

www.astesj.com 13

Matching TCP Packets to Detect Stepping-Stone Intrusion using Packet Crossover

Lixin Wang*,1, Jianhua Yang1, Austin Lee1, Peng-Jun Wan2
1TSYS School of Computer Science, Columbus State University, Columbus, GA 31907, USA

2Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 01 August, 2022
Accepted: 18 October, 2022
Online: 13 November, 2022

 Hackers on the Internet often send attacking commands through compromised hosts, called
stepping-stones, for the purpose to be hidden behind a long interactive communication
session. In a stepping-stone attack, an intruder uses a chain of stepping-stones as relay
machines and remotely login these machines using a remote login program such as SSH
(secure shell). A great number of detection methods for SSI have been proposed since 1995.
Many of these existing detection approaches are either not easy to implement, or not
efficient as a great number of packets have to be monitored and analyzed. Some of these
detection methods for SSI are even not effective as their capabilities to detect SSI are very
limited. In this paper, we propose an effective detection method for SSI by using packet
crossover. Packet crossover ratios can be easily computed, and thus our proposed detection
method for SSI cannot only be easily implemented, but also efficient. Well-designed network
experiments are conducted and the effectiveness of the developed SSID algorithm is verified
through the experiments.

Keywords:
Stepping-stone
Intrusion Detection
Packet Matching
Packet Crossover
Host-based Detection
Connection Chain

1. Introduction

Today hackers usually send attacking commands through
compromised hosts in order to be hidden behind a long interactive
communication session. These compromised hosts involved in
attacks are referred to as stepping-stone ones. While launching a
stepping-stone intrusion (SSI) attack, the intruder operates on a
local host and sends attacking packets that will be relayed through
the intermediate stepping-stones before they reach the final target
system.

The TCP protocol was designed in a way that every
interactive TCP connection between the attacker host and the final
target is independent of one another, even though they are relayed
connections. Therefore, the target machine is only able to get
information from the last stepping-stone host in the connection
chain. That is, it is notoriously hard for the final victim host to
obtain information about the geographic region of the origin of
the intrusion.

 Figure 1 shows a sample of a connection chain that can be
exploit to send attacking commands with an SSI. Host 0 in the

figure serves as the intruder machine, Host N the final victim
machine, and Host 1, Host 2, . . . , Host i-1, Host i, Host i+1, . . . ,
and Host N -1 serve as the stepping stones for the attack. The
purpose of SSI detection (SSID) is to determine whether a host in
a network is employed as a stepping-stone one for an attack. In
the process of SSID, any intermediate machine within the chain
could be chosen as the sensor. A packet sniffing program such as
TCPdump or Wireshark must be available on a sensor host. In this
figure, Host i is employed as the sensor.

 Next, we introduce some important concepts that are needed
design detection algorithms for SSI. An incoming connection to
Host i is defined to be a connection from Host i-1 to Host i. An
outgoing connection from Host i is defined to be a connection
from Host i to Host i+1. There is possibly an intrusion if an
incoming connection of the sensor matches with one of its
outgoing connections.

Figure 1. A sample connection chain

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Lixin Wang, 4225 University Ave., Columbus, GA
31907, USA. Contact No: 001-706-507-8190. Email:
Wang_Lixin@ColumbusState.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 13-19 (2022)

www.astesj.com

Special Issue on Innovation in Computing, Engineering Science & Technology

https://dx.doi.org/10.25046/aj070602

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj070602

L. Wang et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 13-19 (2022)

www.astesj.com 14

A great number of methods for SSID have been proposed
since the first seminar work [1] in 1995. These detection
approaches for SSI can be divided into two different types.
Compare the incoming connections to a machine with its outgoing
connections, and then make a decision to determine whether there
is an intrusion based on the comparison. This type of SSI detection
approach is referred to as host-based detection [1]-[6]. It is well-
known that stepping-stone hosts can be used by some applications
to access a remote server legally. Therefore, high false-positive
errors could be generated by using host-based detection methods
for SSI.

