

www.astesj.com 20

Optimization of Query Processing on Multi-tiered Persistent Storage

Nan Noon Noon*, Janusz R. Getta, Tianbing Xia

School of Computing & Information Technology, University of Wollongong, Wollongong, 2500, Australia

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 28 September, 2022
Accepted: 11 October, 2022
Online: 13 November, 2022

 The efficient processing of database applications on computing systems with multi-tiered
persistent storage devices needs specialized algorithms to create optimal persistent storage
management plans. A correct allocation and deallocation of multi-tiered persistent storage
may significantly improve the overall performance of data processing. This paper describes
the new algorithms that create allocation and deallocation plans for computing systems with
multi-tiered persistent storage devices. One of the main contributions of this paper is an
extension and application of a notation of Petri nets to describe the data flows in multi-tiered
persistent storage. This work assumes a pipelined data processing model and uses a
formalism of extended Petri nets to describe the data flows between the tiers of persistent
storage. The algorithms presented in the paper perform linearization of the extended Petri
nets to generate the optimal persistent storage allocation/deallocation plans. The paper
describes the experiments that validate the data allocation/deallocation plans for multi-
tiered persistent storage and shows the improvements in performance compared with the
random data allocation/deallocation plans.

Keywords:
Multi-tiered persistent storage
Data processing
Scheduling
Storage management

1. Introduction

In the last decade, we have observed the fast-growing
consumption of persistent storage used to implement operational
and analytical databases [1]. While the databases become larger,
the total number of database applications also continuously
increases and the applications themselves, especially the analytical
ones, become more sophisticated and advanced than before [2].
Such trends increase the pressure on hardware resources for data
processing, particularly on high-capacity and fast persistent
storage devices.

Usually, the financial constraints invalidate the single-step
replacements of all available persistent storage devices with better
ones. Instead, a typical strategy is based on the continuous and
systematic replacements of persistent storage devices with only a
few at a time. Also, from an economic point of view, it is not worth
investing significant funds in faster and larger persistent storage
devices when only some of the available data is frequently
processed. In reality, only some data sets are accessed more
frequently than others. Financial and data processing requirements
lead to the simultaneous utilization of persistent storage devices of
different speeds and capacities. Therefore, data is distributed over
many different storage devices with various capacity and speed
characteristics [3]. This leads to a logical model of the multi-tiered
organization of persistent storage [4, 5]. The lower tiers (levels)

consist of higher capacity and slower persistent storage devices
than the lower capacity and faster devices at the higher levels.

Several research works have been already performed on the
automatic allocation of storage resources over multi-tiered
persistent storage devices and multi-tier caches. For example, in
one of the solutions, persistent storage can be allocated over
several cache tiers and in different arrangements [6]. Another
research work shows how to distribute data on disk storage in the
multi-tier hybrid storage system (MTHS) [7].

A number of approaches schedule the allocation of resources
over multi-tiered persistent devices based on future predicted
workloads. The algorithms for an optimal allocation of persistent
storage on multi-tiered devices in environments where future
workloads can be predicted have been proposed in [8, 9]. These
algorithms arrange data according to an expected workload and
contribute to the automated performance tuning of database
applications. Most of the existing research outcomes show that
performance tuning with the predicted database workloads
improves performance during processing time and reduces
database administration time [10].

A logical model of multi-tiered persistent storage consists of
several tiers (levels) of persistent storage visible as a single
persistent storage container. The processing speeds at the same tier
are alike. Each tier is divided into several partitions, where each
partition is a logical view of a physical persistent storage device

ASTESJ
ISSN: 2415-6698

*Corresponding Author: Nan Noon Noon Email: nnn326@uowmail.edu.au

Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 20-30 (2022)

www.astesj.com

Special Issue on Innovation in Computing, Engineering Science & Technology

https://dx.doi.org/10.25046/aj070603

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj070603

N. N. Noon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 20-30 (2022)

www.astesj.com 21

that implements a particular tier. Such a view is compatible with
the organization of persistent storage within cloud systems.
Nowadays, data can be stored on several remote devices. It
contributes to the changes in the working style where the
employees can work from home or distance. Therefore, storage on
the cloud is required to provide access to data online anywhere,
anytime over an internet connection. In addition, cloud storage for
organizations must be shared by many users. Therefore,
partitioning of persistent storage is required so that users can
access storage simultaneously. Also, the efficient management of
storage allocation on multi-tiered persistent storage with partitions
is an essential factor for the performance of cloud systems.

The illustration of multi-tiered persistent storage with
partitions is shown in Figure 1. Typically, the higher tiers of
persistent storage have lower capacities and faster access times
than the lower tiers. In a physical model, a sample multi-tiered
persistent storage consists of the physical persistent storage
devices available on the market, such as NVMe, SSD, and HDD
[3].

Efficient processing of data stored at multi-tiered persistent
storage is an interesting problem. When processed, data can
“flow” from lower tiers to free space at the higher tiers to speed-
up access to such data in the future. Scheduling the data transfers
between the tiers require the allocation/deallocation of data based
on the speed and capacities of the tiers. Thus, making the correct
scheduling decisions automatically and within a short period of
time becomes a critical factor for the overall performance of data
processing.

Because of its limited capacity, it is impossible to store all data
at the topmost and the fastest tier. Therefore, we must prepare for
a compromise between the capacity, speed, and price of available
multi-tiered persistent storage. Such compromise leads to all data
being distributed over many tiers of multi-tiered persistent storage.

Figure 1: Illustration of multi-tiered persistent storage with four tiers divided into

partitions

The main research objective of this work is to speed up data
processing in environments where all data is located at multi-tiered
persistent storage. We assume that data processing is organized as
a collection of pipelines where the outputs from one operation are
the inputs to the next operation in a pipeline. A strategy to speed
up the data processing in a pipeline is to write the outputs of each
operation to the highest available persistent tiers. The benefits of
such a strategy are twofold. First, data is written faster at the higher
tiers than at the lower ones. Second, the following operation in a

pipeline reads input data more quickly from the higher tiers. An
essential factor in such a strategy is an optimal release of persistent
storage allocated at the higher tiers to store temporary data.

Another problem addressed in the paper is the lower-level
optimization of query processing on multi-tiered persistent
storage. The present query optimizers do not consider an efficient
implementation of higher-level operations on data located at multi-
tiered persistent storage. However, it is possible to significantly
improve performance by implementing higher-level operations in
ways consistent with the characteristics of available persistent
storage. Our second research objective is to generate more efficient
data processing plans for predicted and unpredicted database
workloads through the optimal implementation of elementary
operations on data located at multi-tiered persistent storage.

