is more efficient than MMD based approach proposed 
in [9]. But because of the use of the k-Means clustering, the length 
of a connection chain must be pre-determined for this approach, 
which makes its performance and capability very limited for SSID. 
Also, this k-Means based detection approach is ineffectively if 
large fluctuations of the TCP packets exist. 

In a recent work [11], we developed an effective network-based 
SSID approach by calculating the packet crossover ratios. This 
packet-crossover based method is easy to implement as we can 
easily compute the packet crossover ratios. With a modification of 
the k-Means clustering algorithm, [12] proposed an improved 
algorithm for SSID based detection approach developed in [10] by 
eliminating some of the packet RTT outliers. However, this paper 
did not provide any technical analysis regarding whether or not the 
SSID method is resistant to session manipulations by intruders. 
Another algorithm proposed for removing packet-RTT outliers is 
the work [13]. This outlier detection algorithm in [13] can be used 
to design new approaches to detect SSI. A major drawback of the 
outlier detection algorithm in [13] it that the accuracy of 
discovering the RTT outliers is low. 

3. Preliminaries 

 Let us introduce the preliminaries that are needed for our 
detection algorithm design for SSID in this section. 

3.1. Definitions of Send/Echo Packets 

Refer to [11] for the definitions of an Echo and a Send packets. 
For example, when a command is entered on a terminal window 
in a host running Linux, such as “cd”, we assume that the 

command “cd” is delivered to the remote server in two separate 
TCP packets: one holding the letter “c” and the other holding the 
letter “d”. Both of these packets are Send ones. When the letter “c” 
is entered on the user’s machine, the packet holding “c” will be 
delivered to the remote server. Once this packet is received and 
processed at the server, an Echo packet is sent back to the user, 
the letter “c” displays on the command line of the user’s screen. 
In such a scenario, the Send packet “c” and the Echo packet “p” 
are matched. Similarly, a Send packet holding “d” and its 
corresponding Echo packet holding “d” are also matched.  

3.2. Packet Crossover  

Packet crossover occurs when a newly Send packet meets an 
Echo packet of a previous Send packet along the connection chain 
between a client host and a server host (see Fig. 2). In Fig. 2, we 
have a connection chain starting from the client (Host 1), to Host 
2, then to Host 3, and finally to the server (Host 4), where Host 2 
and Host 3 are the stepping-stones in this chain. The red packets 
S1, S2 and are Send packets, and the green packets E1, E2, and 
E3 are their Echo packets, respectively. First let us assume that 
packet crossover is observed at Host 1. In this case, the sequence 
of these six packets is S1, S2, E1, S3, E2, and E3. Therefore, there 
are two occurrences of packet crossovers in this case. Now let us 
observe packet crossover at Host 2. The Send and Echo packets 
from the connection between Host 2 and Host 3 are monitored. 
The sequence of these six packets observed at Host 2 is S1, E1, 
S2, S3, E2, and E3. Thus, only one occurrence of packet crossover 
is observed in this case. 

 
Figure 2: A sample of packet crossover in a connection chain of four hosts. 

3.3.  The Distribution of Packets’ RTTs in a Connection Chain 

It is well-known that the number of connections in a connection 
chain can be represented by utilizing the packet round-trip times 
computed using the Send packets with their matched Echo packets. 

It is well-known that the packet RTTs computed from the TCP 
packets captured from a connection chain from the attacker host 
to a target host obey Poisson distribution. This statement was 
verified in the seminar work [2]. This discovery has been used in 
the design of SSID methods in the literature. The results of a well-
designed network experiment conducted by the authors of [2] is 
shown in Figure 3. This figure shows that the packet RTTs follow 
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Poisson distribution. In this figure, the RTT values in micro-
second are displayed on the X-axis, and the chances of the 
occurrences of RTT values are displayed on the Y-axis. In their 
network setup, the connection chain has a length of four. That is, 
the chain contains four connections with five machines in total. In 
their network experiment, µ stands for the mean of all the RTT 
values. From their observation, µ = 138,500. Since the packet 
RTTs follow Poison distribution, clearly, most values in the RTTs 
are very close to the value of µ (see Fig. 3). 