In order to reduce the false-positive errors produced by host-
based detection approaches, another category of detection
methods was developed to overcome the challenge by counting
the number of stepping-stone machines contained in a connection,
which is called the length of the connection chain. This category
of SSID methods is called connection-chain based or network-
based detection [7]-[11], [14], [15]. Typically, there is no need to
remotely access a sever via more than three stepping-stones as a
lot of unnecessary network traffic will be produced and make the
data communication much slower. The threshold number here is
three as applications only uses one or two stepping-stone
machines to access a remote server legitimately [12], [13].

Many of these existing detection approaches are either not
easy to implement, or not efficient as a lot of packets have to be
monitored and processed. Some of these SSID methods are even
not effective as their detection capabilities for SSI are very limited.
There is a need to propose an innovative detection algorithm for
SSI that can be easily implemented without having to monitor a
lot of TCP packets. Thus, such an algorithm for SSID is efficient
in terms of processing time. In this paper, we propose an effective
detection method for SSI by using packet crossover ratios. Packet
crossover ratios can be easily computed, and thus our proposed
detection method for SSI cannot only be easily implemented, but
also efficient.

In [16], the authors used the idea of packet crossovers to identify
a “long” connection chain. However, this paper made two
assumptions (1) there exist packet crossovers in a long connection
chain, and (2) a shorter connection chain produces less packet
crossovers and a longer connection chain generates more packet
crossovers. The conclusion made in [16] was based on these two
assumptions. In this paper, we verify the following important
statements through network experiments: if the packet crossover
ratio of an incoming connection of a sensor host is almost equal to
that of an outgoing connection of the sensor, then these two
connections are relayed ones, and vice versa.

The remaining of this paper is organized as follows. A
literature review for existing approaches for SSID is discussed in
section 2. Preliminary knowledge needed in this paper is
presented in section 3. In Section 4, an innovative algorithm to
match TCP packets using packet crossover is proposed. In Section
5, we design and conduct network experiments to verify the

correctness of Proposition 1 described in Section 4. Section 6
gives a conclusion and future research direction for this paper.

2. Literature Reviews

Let us begin our reviews with the existing host-based
detection methods that have been proposed for SSI since 1995.
The content thumbprint approach to detect SSI was proposed in
[1]. This method determines whether a communication session is
an intrusion by comparing the content of the packets from the
outgoing connection of the sensor host with that of the packets
from its incoming connection. It is highly possible that the session
is an intrusion if there is a relayed pair between them. However,
this approach cannot be used to detect SSI for computer networks
with encrypted traffic. To overcome the drawback of this method,
a time-thumbprint based approach for SSID was developed in [2].
This approach utilized the timestamps of the monitored packets.
This approach for SSID can be used for networks with encrypted
traffic as packet timestamps are not encrypted. An example of
encrypted traffic is to login to a remote server using SSH.

If the network traffic is encrypted, it is much harder to detect
SSI, and even more difficult if a communication session is
manipulated by attackers using hacking tools. The packet
counting method proposed in [5] was to address such a challenge
in detecting SSI through counting the number of packets in both
the incoming and outgoing connections. The methods proposed in
this paper were to identify stepping-stone connections when the
traffic is encrypted and the packet timestamps are jittered. This
method also allows an attacker to inject certain amount of
meaningless chaff packets into an attacking stream. However, in
order for this method to work effectively, both the amount of
chaffed meaningless packets and the percentage of the packets
with jittered timestamps must be small. Therefore, the capability
of the detection approach proposed in [5] is very limited to handle
session manipulation by hackers.

Next, we provide a literature review on network-based
approaches for SSID that estimate a connection-chain length. In
2002, the authors of [7] developed the 1st network-based approach
for SSID to estimate the length of a connection chain. Yung’s
method calculated the ratio between the Send-Echo RTT and of
Send-Ack RTT. The RTTs of an Echo and a Send packet stand for
the length of the connection chain from the sensor to the final
victim host. On the other hand, an RTT for a Send packet and an
Ack packet can only stand for the length from the sensor to its next
adjacent machine in the downstream connection sub-chain.
Therefore, a high false-negative error was generated by Yung’s
method in [7] because of the adoption of the acknowledgement
packets. The issues of the method proposed in [7] was addressed
in the work [8], which is the 2nd network-based approach for SSID
proposed in 2004. The detection algorithm proposed in [8] uses the
step-function approach to calculate the length of a connection
chain in a local area network (LAN). An improvement of the
approach in [8] over Yung’s one in [7] is that the authors of [8]
changed the way to set up the connection chain so that every Send
packet can be possibly matched with a corresponding Echo packet.