The contributions of the paper are the following. First, the
paper shows how to extend and apply a notation of Petri nets to
describe the data flows in multi-tiered persistent storage. Second,
the paper presents the algorithms that find optimal query
processing plans through the linearization of Petri nets. Third, the
paper analyses the results of experiments to show that query
processing plans generated by the new algorithms efficiently use
the properties of multi-tiered persistent storage.

This paper is an extension of work originally presented in [11].
The paper is organized in the following way. Section 2 extends a
notation of Petri nets to describe data flow in query processing.
Sections 3 and 4 present the algorithms for the automatic allocation
of storage available on multi-tiered persistent storage devices.
Section 5 describes an experiment, and Section 6 summarizes the
paper.

2. Basic Concepts

In this work, we consider a scenario where a database
application submits an SQL query to a relational database server.
Then, a typical query optimizer finds an optimal query processing
plan. Such a plan includes the list of operations organized as a
directed bipartite graph. Then, to discover the data flows between
the elementary operations, a plan is transformed into an extended
Petri Net [12]. Finally, a graphical notation of Petri Nets represents
the flow of data when processing a query.

The original Petri net model includes two types of elements:
places and transactions. Places are denoted as circles, and
transactions are denoted as vertical rectangles. Zero or more
tokens, denoted as small black circles, can be located in the places.
Arcs are connected between places and transactions—the
illustration of Petri Net is shown in Figure 2.

An Extended Petri Net is quadruple <B, E, A, W> where B and
E are disjoint sets of places and transitions. Places are visualized
as circles, and transitions are visualized as rectangles or bars. Arcs
A ⊆ (B × E) ∪ (E × B) connect the places and transitions. A place
may contain a finite number of tokens visualized as black circles,
or it can be empty. A transition fires depending on the number of
tokens connected at the input place. When an input place has no
token, a transition is at a waiting state.

In our case, sets of places, B, are interpreted as input/output
data sets, and the sets of transitions, E, are interpreted as operations
on data sets (see Figure3 below).

http://www.astesj.com/

N. N. Noon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 20-30 (2022)

www.astesj.com 22

Figure 2: An original sample structure of a Petri net

Arcs, A, determine the input and output data sets of the
operations. A weight function W: A→N+ determines the estimated
total number of data blocks read and written by each operation. See
the numbers attached to the arcs in Figure3. The root nodes are the
places (data sets) in B that do not have the arcs from the transitions
(operations) E. The root nodes represent the input data sets located
in a database. An operation can have more than one input and
output data set. Likewise, more than one operation can share input
and output data sets.

There are two types of persistent storage data sets B: permanent
or temporary. Both types of data sets are stored in multi-tiered
storage. A temporary data set can be removed from the storage
when it is no longer needed.

Figure 3: Data processing and data flows represented as an extended Petri net

Let E = {ei, ..., ej} be a set of operations obtained for a query Q

processing plan created by a database query optimizer. Each
operation ei is represented by a pair ei = ({Bi, ..., Bm}, {B(m+1), ...,
Bn}), where {Bi, ..., Bm} are the input data sets and {B(m+1), ..., Bn}
are the output data sets of an operation ei in E. Some of the input
and output data sets processed by an operation ei are permanent,
and some of them are temporary.

This paper focuses on managing the multi-tiered persistent
storage efficiently for each input/output data sets of each operation
and generates the best allocation plan, called a processing plan, for
each query. A list of persistent storage tiers is denoted as a
sequence L = <l0, ..., ln>. We have n+1 tiers where l0 denotes the
lowest tier, called a base tier or a backup tier. The highest tier is
denoted by ln. Each tier li for i = 0 … n is described as a triple (ri,
wi, <si1, ..., sin>) where ri is a read speed per data block at tier li, wi
is a write speed per data block at tier li, and <si1, ..., sin> is a
sequence of partitions arranged from smallest available storage to
largest available storage, where sij is an amount of free space
available in partition j at tier li. The read and write speed per data
block is measured in the standardized time units that can be
converted into real-time units when a specific hardware
implementation of a persistent storage tier is considered.

The processing plan is denoted as P = <Dij, ..., Dnk>, where Dji
is a set of plans for an operation ei, where ei is in Esj. Each plan is
a pair and is denoted as (Bi, sni) and Bi is the total number of
input/output data blocks located in partition i in tier ln (index of sni).
If lj = l0, then the data blocks are located at the lowest tier in the
multi-tiered storage.

After the output result of the operation ei is allocated,
unnecessary temporary input storage of operation ei needs to be
removed from multi-tiered persistent storage according to the
persistent storage release plan. The persistent storage release plan
is denoted as a sequence of pairs δ = < (ei, (Bk, …, Bh)), …, (ej, (Bx,
…, By))>, where each pair (ei, (Bk, ..., Bh) is a group of data sets (Bk,
..., Bh) that can be released after the results of an operation ei are
saved.

Then, the total processing time to read (Bi, sij) data blocks
located at partition j in tier li is TBi = Bi * ri. Formula (1) given
below determines the total processing time Tr to read the data
blocks for each input data set Di = {(B1, snj), …, (Bm, skn)}.

 Tr = Max� 𝑇𝑇𝐵𝐵1 + ⋯+ 𝑇𝑇𝐵𝐵𝑚𝑚� (1)

Similarly, formula (2) determines the total processing time Tw
to write the data blocks for each output data set Dj = {(B(m+1), sij),
…, (Bn, skh)}.

 Tw = Max � 𝑇𝑇𝐵𝐵(𝑚𝑚+1) + ⋯+ 𝑇𝑇𝐵𝐵𝑛𝑛� (2)

Let an Extended Petri Net <B, E, A, W> represent a query
processing plan. Then, whenever it is possible, the output data sets
of the operations E = {ei, ..., ek} are written to the tiers located
above the tiers of their input data sets. In other words, whenever
possible, each operation tries to push up the results of its
processing towards the partition at the higher tiers of persistent
storage.

The benefits of such a strategy are as follows. First, it is faster
to write the output data sets at a higher tier than at a lower tier.
Second, the data sets written at a higher tier can be read faster by
the next operation in a pipeline of a query processing plan.
Therefore, the benefits include the time we gain from writing
output data sets to the higher tiers and from reading the same data
sets by the other operations.

3. Resource Allocation for a Single Query

This section describes the algorithms that convert a query
processing plan obtained from the execution of EXPLAIN PLAN
statement for a single query into an Extended Petri Net and
serialize the operations of the Net in order to minimize the
amounts of persistent storage required for query processing.