 
Figure 3: The Packets’ RTTs Obey Poisson Distribution 

4. Matching TCP Packets Using Packet Crossover 

 In this section, we first present a proposition that will be used 
to design our algorithm for SSID. Then we describe an effective 
algorithm to determine whether a host is used as a stepping-stone 
by utilizing packet crossover.  

 First, we present a proposition that will be verified through 
well-designed network experiments in Section 5. Our detection 
algorithm design for SSID using packet crossover is based on this 
proposition. 

Proposition 1: If the packet crossover ratio of an incoming 
connection of a sensor host is almost equal to that of an outgoing 
connection of the sensor, then these two connections are relayed 
ones. If the two packet crossover ratios are not close to each other, 
then these two connections are not relayed. 
 Next, we describe our proposed host-based detection 
algorithm for SSI using packet crossover: 

1). Pick a host of a network as the sensor host. 

2). Adopt Algorithm 1 (Compute Packet Crossover Ratio) in [11] 
to calculate the packet crossover ratio for every incoming 
connection to the above sensor host. 

3). Adopt Algorithm 1 (Compute Packet Crossover Ratio) in [11] 
to calculate the packet crossover ratio for every outgoing 
connection from the above sensor host. 
4). If any of the packet crossover ratios calculated for an incoming 
connection at Step 2) is almost the same as one of the packet 
crossover ratios calculated for an outgoing connection at Step 3), 
then it is highly suspicious that these two connections are relayed 
ones, and the sensor host is used as a stepping-stone. 

5). If none of the packet crossover ratios calculated at Step 2) for 
incoming connections is close to any of the packet crossover ratios 

calculated for outgoing connections at Step 3), then it is almost 
sure that the sensor is not used as a stepping-stone. 

The correctness of our above detection algorithm for SSI is 
clearly asserted according to Proposition 1. 

5. Network Experiments 

In this section, we design network experiments to verify the 
correctness of Proposition 1 described in Section 3 by comparing 
the packet crossover ratios of incoming and outgoing connections. 
Relayed pairs will typically result in almost equal packet 
crossover ratios. On the other hand, non-relayed pairs will 
typically result in dissimilar packet crossover ratios. 

To set up our experimental environment, we created two 
distinct connection chains that shared the same sensor host H3 
(see Fig. 4 below). The first connection chain consisted of one 
local host and four geographically dispersed Amazon AWS 
servers; all the hosts in the experiment ran Ubuntu Linux 
operating system. We created a long connection chain by using 
Secure Shell (SSH) to sequentially connect to each host in the 
connection chain from the attacker host H1 to the victim host H5 
(see Fig. 4). In other words, a single terminal appearing on the 
attacker host H1 was used to create the entire connection chain by 
using sequential remote SSH access. From our local PC H1 in 
Georgia, USA with IP address 168.27.2.105, we remotely 
accessed host H2 (the first stepping-stone host in the chain), 
located in Northern Virginia, USA with public IP address 
54.226.83.33. We then extended the connection chain by using 
H2 as a stepping-stone to remotely access the host H3 (our sensor 
host), located in Northern California, USA with public IP address 
54.215.55.31. We then extended the connection chain again by 
using H3 as a stepping-stone to remotely access host H4 (the last 
stepping-stone in the chain), located in Tokyo, Japan with public 
IP address 3.115.8.190. We then extended the connection chain 
for the final time by using H4 as a stepping-stone to remotely 
access host H5, located in Central Canada with public IP address 
3.99.215.22.  

After the first connection chain was established, both the 
incoming and outgoing connections of the sensor host will be 
monitored and the packets will be captured using tcpDump at the 
sensor host (labeled respectively i1 and o1 on in Fig. 4) at H3, the 
sensor. All data are captured at H3 in this entire network 
experiment. We entered the following standard Linux commands 
for about three minutes into a terminal at the attacker host (H1) 
and captured all packets from the indicated connections at H3:  

ls 
mkdir test 
ls 
cd test 
cd .. 
rmdir test 
ls 
pwd 
touch test.txt 
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ls 
rm test.txt  

We captured ten datasets in total, with each data set comprising 
two files at the sensor host. After capturing the data, we ran our 
Packet Crossover Ratio algorithm to calculate the packet 
crossover ratio observed at H3 from both the incoming and 
outgoing connections. 