http://www.astesj.com/

L. Wang et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 13-19 (2022)

www.astesj.com 15

In a LAN, the step-function method for SSID worked well and
reduced both the false positive error and the false negative error,
compared to Yung’s method proposed in [7]. However, a major
drawback of the detection method proposed in [8] is that this
method only worked well within a LAN, but wasn’t working in the
Internet environment. With the context of the Internet, a
conservative and greedy packet matching algorithm for SSID was
proposed [14]. However, this method in [14] only very few Send
packets can be matched with corresponding Echo packets.
Therefore, the method in [14] did not work effectively either in the
Internet environment.

To address this issue, a clustering and partitioning data mining
detection approach for SSI was proposed in [9]. In [9], the packet
RTTs were computed by utilizing the clustering and partitioning
data mining approach. The packet matching method proposed in
this paper is accurate as it went through all the possible Echo
packets for every Send packet to be matched. A major issue of the
detection method in [9] is that we have to monitor a great number
of TCP packets. Therefore, in terms of packet processing time, the
detection method proposed in [9] is not efficient.

One of our earlier works [10] addressed the issue of the SSID
method proposed in [9] and developed a detection approach via
mining network traffic by utilizing the k-Means clustering data
mining algorithm. This k-Means based approach proposed in [10]
does not need to capture and analyze a huge number of packets,
and thus it is more efficient than MMD based approach proposed
in [9]. But because of the use of the k-Means clustering, the length
of a connection chain must be pre-determined for this approach,
which makes its performance and capability very limited for SSID.
Also, this k-Means based detection approach is ineffectively if
large fluctuations of the TCP packets exist.

In a recent work [11], we developed an effective network-based
SSID approach by calculating the packet crossover ratios. This
packet-crossover based method is easy to implement as we can
easily compute the packet crossover ratios. With a modification of
the k-Means clustering algorithm, [12] proposed an improved
algorithm for SSID based detection approach developed in [10] by
eliminating some of the packet RTT outliers. However, this paper
did not provide any technical analysis regarding whether or not the
SSID method is resistant to session manipulations by intruders.
Another algorithm proposed for removing packet-RTT outliers is
the work [13]. This outlier detection algorithm in [13] can be used
to design new approaches to detect SSI. A major drawback of the
outlier detection algorithm in [13] it that the accuracy of
discovering the RTT outliers is low.

3. Preliminaries

 Let us introduce the preliminaries that are needed for our
detection algorithm design for SSID in this section.

3.1. Definitions of Send/Echo Packets

Refer to [11] for the definitions of an Echo and a Send packets.
For example, when a command is entered on a terminal window
in a host running Linux, such as “cd”, we assume that the

command “cd” is delivered to the remote server in two separate
TCP packets: one holding the letter “c” and the other holding the
letter “d”. Both of these packets are Send ones. When the letter “c”
is entered on the user’s machine, the packet holding “c” will be
delivered to the remote server. Once this packet is received and
processed at the server, an Echo packet is sent back to the user,
the letter “c” displays on the command line of the user’s screen.
In such a scenario, the Send packet “c” and the Echo packet “p”
are matched. Similarly, a Send packet holding “d” and its
corresponding Echo packet holding “d” are also matched.