3.1. Creation of Extended Petri Net

We consider a query Q expressed as a SELECT statement and
submitted for processing by a relational database server operating
on multi-tiered persistent storage. A query Q is ad-hoc processed
by the system in the following way. First, a query optimizer
transforms the query into the best query processing plan. SQL
statement EXPLAIN PLAN can be used to list a plan found by a

http://www.astesj.com/

N. N. Noon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 20-30 (2022)

www.astesj.com 23

query optimizer. Next, the implementations of extended relational
algebra operations such as selection, projection, join, anti-join,
sorting, grouping, and aggregate functions are embedded into the
query processing plan. Then, the plan is converted into an
Extended Petri Net.

Operation ej ∈ E where ej is member of query Q. Each
operation has the estimated amounts of input data to be read from
persistent storage and the estimated output amounts of data to be
saved in persistent storage. Algorithm 1 below transforms a query
Q into an Extended Petri Net.

The algorithm obtains a query processing plan from the results
of the EXPLAIN PLAN statement. From there, we get a set of
operations E = {ei, ..., em}. A query processing plan provides
information about the input data sets read by the operations and the
output data sets written by the operations. The permanent and
temporary data sets read and written by the operations in E form a
set of places B in Extended Petri Net. The arcs leading from the
input data sets to the operations and the arcs leading from the
operations to the output data sets create a set of arcs A. A query
processing plan provides information about the amounts of storage
read and written by the operations. Such values contribute to the
weight values wj attached to each arc and are represented by a pair
(aj, wj) in W. A weight value wj attached to an arc between the input
data set and an operation represents the total number of data blocks
read by the operation. A weight value wj attached to an arc between
the operation and output data set represents the total number of
data blocks written by the operation.

Algorithm 1: Create Extended Petri Net according to input a
query q

Input: a query Q
Result: an extended Petri Net <B, E, A, W>

(1) Get a query processing plan through the application of
EXPLAIN PLAN statement.
(2) Get operations from a query processing plan with the
estimated amounts of input and output storage required by
each operation. Then, create a set of operations E where ei is
an operation.
(3) while Iterate over E do
 - Let the current operation be ei.

- Let Bi, ..., Bm be the input data sets and let B(m+1), ..., Bn
be the output data sets of an operation ei.
- Append to A the arcs a1, …, am linking Bi-1, ..., Bi-m and
operation node.
- Next, label the arcs with the values wi1, …, wim
representing the total number of input data blocks read by
an operation ei and append the pairs to a weight function
W.
- Append to A the arcs am+1, …, an linking an operation
node ei and the nodes {B(m+1), ..., Bn}. Then, label the arcs
with values representing the total number of output data
blocks written by an operation ei and append the pairs (a1,
wi1), …, (am, wim) to a weight function W.

end

3.2. Serialization of Extended Petri Net

Preparation of an Extended Petri Net <B, E, A, W> for
processing requires serialization of its operations in a set E.
Serialization arranges a set of operations E into a sequence of
operations Es. There exist many ways that the operations in E can
be serialized in the implementations of more complex queries. If
the operations in E can be serialized in more than one way, then
we try to find a serialization that requires smaller amounts of
persistent storage for its processing. Algorithm 2 finds a
serialization of operations in E that tries to minimize the total
amounts of persistent storage allocated during query processing.
As a simple example, consider an Extended Petri Net given in
Figure 3. The operations e1 and e2 write 100 and 200 units of
persistent storage. Then, 100 units of persistent storage are
released after the processing of operations e3 and e6, and 200 units
of persistent storage are released after the processing of operations
e3 and e4. Since the processing of e3 and e4 releases more storage,
we assign e3 and e4 before e6 in the serialization.

A root operation in E is an operation such that at least one of
its input arguments is a permanent data set that belongs to the
contents of a database. A top persistent storage data set in B is a
data set that contains the final results of query processing and such
that is not read by any other operation in E. It is possible that a
query may output more than one top persistent storage data set. A
top operation is an operation that writes only to the top persistent
storage data sets.

Algorithm 2 traverses the arrows in A backward from the top
operations to the root operations and generates a sequence of
operations Es from a set of operations E.

At the very beginning, a sequence of operations Es is empty,
and none of the persistent storage data sets in B is marked as
released. In the first step, the algorithm finds the top operations
and inserts such operations into a set of candidate operations Ec.

For each operation in Ec, the algorithm computes profit using
formula (4). To compute profit, the algorithm deducts the total
amounts of persistent storage allocated by an operation from the
total amounts of persistent storage released by an operation. For
example, assume that the current operation is ei. To find the
amounts of persistent storage released by an operation ei, we
perform the summation of the amounts of storage in all input data
sets of operation ei not marked as released yet. It is denoted by
∑ 𝐵𝐵𝑗𝑗𝑛𝑛
𝑗𝑗=1 . To find the profits from the processing of an operation ei,

we deduct from the released amounts the amounts of persistent
storage included in the output data sets of the operation and
denoted as ∑ 𝐵𝐵𝑘𝑘𝑚𝑚

𝑘𝑘=(𝑛𝑛+1) in formula (3) below.

 p(ei) = ∑ 𝐵𝐵𝑗𝑗 − ∑ 𝐵𝐵𝑘𝑘𝑚𝑚
𝑘𝑘=(𝑛𝑛+1)

𝑛𝑛
𝑗𝑗=1 (3)

The profits are computed for each operation in Ec. The
algorithm selects an operation with the smallest profit. If more than
one operation has the smallest profit, then the algorithm randomly
chooses one of them. Let a selected operation be ei. The algorithm
removes ei from Ec, appends it in front of Es, and marks all data
sets read by ei as released. Next, the algorithm finds the operations
that write only to data sets marked as released by ei, such that data
sets released by ei are read only by the operation already in Es. An

http://www.astesj.com/

N. N. Noon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 20-30 (2022)

www.astesj.com 24

objective is to find the operations that can be appended to Ec in a
correct order of processing determined by a set of arcs A. Then,
the algorithm appends those selected operations to a set of
candidate operations Ec and the profits for each operation in Ec are
computed again. An operation with the lowest profits is appended
in front of Ec. The algorithm repeats the procedure until all
operations in E are appended in front of Es.

Algorithm 2: Generating Sequence of Operations Es

Input: An Extended Petri Net <B, E, A, W> from Algorithm 1.
Result: A sequences of operations Es for query Q.

(1) Create empty sequence Es = <> for Q, create empty candidate
operation sets Ec = ∅,
(2) Use a Petri Net <B, E, A, W> and get the top operation(s) from
Petri Net that is connected to the top container/container that
stored the final result and put those operation(s) into a set of
operations Ec = {ei, …, ek}.
(3) while Ec not empty do
 if Ec contains more than one operation then
 - Use formula (3) to compute the estimated profit for each

operation in Ec.
- Get all the operations with the smallest profit and
randomly select one of the operations with the smallest
profit.

 end
 - Let selected operation be ei.