We then created a second SSH connection chain that consisted 
of two local hosts and three geographically dispersed Amazon 
AWS servers, with each host again running Ubuntu Linux 
operating system. The sensor host H3 is the only common host 
shared by these two connection chains. From our local PC H6 in 
Georgia, USA with IP address 168.27.2.103, we remotely 
accessed host H7, which had an IP address of 168.27.2.106 and 
was co-located on the same LAN with our local PC in Georgia. 
We then extended the connection chain by using H7 as a stepping-
stone to remotely access the host H3 (the same sensor host that 
was used for the first connection chain), located in Northern 
California, USA with public IP address 54.215.55.31. We then 
extended the connection chain again by using H3 as a stepping-
stone to remotely access host H8 (the last stepping-stone in the 
chain), located in Frankfurt, Germany with public IP address 
3.121.98.162. We then extended the connection chain for the final 
time by using H8 as a stepping-stone to remotely access host H9, 
located in London, England with public IP address 
18.133.230.186.  

After the second connection chain was established, we used 
tcpDump to capture both the incoming and outgoing connections 
(labeled i2 and o2 on in Fig. 4) at H3, the sensor. We entered the 
following standard Linux commands for about three minutes into 
a terminal at the attacker host (H1) and captured all packets from 
the indicated connections in the chain:  

whoami 
uname 
groups username 
who 
lscpu 
hwclock –verbose 
sudo lshw 
whatis -h 
whatis -l netstat 
man netstat (with ten seconds of scrolling) 
netstat 
help 
ifconfig -a 
ping google.com 
traceroute google.com 
sudo cat /etc/shadow 
history 
!lastCommand 
 

We captured ten datasets in total, with each data set comprising 
two files at the sensor host. After capturing the data, we ran our 
Packet Crossover Ratio algorithm to calculate the packet 

crossover ratio observed in both the incoming and outgoing 
connections. 

 

 
Figure 4: The experimental network setup. Depicts two distinct connection chains 
passing through the same sensor host H3. C=chain, i=incoming connection, 
o=outgoing connection, red arrows=connection captured from H3. 

We then attempted to use the captured packet crossover ratios to 
match incoming and outgoing connections. Based on our previous 
research, we knew that the packet crossover ratios captured at a 
given sensor for the incoming and outgoing connections of a 
relayed pair should be close to 1. Therefore, we expected to see a 
matching of close to 1 for i1 and o1, as well as i2 and o2. 
Moreover, we expected to see a matching not close to 1 for non-
relayed connection pairs such as i1 and o2. In Table 1, CR stands 
for Crossover Ratio, i1 for incoming connection 1, and o1 for 
outgoing connection 1. This table compares the CR of i1 to its 
respective outgoing connection. CR’s of relayed pairs should be 
very similar. Therefore, the incoming connection’s CR divided by 
the outgoing connection’s CR should and does equal approx. 1. 

Table 1: CR’s of relayed pairs i1 and o1 close to 1 

Matching Relayed Pair: i1/o1 

Dataset i1 CR o1 CR i1/o1 

1 0.3554 0.3554 1 

2 0.5202 0.5202 1 

3 0.3889 0.3879 0.9974 

4 0.3864 0.3864 1 

5 0.3431 0.3431 1 

6 0.4898 0.4898 1 

7 0.2879 0.2879 1 

8 0.3279 0.3279 1 

9 0.3725 0.3781 1.0150 

10 0.3509 0.3509 1 
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Table 2: CR’s of relayed pairs i2 and o2 close to 1 

Matching Relayed Pair: i2/o2 

Dataset i2 CR o2 CR i2/o2 

1 1.7576 1.7452 0.9930 

2 1.7615 1.7626 1.0006 

3 1.9298 1.9240 0.9970 

4 1.8020 1.8045 1.0013 

5 1.8190 1.8212 1.0012 

6 1.8362 1.8384 1.0012 

7 1.8635 1.8656 1.0011 

8 1.8563 1.8483 0.9957 

9 1.7700 1.7683 0.9990 

10 1.9382 1.9403 1.0011 

In Table 2, i2 stands for incoming connection 2, and o2 for 
outgoing connection 2. This table compares the CR of i2 to its 
respective outgoing connection o2. CR’s of relayed pairs should 
be very similar. Therefore, the incoming connection’s CR divided 
by the outgoing connection’s CR is approx. equal to 1. 