3.2. Packet Crossover

Packet crossover occurs when a newly Send packet meets an
Echo packet of a previous Send packet along the connection chain
between a client host and a server host (see Fig. 2). In Fig. 2, we
have a connection chain starting from the client (Host 1), to Host
2, then to Host 3, and finally to the server (Host 4), where Host 2
and Host 3 are the stepping-stones in this chain. The red packets
S1, S2 and are Send packets, and the green packets E1, E2, and
E3 are their Echo packets, respectively. First let us assume that
packet crossover is observed at Host 1. In this case, the sequence
of these six packets is S1, S2, E1, S3, E2, and E3. Therefore, there
are two occurrences of packet crossovers in this case. Now let us
observe packet crossover at Host 2. The Send and Echo packets
from the connection between Host 2 and Host 3 are monitored.
The sequence of these six packets observed at Host 2 is S1, E1,
S2, S3, E2, and E3. Thus, only one occurrence of packet crossover
is observed in this case.

Figure 2: A sample of packet crossover in a connection chain of four hosts.

3.3. The Distribution of Packets’ RTTs in a Connection Chain

It is well-known that the number of connections in a connection
chain can be represented by utilizing the packet round-trip times
computed using the Send packets with their matched Echo packets.

It is well-known that the packet RTTs computed from the TCP
packets captured from a connection chain from the attacker host
to a target host obey Poisson distribution. This statement was
verified in the seminar work [2]. This discovery has been used in
the design of SSID methods in the literature. The results of a well-
designed network experiment conducted by the authors of [2] is
shown in Figure 3. This figure shows that the packet RTTs follow

http://www.astesj.com/

L. Wang et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 13-19 (2022)

www.astesj.com 16

Poisson distribution. In this figure, the RTT values in micro-
second are displayed on the X-axis, and the chances of the
occurrences of RTT values are displayed on the Y-axis. In their
network setup, the connection chain has a length of four. That is,
the chain contains four connections with five machines in total. In
their network experiment, µ stands for the mean of all the RTT
values. From their observation, µ = 138,500. Since the packet
RTTs follow Poison distribution, clearly, most values in the RTTs
are very close to the value of µ (see Fig. 3).

Figure 3: The Packets’ RTTs Obey Poisson Distribution

4. Matching TCP Packets Using Packet Crossover

 In this section, we first present a proposition that will be used
to design our algorithm for SSID. Then we describe an effective
algorithm to determine whether a host is used as a stepping-stone
by utilizing packet crossover.

 First, we present a proposition that will be verified through
well-designed network experiments in Section 5. Our detection
algorithm design for SSID using packet crossover is based on this
proposition.

Proposition 1: If the packet crossover ratio of an incoming
connection of a sensor host is almost equal to that of an outgoing
connection of the sensor, then these two connections are relayed
ones. If the two packet crossover ratios are not close to each other,
then these two connections are not relayed.
 Next, we describe our proposed host-based detection
algorithm for SSI using packet crossover:

1). Pick a host of a network as the sensor host.

2). Adopt Algorithm 1 (Compute Packet Crossover Ratio) in [11]
to calculate the packet crossover ratio for every incoming
connection to the above sensor host.

3). Adopt Algorithm 1 (Compute Packet Crossover Ratio) in [11]
to calculate the packet crossover ratio for every outgoing
connection from the above sensor host.
4). If any of the packet crossover ratios calculated for an incoming
connection at Step 2) is almost the same as one of the packet
crossover ratios calculated for an outgoing connection at Step 3),
then it is highly suspicious that these two connections are relayed
ones, and the sensor host is used as a stepping-stone.

5). If none of the packet crossover ratios calculated at Step 2) for
incoming connections is close to any of the packet crossover ratios

calculated for outgoing connections at Step 3), then it is almost
sure that the sensor is not used as a stepping-stone.

The correctness of our above detection algorithm for SSI is
clearly asserted according to Proposition 1.

5. Network Experiments

In this section, we design network experiments to verify the
correctness of Proposition 1 described in Section 3 by comparing
the packet crossover ratios of incoming and outgoing connections.
Relayed pairs will typically result in almost equal packet
crossover ratios. On the other hand, non-relayed pairs will
typically result in dissimilar packet crossover ratios.