- Append ei in front of Es and remove it from Ec.
- Mark all data sets read by ei as released.
- Find all operations that write only to the data sets marked as
released and save them in a set Ew.
- Remove from Ew the operation that writes to data sets read by
the other operations not in Es.
- Append the operations from Ew to Ec.

end
(4) End algorithm and return the result Es.

Example1: The example explains a sample trace of Algorithm
2 when applied to an Extended Petri Net given in Figure3. In the
first step, Ec contains only one operation e8 connected to top data
set B11. Therefore, e8 has the lowest profit in Ec. We append it in
front of Es = <e8> and we remove it from Ec. The data sets B5, B6,
and B7 read only by e8 are marked as released. The operations
writing only to the data sets B8, B9, and B10 are e5, e6, e7. None of
the data sets B8, B9, and B10 are read by an operation that is not in
Es. Hence the operations e5, e6, e7 can be added to Ec = {e5, e6, e7}.
The estimated profits for each operation computed with a formula
(3) are the following: p(e5) = (0 – 400) = -400, p(e6) = (100 – 50)
= 50 and p(e7) = (430 – 300) = 70. According to those results, e5 is
picked, appended in front of Es = <e5, e8>, and removed from Ec =
{e6, e7}. A data set B7 is an input data set, and it cannot be marked
as released. As no new data sets are released, Ec remains the same.
Next, an operation e6 which has the second smallest profit, is taken
from Ec. It is appended in front of Es = <e6, e5, e8> and is removed
from Ec = {e7}. A data set B3 read by e6 is marked as released. A
data set B3 is marked as written by operation e1 and later it is read
by e3. In this case, e1 cannot be appended to Ec because a data set
B3 is read by e3 that is not assigned to Es yet. Next, e7 is taken from
Ec, it is appended in front of Es = <e7, e6, e5, e8>, and is removed

from Ec. A data set B5 read by e7 is marked as released. A data set
B5 is written by the operations e3 and e4. Both operations are
appended to Ec = {e3, e4}. The computations of the profits provide:
p(e3) = 0 – 280 = -280 and p(e4) = 0 – 150 = -150. According to
the results, e3 is appended in front of Es = <e3, e7, e6, e5, e8> and it
is removed from Ec = {e4}. The data sets B3 and B4 read by e3 are
marked as released. The operations e1 and e2 are written to data
sets B3 and B4. An operation e1 can be appended into Ec because e6
that read B3 is already assigned in Es. An operation e2 cannot be
appended into Ec = {e1, e4} because e4 that reads a data set B4 is not
in Es yet. The computations of the profits provide: p(e1) = 0 – 100
= -100 and p(e4) = 200 – 150 = 50. According to the results, e1 is
appended in front of Es = <e1, e3, e7, e6, e5, e8> and is removed from
Ec = {e4}. Operation e1 reads an input data set, therefore, no new
operations can be added to Ec. Next, operation e4 is append to Es =
<e4, e1, e3, e7, e6, e5, e8> and is removed from Ec. A data set B4 read
by e4 is marked as released and operation e2 is appended to Ec.
Finally, operation e2 is appended in front of Es = <e2, e4, e1, e3, e7,
e6, e5, e8>. Operation e2 reads from an input data set and because
of that, no more operations can be assigned to Ec. The final
sequence of operations Es = <e2, e4, e1, e3, e7, e6, e5, e8> is generated
at the end.

3.3 Estimation of Storage Requirements and Generation of
Persistent Storage Release Plan

A sequence of operation Es obtained from the linearization of
an Extended Petri Net with Algorithm 2 is used to estimate the
requirements on the amounts of persistent storage needed for the
processing of the sequence. Algorithm 3 estimates the persistent
storage requirements while processing the operations in Es. The
output of Algorithm 3 is the estimated processing time T for Es
using the read/write speed of single-tier, the maximum required
storage V to process Es, and a sequence of the persistent storage
release plans 𝛿𝛿 = <(ei, (Bk, …, Bh)), …, (ej, (Bx, …, By))>.

 Algorithm 3 uses a sequence of operations Es and information
about reading speed per data block rn and writing speed per data
block wn parameters unchanged and extracted from a single tier in
multi-tiered persistent storage. Typically, the algorithm is
processed with the read/write parameters of the highest tier. First,
the algorithm sets V = 0, which stores the maximum storage
required to be allocated in the multi-tiered persistent storage, and
T = 0, which stores the estimated processing time for Es. Next, the
algorithm iterates over Es in step (2) in Algorithm 3 and lets the
current operation be ei. First, the total read storage Vr is computed
by summing all input storage for ei and the total write storage Vw
is computed by summing all output storage for ei. After that, the
current temporary storage Vtemp = Vtemp + Vw is updated, where Vtemp
stores the temporary storage required to process until the current
operation. Next, the algorithm compares Vtemp with V. If Vtemp is
larger than V, then V = Vtemp is updated. Next, the algorithm
computes the estimated total processing time ti for current
operation ei using the following equation.

 T(ei) = (Vr * rn) + (Vw * wn) (4)

Then, the algorithm updates the total processing time until
operation ei by summing T = T + T(ei).

Next, the algorithm gets the storage released by operation ei,
denoted as a pair (ei, (Bx, …, By)). The detailed procedure is shown

http://www.astesj.com/

N. N. Noon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 20-30 (2022)

www.astesj.com 25

from step (2)(vi) to step (2)(viii) in the algorithm. After this, the
storage is appended into the persistent storage release plan 𝛿𝛿.

If ei is the member of 𝛿𝛿 then the algorithm needs to release data
blocks after the output data blocks of ei are allocated. Next, the
algorithm needs to update Vtemp = Vtemp - the total number of release
storage by ei.

Algorithm 3 iterates those procedures above for each operation
from the input sequence Esi. Finally, Algorithm 3 will generate V,
T, and 𝛿𝛿 = <(ei, (Bk, …, Bh)), …, (ej, (Bx, …, By))>.

Algorithm 3: Estimate the total storage required, estimate the
execution time, and create a persistent storage release plan.

Input: A sequence of operations Es = <ei, …, ek> obtained
from Algorithm 2 and information about the reading speed per
data block rn and the writing speed per data block wn of a single
tier in multi-tiered persistent storage.
Result: The maximum storage V and the estimated processing
time T required to process Es and a sequence of the persistent
storage release plan 𝛿𝛿 = <(ei, (Bk, …, Bh)), …, (ej, (Bx, …, By))>.