Tables 1 and 2 depict a matching between relayed 
connections, where the packet crossover ratio of a given incoming 
connection is compared to the packet crossover ratio of its 
respective outgoing connection. Relayed pairs will typically result 
in almost equal packet crossover ratios. Therefore, the quotient of 
the packet crossover ratio of a given incoming connection divided 
by the packet crossover ratio of its respective outgoing connection 
should be approximately 1. All ten datasets for both connection 
chains demonstrate this general rule, with the quotients for 
connection chains 1 and 2 ranging from 0.9974 to 1.0150 and 
0.9930 to 1.0013, respectively.  

In Table 3, i1 stands for incoming connection 1, and o2 for 
outgoing connection 2. This table compares the CR of i1 to the 
CR of o2. Since these connections do not form a relayed pair, their 
crossover ratios should not be very similar. Therefore, the 
incoming connection’s CR divided by the outgoing connection’s 
CR should not approximate to 1. 

In Table 4, i2 stands for incoming connection 2, and o1 for 
outgoing connection 1. This table compares the CR of i2 to the 
CR of o1. Since these connections do not form a relayed pair, their 
crossover ratios should not be very similar. Therefore, the 
incoming connection’s CR divided by the outgoing connection’s 
CR should not approximate to 1. 

Table 3: CR’s of non-relayed pairs i1 and o2 

Matching Non-relayed Pair: i1/o2 

Dataset i1 CR o2 CR i1/o2 

1 0.3554 1.7452 4.9111 

2 0.5202 1.7626 3.3882 

3 0.3889 1.9240 4.9475 

4 0.3864 1.8045 4.6703 

5 0.3431 1.8212 5.3086 

6 0.4898 1.8384 3.7536 

7 0.2879 1.8656 6.4797 

8 0.3279 1.8483 5.6366 

9 0.3725 1.7683 4.7473 

10 0.3509 1.9403 5.5299 

Table 4: CR’s of non-relayed pairs o1 and i2. 

Matching Non-relayed Pair: i2/o1 

Dataset i2 CR o1 CR i2/o1 

1 1.7576 0.3554 0.2022 

2 1.7615 0.5202 0.2953 

3 1.9298 0.3879 0.2010 

4 1.8020 0.3864 0.2144 

5 1.8190 0.3431 0.1886 

6 1.8362 0.4898 0.2667 

7 1.8635 0.2879 0.1545 

8 1.8563 0.3279 0.1767 

9 1.7700 0.3781 0.2136 

10 1.9382 0.3509 0.1810 

 

Tables 3 and 4 depict a matching between non-relayed 
connections, where the packet crossover ratio of a given incoming 
connection is compared to the packet crossover ratio of another 
unrelated outgoing connection. Non-relayed pairs will typically 
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result in dissimilar packet crossover ratios. Therefore, the quotient 
of the packet crossover ratio of a given incoming connection 
divided by the packet crossover ratio of an unrelated outgoing 
connection should typically not be close to 1. All ten datasets 
demonstrate this general rule, with the quotients for i1/o2 and 
i2/o1 ranging from 3.3882 to 6.4797 and 0.1545 to 0.2953, 
respectively.  

We can clearly see that matched connection pairs are very 
similar, and non-matched pairs are dissimilar. With a true-positive 
threshold of 0.99-1.02, 100% of the matched pairs would be 
recognized as a relayed pair. Furthermore, 100% of the non-
relayed pairs would be identified correctly. 

6. Conclusion 

Many known SSID methods are either not easy to implement, 
or not efficient as a large number of packets have to be monitored 
and analyzed. Some of them are even not effective as their 
capabilities to detect SSI are very limited. In this paper, we 
proposed an effective SSID method by using packet crossover 
ratios. Packet crossover ratios can be easily computed, and thus 
the SSID method developed in this paper cannot only be easily 
implemented, but also efficient in terms of packet processing time. 
Through well-designed network experiments, we verified that for 
a given sensor, if an outgoing connection and an incoming 
connection are detected to be relayed with each other, then the 
packet crossover ratios obtained from these two connections 
should be very close, and vice versa. 

As for future research direction, one may revise and improve 
our proposed detection method for SSI so that it will be resistant 
to session manipulation by intruders using hacking techniques 
such as chaff-perturbation of meaningless packets or time jittering. 
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