To set up our experimental environment, we created two
distinct connection chains that shared the same sensor host H3
(see Fig. 4 below). The first connection chain consisted of one
local host and four geographically dispersed Amazon AWS
servers; all the hosts in the experiment ran Ubuntu Linux
operating system. We created a long connection chain by using
Secure Shell (SSH) to sequentially connect to each host in the
connection chain from the attacker host H1 to the victim host H5
(see Fig. 4). In other words, a single terminal appearing on the
attacker host H1 was used to create the entire connection chain by
using sequential remote SSH access. From our local PC H1 in
Georgia, USA with IP address 168.27.2.105, we remotely
accessed host H2 (the first stepping-stone host in the chain),
located in Northern Virginia, USA with public IP address
54.226.83.33. We then extended the connection chain by using
H2 as a stepping-stone to remotely access the host H3 (our sensor
host), located in Northern California, USA with public IP address
54.215.55.31. We then extended the connection chain again by
using H3 as a stepping-stone to remotely access host H4 (the last
stepping-stone in the chain), located in Tokyo, Japan with public
IP address 3.115.8.190. We then extended the connection chain
for the final time by using H4 as a stepping-stone to remotely
access host H5, located in Central Canada with public IP address
3.99.215.22.

After the first connection chain was established, both the
incoming and outgoing connections of the sensor host will be
monitored and the packets will be captured using tcpDump at the
sensor host (labeled respectively i1 and o1 on in Fig. 4) at H3, the
sensor. All data are captured at H3 in this entire network
experiment. We entered the following standard Linux commands
for about three minutes into a terminal at the attacker host (H1)
and captured all packets from the indicated connections at H3:

ls
mkdir test
ls
cd test
cd ..
rmdir test
ls
pwd
touch test.txt

http://www.astesj.com/

L. Wang et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 13-19 (2022)

www.astesj.com 17

ls
rm test.txt

We captured ten datasets in total, with each data set comprising
two files at the sensor host. After capturing the data, we ran our
Packet Crossover Ratio algorithm to calculate the packet
crossover ratio observed at H3 from both the incoming and
outgoing connections.

We then created a second SSH connection chain that consisted
of two local hosts and three geographically dispersed Amazon
AWS servers, with each host again running Ubuntu Linux
operating system. The sensor host H3 is the only common host
shared by these two connection chains. From our local PC H6 in
Georgia, USA with IP address 168.27.2.103, we remotely
accessed host H7, which had an IP address of 168.27.2.106 and
was co-located on the same LAN with our local PC in Georgia.
We then extended the connection chain by using H7 as a stepping-
stone to remotely access the host H3 (the same sensor host that
was used for the first connection chain), located in Northern
California, USA with public IP address 54.215.55.31. We then
extended the connection chain again by using H3 as a stepping-
stone to remotely access host H8 (the last stepping-stone in the
chain), located in Frankfurt, Germany with public IP address
3.121.98.162. We then extended the connection chain for the final
time by using H8 as a stepping-stone to remotely access host H9,
located in London, England with public IP address
18.133.230.186.

After the second connection chain was established, we used
tcpDump to capture both the incoming and outgoing connections
(labeled i2 and o2 on in Fig. 4) at H3, the sensor. We entered the
following standard Linux commands for about three minutes into
a terminal at the attacker host (H1) and captured all packets from
the indicated connections in the chain:

whoami
uname
groups username
who
lscpu
hwclock –verbose
sudo lshw
whatis -h
whatis -l netstat
man netstat (with ten seconds of scrolling)
netstat
help
ifconfig -a
ping google.com
traceroute google.com
sudo cat /etc/shadow
history
!lastCommand

We captured ten datasets in total, with each data set comprising
two files at the sensor host. After capturing the data, we ran our
Packet Crossover Ratio algorithm to calculate the packet

crossover ratio observed in both the incoming and outgoing
connections.

Figure 4: The experimental network setup. Depicts two distinct connection chains
passing through the same sensor host H3. C=chain, i=incoming connection,
o=outgoing connection, red arrows=connection captured from H3.