(1) Set V= Vtemp = T = 0, Etemp = {} and 𝛿𝛿 =<>
(2) while iterate over Esi do
 (i) Let current operation be ei = ({Bj, …, Bk}, {Bm, …, Bn})

where {Bj, …, Bk} is the input set of the number of data blocks
and {Bm, …, Bn} is the output set of the number of data blocks.
(ii) Next, get the total reading (Vr) and writing (Vw) data
blocks for ei.
(iii) Next, use the values of Vr, Vw, rn, wn to compute T(ei) by
using a formula (4). Update T = T + T(ei).
(iv) Update Vtemp = Vtemp + Vw.

 (v) if Vtemp > V then V = Vtemp.
 (vi) Get all the input storage read only by ei and get all the

input storage connected to both ei and other operations in
Etemp and create a group of data sets (Bx, …, By).
(vii) Next, remove a data set from (Bx, …, By) if the data set
is the input argument of root operations in Es.
(viii) Create a pair (ei, (Bx, …, By)) and append it into 𝛿𝛿.

 if ei ∈ 𝛿𝛿 then
 - Add the storage requirements of (Bx, …, By) to get the

total number of data blocks Ri released by ei.
- Update Vtemp = Vtemp – Ri.

 end
end
(3) Return V, T and 𝛿𝛿 = <(ei, (Bk, …, Bh)), …, (ej, (Bx, …, By))>.

Example 2: A sample trace of Algorithm 3 is performed on a
sequence of operations Es = <e2, e4, e1, e3, e7, e6, e5, e8> from
Example 1 together with the reading and writing speed per data
block from the highest tier l3 = (0.05, 0.055, <500, 300, 100>). As
it has been mentioned before, the reading and writing speed per
data block is measured in the standardized time units.

 At the very beginning, we set V = Vtemp = T = 0, and 𝛿𝛿 =
<>. Next, we iterate over Es, and let the current operation be e2. It
reads Vr = 300 data blocks and writes Vw = 200 data blocks. Next,
we compute t2 = (300*0.05) + (200*0.055) = 26 and update T = T
+ t2 = 26. Then, we set Vtemp = V = 200. A persistent storage release

plan 𝛿𝛿 remains empty because e2 is the first operation in the
sequence Es.

In the next iteration, the current operation is e4. We compute t4
= (200*0.05) + (150*0.055) = 18.25 and update T = 26 + 18.25 =
44.25 and Vtemp = 200 + 150 = 350. Due to Vtemp being larger than
V, we increase V = 350. The operation does not release storage and
there is no need to update 𝛿𝛿.

In the next iteration e1 is the current operation. T = 59.75, Vtemp
= 350 + 100 = 450 and V= 450.

 In the next iteration e3 is the current operation. T = 90.15, Vtemp
= 450 + 280 =730 and V = 730. This time, e3 released 200 data
blocks, therefore, we need to update 𝛿𝛿 = <(e3, (B4))>. Total number
of data blocks released by e3 is 200. Therefore, we update Vtemp =
730 – 200 = 530.

In the next iteration, e7 is the current operation. T = 128.15 and
Vtemp = 530 + 300 = 830 and V= 830. This time we release storage
B5 and update 𝛿𝛿 = <(e3, (B4)), (e7, (B5)) > and Vtemp = 830 – 430 =
400.

In the next iteration, e6 is the current operation. T = 135.9 and
Vtemp = 400 + 50 = 450 and V= 830. The storage released by e6 is
B3 and update 𝛿𝛿 = <(e3, (B4)), (e7, (B5)), (e6, (B3)) > and Vtemp = 450
– 100 = 350.

In the next iteration, e5 is the current operation. The algorithm
computes T = 182.9 and Vtemp = 350 + 400 = 750 and V= 830. An
operation e5 does not release any storage.

The last operation from the sequence Es is e8. The algorithm
computes T = 247.9 and Vtemp = 750 + 500 = 1250 and V= 1250.
This operation releases three storages, B8, B9, and B10. The updated
storage released plan is 𝛿𝛿 = <(e3, (B4)), (e7, (B5)), (e6, (B3)), (e8, (B7,
B8, B9))>.

Finally, Algorithm 3 returns T = 247.9 of time units, V = 1250
data blocks and 𝛿𝛿 = <(e3, (Bi4)), (e7, (B5)), (e6, (B3)), (e8, (B7, B8,
B9))> for a sequence of operations Es.

4. Resource Allocation for a Group of Queries

Algorithm 4 takes on input a set of query processing plans ℰ =
 {Es1, …, Esn} created by Algorithm 2, a set of estimated processing
times 𝒯𝒯 = {T1, …, Tn}, a set of maximum storage requirements for
each processing plan 𝒱𝒱 = {V1, …, Vn}, a set of deallocation plans
𝒟𝒟 = {𝛿𝛿1, … , 𝛿𝛿𝑛𝑛} from the Algorithm 3, and a sequence of
persistent storage tiers L = <l0, …, ln>. The output of the algorithm
is a sequence of storage allocation plans P.

First, the algorithm gets the estimated processing time T and
the estimated highest allocation storage V for processing plans
from ℰ. Next, the algorithm collects the candidate operations from
ℰ , where a candidate operation is the first operation from each
sequence, and puts them into a set of candidate operations Ec. Next,
the algorithm picks one operation from Ec in the following way.
First, the algorithm picks the operations from the sequences with
the smallest volume, V. If more than one operation is found, then
from the operations found so far, the algorithm picks the operations
from the sequences with the shortest time, T. If again more than
one operation is found, then the algorithm uses formula (3) to
compute a profit for each operation and picks the operations with

http://www.astesj.com/

N. N. Noon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 20-30 (2022)

www.astesj.com 26

the highest profit. Again, if more than one operation is still found,
then the algorithm randomly picks one operation. Let selected in
this way, the candidate operation be ei = ({Bi, …, Bj}, {Bk, …, Bh}),
and the total number of data blocks in output data sets of the
operation be Vw.

Algorithm 4 passes the information about L, Vw, and P to
Algorithm 4.1 to find the best partition and generate the updated
storage allocation plan P. Next, Algorithm 4 must update L with
information about temporary storage to be released after the
processing of ei. To do so, Algorithm 4 passes a deallocation plan
𝛿𝛿𝑖𝑖 for Esi, a sequence of tiers L, and the operation ei to Algorithm
4.2 to update information about available storage in L.

Finally, an operation ei is removed from Esi. The algorithm
repeats the steps above for each operation from each sequence until
all sequences are empty. The algorithm returns the final storage
allocation plan P.

Algorithm 4: Generating storage allocation plans

Input: A set of processing plans ℰ = {Es1, …, Esn} from algorithm
2, deallocation plan 𝛿𝛿, the maximum storage V, and the estimated
processing time T for each sequence from Algorithm 3. A
sequence of tiers L = <l0, …, ln> where each tier li is described as
triple (ri, wi, <sij, …, sii>).
Result: A sequence of allocation plans P = <Dij, …, Dnk>.

(1) Create empty sequence of allocation plans P = < >.
(2) While until all sequences in ℰ are empty do
 - Create an empty set of candidate operations Ec = {}.

- Get the first operations from the sequences with the smallest
volume V and put them into Ec.

 if more than one operation is found in Ec then
 - Keep the operations from the sequence Es1, …, Esn with

the smallest estimated processing time T and remove the
rest of the operations from Ec.

 else if more than one operation is found in Ec then
 - Keep the operations with the highest profit using formula

(3) and remove the rest of the operations from Ec.
 else if more than one operation is found in Ec then
 - Select one operation randomly and make Ec empty.
 end

- Let the selected operation be ei = {Bi, …, Bj}, {Bk, …, Bh}
from Esj and its input storage be {Bi, …, Bj} and its output
storage be {Bk, …, Bh}.
- Let the number of total output storage be Vw.
- Use the information of L, Vw, and P to find the best partition
using Algorithm 4.1 and get the result of updated plan P from
algorithm 4.1.
- Pass the information about a deallocation plan 𝛿𝛿𝑗𝑗, a state of
multi-tiered persistent storage L, and the operation ei to
Algorithm 4.2 to update L with information about temporary
storage released by ei.
- Remove ei from Esj.
- Update estimated processing time T and V for Esj.

end
(3) Return the sequence of multi-tiered storage allocation plans
P = <Dij, …, Dnk>.

Algorithm 4.1 finds the best partition using the information in
L, Vw, P and ei provided by Algorithm 4.

Let ei be a member of Esj, and a set of allocation plans for ei is
denoted Dji. First, the algorithm needs to find the best partition
located at the highest possible tier in order to achieve the best
processing time. Next, the algorithm finds a partition that can
accommodate the storage Vw where Vw is the total output storage
required to store the temporary/permanent result of ei. The input
storage {Bi, …, Bj} is already assigned to one of the partitions on
L. Therefore, the algorithm needs to find the best storage allocation
for Vw only.

Next, the algorithm iterates over the tiers in L. Let the current
tier be (rn, wn, <snj, …, sni>). The algorithm needs to check whether
the required storage Vw can be allocated entirely in one partition or
over more partitions. When the amount of storage available at one
of the partitions in the highest tier is larger or equal to Vw, the
algorithm creates an allocation plan (Bi, snj) where Bi = Vw and
appends that plan to Dji. But sometimes, the amounts of storage
available at all partitions in the highest tier are smaller than the
required storage Vw. In that case, the algorithm splits storage Vw
into multiple storages Vw', …, Vw''. Some storage is to be allocated
at the faster tier, and some may be at the lower tier. For that case,
the algorithm splits Vw to allocate more than one partition and
creates allocation plans (Bi, snj), …, (Bj, snk). Next, the algorithm
appends all those plans into Dji. Finally, the allocation plan Dji is
appended to P and returned to Algorithm 4.

Algorithm 4.1: Finding the best partition and generating a plan
for storage allocations

Input: A multi-tiered persistent storage L = <l0, …, ln>, storage
requirements Vw of an operation ei, a sequence of storage
allocation plans P.
Result: The updated sequence of storage allocation plans P.

(1) Let the amounts of temporary storage Vtemp = 0 and let an
initial storage allocation plan Dji for the operation ei be empty.
(2) while iterate over L in reverse order do
 (i) Let current tier be li = (ri, wi, <sii, …, sin>) and let <sii, …,

sin> be a sequence of partitions in li arranged from the
smallest to the largest partition.
(ii) Iterate over partitions <sii, …, sin> and choose a partition
sik such that its size is equal or larger than Vw.

 (iii) if size of sik is larger or equal to Vw then
 - Create a pair (Bi, sni) where Bi = Vw and append it into Dji.

- Update sik = sik – Vw and Vw = Vtemp.
- Sort a sequence of partitions arranged from smallest
available storage to largest available storage.

 else if all storage in current set is smaller than Vw then
 - Update Vtemp = Vw.

while iterate over partition in reverse order and until Vtemp
= 0 or all available storage become zero do

 - Let the current storage in a set be sik.
- Split storage into two parts: Vw, where Vtemp = Vtemp - sni
and Vw = sik

http://www.astesj.com/

N. N. Noon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 20-30 (2022)

www.astesj.com 27

- Create a pair (Bi, sik) where Bi = Vw and append it into
Dji.
- Update sii = 0, and Vw = Vtemp.
- Sort a sequence of partitions arranged from smallest
available storage to largest available storage.

 end
 end
end
(3) Append Dji = {(Bi, sni), …, (Bj, smk)} into P.
(4) Return P.

Algorithm 4.2 releases persistent storage no longer needed by
an operation ei. An input to the algorithm is a deallocation plan 𝛿𝛿𝑖𝑖,
a sequence of tier L = <(rn, wi, <sni, …, sni>), …, (r0, w0, <sn0, …,
snj>)>, and the operation ei passed from Algorithm 4.

Algorithm 4.2 checks whether ei releases any persistent
storage. If ei is a member of the deallocation plan 𝛿𝛿𝑖𝑖 , then the
algorithm needs to update L according to the deallocation plan,
such as removing the storage released by ei from the occupied
storage. If ei is not a member of the deallocation plan, then the
algorithm does not need to update L.

Algorithm 4.2: Deallocation the storage

Input: A deallocation plan 𝛿𝛿𝑖𝑖, a multi-tiered persistent storage L
= <l0, …, ln>, and the operation ei.
Result: The updated multi-tiered persistent storage L = <l0, …,
ln>.

(1) if ei ∈ 𝛿𝛿𝑖𝑖 then
 - Get the storage released by ei like (Bx, …, By).
 while iterate over (Bx, …, By) do
 - Let current storage be Bi and the location of Bi be (Bi, shi)

where storage Bi is located at partition i from tier lh.
- Remove a storage Bi from partition i in level lh and update
shi = shi + Bi.
- Let shi is belong to the sequence <shx, …, shy>.
- Sort a sequence of partitions <shx, …, shy> arranged from
smallest available storage to largest available storage.

 end
end
(2) Return the updated L = <l0, …, ln>.