We then attempted to use the captured packet crossover ratios to
match incoming and outgoing connections. Based on our previous
research, we knew that the packet crossover ratios captured at a
given sensor for the incoming and outgoing connections of a
relayed pair should be close to 1. Therefore, we expected to see a
matching of close to 1 for i1 and o1, as well as i2 and o2.
Moreover, we expected to see a matching not close to 1 for non-
relayed connection pairs such as i1 and o2. In Table 1, CR stands
for Crossover Ratio, i1 for incoming connection 1, and o1 for
outgoing connection 1. This table compares the CR of i1 to its
respective outgoing connection. CR’s of relayed pairs should be
very similar. Therefore, the incoming connection’s CR divided by
the outgoing connection’s CR should and does equal approx. 1.

Table 1: CR’s of relayed pairs i1 and o1 close to 1

Matching Relayed Pair: i1/o1

Dataset i1 CR o1 CR i1/o1

1 0.3554 0.3554 1

2 0.5202 0.5202 1

3 0.3889 0.3879 0.9974

4 0.3864 0.3864 1

5 0.3431 0.3431 1

6 0.4898 0.4898 1

7 0.2879 0.2879 1

8 0.3279 0.3279 1

9 0.3725 0.3781 1.0150

10 0.3509 0.3509 1

http://www.astesj.com/

L. Wang et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 13-19 (2022)

www.astesj.com 18

Table 2: CR’s of relayed pairs i2 and o2 close to 1

Matching Relayed Pair: i2/o2

Dataset i2 CR o2 CR i2/o2

1 1.7576 1.7452 0.9930

2 1.7615 1.7626 1.0006

3 1.9298 1.9240 0.9970

4 1.8020 1.8045 1.0013

5 1.8190 1.8212 1.0012

6 1.8362 1.8384 1.0012

7 1.8635 1.8656 1.0011

8 1.8563 1.8483 0.9957

9 1.7700 1.7683 0.9990

10 1.9382 1.9403 1.0011

In Table 2, i2 stands for incoming connection 2, and o2 for
outgoing connection 2. This table compares the CR of i2 to its
respective outgoing connection o2. CR’s of relayed pairs should
be very similar. Therefore, the incoming connection’s CR divided
by the outgoing connection’s CR is approx. equal to 1.

Tables 1 and 2 depict a matching between relayed
connections, where the packet crossover ratio of a given incoming
connection is compared to the packet crossover ratio of its
respective outgoing connection. Relayed pairs will typically result
in almost equal packet crossover ratios. Therefore, the quotient of
the packet crossover ratio of a given incoming connection divided
by the packet crossover ratio of its respective outgoing connection
should be approximately 1. All ten datasets for both connection
chains demonstrate this general rule, with the quotients for
connection chains 1 and 2 ranging from 0.9974 to 1.0150 and
0.9930 to 1.0013, respectively.

In Table 3, i1 stands for incoming connection 1, and o2 for
outgoing connection 2. This table compares the CR of i1 to the
CR of o2. Since these connections do not form a relayed pair, their
crossover ratios should not be very similar. Therefore, the
incoming connection’s CR divided by the outgoing connection’s
CR should not approximate to 1.

In Table 4, i2 stands for incoming connection 2, and o1 for
outgoing connection 1. This table compares the CR of i2 to the
CR of o1. Since these connections do not form a relayed pair, their
crossover ratios should not be very similar. Therefore, the
incoming connection’s CR divided by the outgoing connection’s
CR should not approximate to 1.

Table 3: CR’s of non-relayed pairs i1 and o2

Matching Non-relayed Pair: i1/o2

Dataset i1 CR o2 CR i1/o2

1 0.3554 1.7452 4.9111

2 0.5202 1.7626 3.3882

3 0.3889 1.9240 4.9475

4 0.3864 1.8045 4.6703

5 0.3431 1.8212 5.3086

6 0.4898 1.8384 3.7536

7 0.2879 1.8656 6.4797

8 0.3279 1.8483 5.6366

9 0.3725 1.7683 4.7473

10 0.3509 1.9403 5.5299

Table 4: CR’s of non-relayed pairs o1 and i2.