 Algorithm 5 computes the total processing time Tf for the
allocation plan P created by Algorithm 4. First, the algorithm
iterates over plan P. Let the current set of plans be Dji = {(Bi, sni),
…, (Bj, sik)} where Dji is a set of plans for the operation ei in
sequence Esj. Next, the algorithm iterates over Dji. Let the current
pair be (Bi, sni). Then, the algorithm computes the processing time
for that pair. If Bi is a member of input data blocks for ei, then
compute Tf = Tf + (Bi * rn) where rn is a reading speed per data
block. If Bi is the member of output data blocks for ei, then compute
Tf = Tf + (Bi * wn) where wn is a writing speed per data block. Next,
the algorithm checks whether ei is the last operation in the
sequence Esj or not. If ei is the last operation, then the algorithm
needs to compute the reading time for final storage such as Tf = Tf
+ (Vw * rn), where Vw is the total data blocks written by operation

ei. Finally, the algorithm returns the total execution time for plan
P.

Algorithm 5: Final estimated processing time for allocation
plan

Input: A sequence of allocation plans P = <Dij, …, Dnk>.
Result: Total estimated processing time Tf for allocation plan P.

(1) Let total processing time for sequences be Tf = 0.
(2) while iterate over P do
 - Set total writing data block be Vw = 0.

- Let the current plan be Dji = {(Bi, sni), …, (Bj, sik)} for
operation ei = {Bi, …, Bj}, {Bk, …, Bh} from Esj.

 while iterate over Dji then
 - Let current pair be (Bi, sni) where Bi is a total number of

data blocks allocated at a tier n in a partition i (sni).
if Bi is member of input storage {Bi, …, Bj} then

 - Tf = Tf + (Bi * rn)
 else
 - Tf = Tf + (Bi * wn)
 end
 end
 if ei is the last operation from Esj then
 - Read the final result and release the storage.

- Update Tf = Tf + (Vw * rn).
 end
end
(3) Return total processing time for allocation plan Tf.

Example 3: In this example, we use a multi-tiered persistent
storage with 3 tiers. We assume that the highest tier l2 has 3
partitions, the lower one l1 has 2 partitions, and the bottom tier l0
has 3 partitions. The parameters of the tiers are listed below.

L = <l0, l1, l2>

- l0 = (0.2, 0.21, <200, 500, 1000>)

- l1 = (0.1, 0.105, <100, 200>)

- l2 = (0.05, 0.055, <40, 50>)

Next, we use a set of sequences ℰ = {Es1, Es2, Es3}. A sequence
Es1 consists of the following 3 operations Es1 = <e1, e2, e3> where

- e1 = ({50, 50}, {100})

- e2 = ({100}, {50})

- e3 = ({50}, {20})

The total estimated processing time for Es1 is T2 = 37.85 and V1
= 150.

The sequence Es2 consists of one operation, Es2 = < e1> where

- e1 = ({150}, {100})

The total estimated processing time for Es2 is T2 = 40.50 and V2
= 100.

The last sequence Es3 consists of 4 operations Es3 = < e1, e3, e2,

e4, > where

http://www.astesj.com/

N. N. Noon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 20-30 (2022)

www.astesj.com 28

- e1 = ({50}, {40, 40})

- e2 = ({40}, {20})

- e3 = ({40}, {10})

- e4 = ({30}, {10})

The total estimated processing time for Es3 is T3 = 22.60 and V3
= 110.

Following step (2) of Algorithm 4, we picked an operation e1
from sequence Es2, because V2 is the smallest volume, and put it
into Ec = {e1}. Since we have only one candidate operation, it is
passed to Algorithm 4.1 to find the storage allocations for the
outputs of operation e1. According to Algorithm 4.1, the best
storage is s23 and therefore, we created a plan like (100, s23). We
then appended the plan into P = <(100, s23)>. Next, Algorithm 4
released storage if e1 needs to release some storage. According to
Algorithm 4.2, e1 does not need to release any storage. We repeated
the above procedure and finally get the plan P for ℰ where P =
<{(40, s21), (50, s22), (10, s11)}, {(40, s21), (40, s22)}, {(10, s22), (10,
s11)}, {(10, s21)}, {(10, s21)}, {(40, s21), (50, s22), (10, s11)}, {(50,
s11)}, {(20, s21)}>.

Next, we compute the processing time for a sequence of plan
P by using the algorithm 5. The total processing time Tf for ℰ is
112.55 time units. With random allocation, the total processing
time for ℰ become 143.45 time units. Without multi-tiered
persistent storage with partitions, the total execution time for ℰ is
219.90 time units.

5. Example/Experiment

Different types of persistent storage devices such as SSD,
HDD, and NVMe can be used to create a multi-tiered persistent
storage system. In the experiment, we picked a sample multi-tiered
persistent storage L that consists of 4 tiers <l0, l1, l2, l3>, where l3
is the fastest tier such as NVMe and l0 is the slowest tier, such as
HDD and l2 and l1 are faster and slower SSDs. Each tier is divided
into two partitions of different sizes. Table 1 shows the read and
write speed per data block expressed in standardized time units and
the total number of data blocks available at each partition.
Table 1: Read/Write Speed with Available Size for Multi-tiered Storage Devices

Level of
Devices

Reading
Speed

Writing
Speed

Partition 1 Partition 2

l0 0.15 * 103 0.155 * 103 1000 2000
l1 0.1 * 103 0.105 * 103 500 600
l2 0.08 * 103 0.085 * 103 150 200
l3 0.05 * 103 0.055 * 103 50 100

In the experiment, we applied Algorithm 1 to convert eight
query processing plans into the Extended Petri Nets. Next, we used
Algorithm 2 to find the optimal sequences of operations for each
Petri Net. Next, Algorithm 3 was used to get the deallocation plans
𝛿𝛿, the maximum volumes V, and the estimated execution times T
required for each sequence of operations found by Algorithm 2.
The values for each sequence are the following.

Es1= <e1, e3, e2, e4, e5, e6, e7, e8, e9>

V1 = 150, T1 = 110.70
Table 2: Operations With Input and Output Data sets For Es1

Operation Input data set Output data set

e1 300 100
e2 200 50
e3 100 50
e4 50 20
e5 50, 20 50
e6 50 20, 20
e7 20 10
e8 20 10
e9 10, 10 10

Es2= <e2, e5, e1, e4, e7, e9, e3, e6, e8, e11, e10, e12>

V2 = 300, T2 = 108.35
Table 3: Operations with Input and Output Data sets For Es2

Operation Input data set Output data set
e1 100 50
e2 100 70
e3 100 60
e4 50 30
e5 70 30
e6 60 40
e7 30, 30 50
e8 40 20
e9 50 30
e10 20 10
e11 30 20
e12 20, 10 20

Es3= <e1, e3, e2, e4, e7, e5, e8, e6, e11, e10, e9, e12, e13, e14, e15>

V3 = 300, T3 = 147.40
Table 4: Operations with Input and Output Data sets For Es3