Matching Non-relayed Pair: i2/o1

Dataset i2 CR o1 CR i2/o1

1 1.7576 0.3554 0.2022

2 1.7615 0.5202 0.2953

3 1.9298 0.3879 0.2010

4 1.8020 0.3864 0.2144

5 1.8190 0.3431 0.1886

6 1.8362 0.4898 0.2667

7 1.8635 0.2879 0.1545

8 1.8563 0.3279 0.1767

9 1.7700 0.3781 0.2136

10 1.9382 0.3509 0.1810

Tables 3 and 4 depict a matching between non-relayed
connections, where the packet crossover ratio of a given incoming
connection is compared to the packet crossover ratio of another
unrelated outgoing connection. Non-relayed pairs will typically

http://www.astesj.com/

L. Wang et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 13-19 (2022)

www.astesj.com 19

result in dissimilar packet crossover ratios. Therefore, the quotient
of the packet crossover ratio of a given incoming connection
divided by the packet crossover ratio of an unrelated outgoing
connection should typically not be close to 1. All ten datasets
demonstrate this general rule, with the quotients for i1/o2 and
i2/o1 ranging from 3.3882 to 6.4797 and 0.1545 to 0.2953,
respectively.

We can clearly see that matched connection pairs are very
similar, and non-matched pairs are dissimilar. With a true-positive
threshold of 0.99-1.02, 100% of the matched pairs would be
recognized as a relayed pair. Furthermore, 100% of the non-
relayed pairs would be identified correctly.

6. Conclusion

Many known SSID methods are either not easy to implement,
or not efficient as a large number of packets have to be monitored
and analyzed. Some of them are even not effective as their
capabilities to detect SSI are very limited. In this paper, we
proposed an effective SSID method by using packet crossover
ratios. Packet crossover ratios can be easily computed, and thus
the SSID method developed in this paper cannot only be easily
implemented, but also efficient in terms of packet processing time.
Through well-designed network experiments, we verified that for
a given sensor, if an outgoing connection and an incoming
connection are detected to be relayed with each other, then the
packet crossover ratios obtained from these two connections
should be very close, and vice versa.

As for future research direction, one may revise and improve
our proposed detection method for SSI so that it will be resistant
to session manipulation by intruders using hacking techniques
such as chaff-perturbation of meaningless packets or time jittering.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

This work of Drs. Lixin Wang and Jianhua Yang is supported by
National Security Agency (NSA) NCAE-C research grant
H98230-20-1-0293 with Columbus State University, Columbus
GA 31907, USA.

References

[1] S. Staniford-Chen, and L. T. Heberlein, “Holding Intruders Accountable on
the Internet,” Proc. IEEE Symposium on Security and Privacy, Oakland, CA,
39-49, 1995, DOI: 10.1109/SECPRI.1995.398921.

[2] Y. Zhang, and V. Paxson, “Detecting Stepping-Stones,” Proc. of the 9th
USENIX Security Symposium, Denver, CO, 67-81, August 2000, doi:
https://dl.acm.org/doi/10.5555/1251306.1251319.

[3] D. Donoho, A. Flesia, U. Shankar, V. Paxson, J. Coit, and S. Staniford,
“Multiscale stepping-stone detection: Detecting pairs of jittered interactive
streams by exploiting maximum tolerable delay,” in 5th International
Symposium on Recent Advances in Intrusion Detection, Lecture Notes in
Computer Science, 2516, 2002, DOI:10.1007/3-540-36084-0_2.

[4] T. He and L. Tong, “Detecting Stepping-stone Traffic in Chaff: Fundamental
Limits and Robust Algorithms,” the 9th International Symposium on Recent
Advances in Intrusion Detection (RAID 2006), April 2006.

[5] T. He, L. Tong, “Detecting encrypted stepping-stone connections,” In:
Proceedings of IEEE Transaction on signal processing, 55(5), 1612-1623,
2007, DOI: 10.1109/TSP.2006.890881.

[6] A. Blum, D. Song, And S. Venkataraman, “Detection of Interactive
Stepping-Stones: Algorithms and Confidence Bounds”, Proceedings of
International Symposium on Recent Advance in Intrusion Detection (RAID),
Sophia Antipolis, France, 20-35, September 2004, DOI:10.1007/978-3-540-
30143-1_14.

[7] K. H. Yung, “Detecting Long Connecting Chains of Interactive Terminal
Sessions,” Proc. of International Symposium on Recent Advance in Intrusion
Detection (RAID), Zurich, Switzerland, 1-16, October 2002,
https://doi.org/10.1007/3-540-36084-0_1.

[8] J. Yang, S.-H. S. Huang, “A Real-Time Algorithm to Detect Long
Connection Chains of Interactive Terminal Sessions,” Proceedings of 3rd
ACM International Conference on Information Security (Infosecu’04),
Shanghai, China, 198-203, November 2004,
DOI:10.1145/1046290.1046331; Corpus ID: 18061584.

[9] J. Yang, and S. S.-H. Huang, “Mining TCP/IP Packets to Detect Stepping-
Stone Intrusion”, Journal of Computers and Security, Elsevier Ltd., 26, 479-
484, December 2007, doi:10.1016/j.cose.2007.07.001.

[10] L. Wang, J. Yang, X. Xu, and P.-J. Wan, “Mining Network Traffic with the
k-Means Clustering Algorithm for Stepping-stone Intrusion Detection”,
Wireless Communications and Mobile Computing, 2021, Article ID
6632671, 2021, https://doi.org/10.1155/2021/6632671.

[11] L. Wang, J. Yang, and A. Lee, “An Effective Approach for Stepping-Stone
Intrusion Detection Using Packet Crossover,” the 23rd World Conference on
Information Security Applications (WISA), August 24-26, 2022, DOI:
10.26599/TST.2021.9010041.

[12] L. Wang, J. Yang, M. Workman, and P.-J. Wan, “Effective algorithms to
detect stepping-stone intrusion by removing outliers of packet RTTs,”
Tsinghua Science and. Technology. 2021(27), 432-442,
https://doi.org/10.26599/tst.2021.90100432-4421.

[13] O. Alghushairy, R. Alsini, X. Ma, and T. Soule, “Improving the Efficiency
of Genetic-Based Incremental Local Outlier Factor Algorithm for Network
Intrusion Detection,” Advances in Artificial Intelligence and Applied
Cognitive Computing. In Transactions on Computational Science and
Computational Intelligence; Arabnia, H.R., Ferens, K., Fuente, D.,
Kozerenko, E.B., Olivas, J.A., Tinetti, F.G., Eds.; Springer, Cham: New
York, NY, USA. 1, 1011–1027, 2021, http://dx.doi.org/10.1007/978-3-030-
70296-0_81.

[14] J. Yang, S.–H. S. Huang, “Matching TCP Packets and Its Application to the
Detection of Long Connection Chains,” Proceedings of 19th IEEE
International Conference on Advanced Information Networking and
Applications (AINA 2005), Taipei, Taiwan, China, 1005-1010, March 2005,
10.1109/AINA.2005.240.

[15] J. Yang, B. Lee, and S.S.-H Huang, “Monitoring Network Traffic to Detect
Stepping-Stone Intrusion,” the Proceedings of 22nd IEEE International
Conference on Advanced Information Networking and Applications (AINA
2008), Okinawa, Japan, 56-61, March 2008, DOI:
10.1109/WAINA.2008.30.

[16] S. S.-H Huang, H. Zhang, and M. Phay, “Detecting Stepping-stone intruders
by identifying crossover packets in SSH connections”, the Proceedings of
30th IEEE International Conference on Advanced Information Networking
and Applications, Fukuoka, Japan, 1043-1050, March 2016, DOI:
10.1109/AINA.2016.132.

http://www.astesj.com/
https://www.wisa.or.kr/
https://www.wisa.or.kr/
https://doi.org/10.26599/tst.2021.90100432-4421

	2. Literature Reviews
	3. Preliminaries
	3.1. Definitions of Send/Echo Packets
	3.2. Packet Crossover
	3.3. The Distribution of Packets’ RTTs in a Connection Chain

	4. Matching TCP Packets Using Packet Crossover
	5. Network Experiments
	6. Conclusion
	Conflict of Interest
	Acknowledgment
	References