Operation Input data set Output data set
e1 500 400
e2 600 300
e3 400 100, 50
e4 300 200, 50
e5 100 30
e6 50 30
e7 200 100
e8 50 10
e9 30 20
e10 30 10
e11 100, 10 60
e12 20 10
e13 60 50
e14 50 40
e15 10, 10, 40 50

Es4= <e1, e2, e4, e3, e5 >

V4 = 250, T4 = 100.70
Table 5: Operations with Input and Output Data sets For Es4

Operation Input data set Output data set
e1 80 70
e2 70 30, 30
e3 30 20
e4 30 10
e5 20, 10 20

Es5= <e1, e3, e5, e2, e4, e6, e7, e9, e8, e10 >

V5 = 200, T5 = 93.50
Table 6: Operations with Input and Output Data sets For Es5

Operation Input data set Output data set
e1 300 100

http://www.astesj.com/

N. N. Noon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 20-30 (2022)

www.astesj.com 29

e2 100 50
e3 200 100
e4 50 30
e5 100 50
e6 30 20
e7 100 50
e8 50 30
e9 20, 50 40
e10 30, 40 50

Es6 = <e1, e2, e3>

V6 = 150, T6 = 37.85
Table 7: Operations with Input and Output Data sets For Es6

Operation Input data set Output data set
e1 50, 50 100
e2 100 50
e3 50 20

Es7 = < e1>

V7 = 100, T7 = 40.50
Table 8: Operations with Input and Output Data sets For Es7

Operation Input data set Output data set
e1 150 100

 Es8 = < e1, e3, e2, e4, >

V8 = 110, T8 = 22.60
Table 9: Operations with Input and Output Data sets For Es8

Operation Input data set Output data set
e1 50 40, 40
e2 40 20
e3 40 10
e4 20, 10 10

Next, we used Algorithm 4 to decide on an order of concurrent
processing of operations from the sequences in ℰ. Algorithms 4.1
and 4.2 were used within Algorithm 4 to find the best allocation of
partitions and to generate a persistent storage allocation plan. The
details of the plan are listed in the Appendix. After that, we used
Algorithm 5 to simulate the processing of the plan to get the total
estimated execution time Tf, see Table X.

In the second experiment, we used the same set of sequences
of operations ℰ, and whenever more than one operation could be
selected for processing, we randomly picked an operation. The
total execution time for the second experiment is given in Table X.

In the third experiment, we used only a single tier of persistent
storage, and like before, whenever more than one operation could
be selected for processing, we randomly picked an operation. The
final results of all experiments are summarized in a Table X.

Table 10: Summary of Experimental Results

Experiment Method Total execution
time-units

Experiment 1 Using allocation plan over
multi-tiered persistend
storage that proposed in this
work.

857

Experiment 2 Using random allocation plan
over multi-tiered persistend
storage.

1,068.35

Experiment 3 Using allocation plan without
multi-tiered persistend
storage.

1,466.95

By comparing those three results, one can find that the
execution plan for experiment 1 achieves better performance and
faster execution time than experiment 2 and experiment 3.

6. Summary and Future Work

This paper presents the algorithms that optimize the allocations
of persistent storage over a multi-tiered persistent storage device
when concurrently processing a number of database queries. The
first algorithm converts a single query processing plan obtained
from a database system into an Extended Petri Net. An Extended
Petri Net represents many different sequences of database
operations that can be used for the implementation of a query
processing plan. The second algorithm finds in an Extended Petri
Net a sequence of operations that optimizes storage allocation in
multi-tiered persistent storage when a query is processed. The third
algorithm estimates the maximum amount of persistent storage and
processing time needed when a sequence of operations found by
Algorithm 2 is processed.

In the second part of the paper, we considered the optimal
allocation of multi-tiered persistent storage when concurrently
processing a set of queries. We assumed that the first three
algorithms are used for individual optimization of storage
allocation plans for each query in a set. The fourth algorithm
optimizes the allocation of multi-tiered persistent storage when a
set of sequences of operations obtained from the first three
algorithms is concurrently processed. The algorithm creates a
persistent storage allocation and releases a plan according to the
available size and speed of the devices implementing multi-tiered
persistent storage.

The last algorithm processes a storage allocation plan created
by the previous algorithm and returns the estimated processing
time. To validate the proposed algorithms, we conducted several
experiments that compared the efficiency of processing plans
created by the algorithms with the random execution plans and
execution plans without multi-tiered persistent storage. According
to the outcomes of experiments, the storage allocation plans
obtained from our algorithms consistently achieved better
processing time than the other allocation plans.

Several interesting problems remain to be solved. An optimal
allocation of persistent storage in the partitions of multi-tiered
storage contributes to a dilemma of spreading a large allocation
over smaller allocations at many higher-level partitions versus a
single allocation at a lower partition.

Another interesting question is related to a correct choice of a
level at which storage is allocated depending on the stage of query
processing. It is almost always such that the initial stages of query
processing operate on the large amounts of storage later reduced to
the smaller results. It indicates that the early stages of query
processing should be prioritized through storage allocations at
higher levels of multi-tiered storage. It means that the parameters
of multi-tiered storage allocation may depend on the phases of
query processing with faster storage available at early stages.

The next interesting problem are the alternative multi-tiered
storage allocation strategies. In one of the alternative approaches,
after the serialization of Extended Petri Nets representing
individual queries, it is possible to combine the sequence of
operations into one large Extended Petri Net and apply
serialization again. Yet another idea is to combine the Extended

http://www.astesj.com/

N. N. Noon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 20-30 (2022)

www.astesj.com 30

Petri Nets of individual queries into one Net and try to eliminate
multiple accesses to common data containers.

The next stimulating problem is what to do when the
predictions on the amounts of data read and/or written to multi-
tiered persistent storage do not match the reality. A solution for
these cases may require ad-hoc resource allocations and dynamic
modifications of existing plans.

It is also possible that a set of queries can be dynamically
changed during the processing. For example, a database
application can be aborted, or it can fail. Then, the management of
persistent storage also needs to be dynamically changed. A
solution to such a problem would require the generation of a plan
with the options where certain tasks are likely to increase or
decrease their processing time.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

I would also like to extend my thanks to the anonymous reviewers
for their valuable time and feedback. Finally, I wish to thank my
parents for their support and encouragement throughout my
studies.

References

[1] Data Storage Trends in 2020 and Beyond,
https://www.spiceworks.com/marketing/reports/storage-trends-in-2020-
and-beyond/ (accessed on 30 April 2021)

[2] U. Sivarajah, M. M. Kamal, Z. Irani, V. Weerakkody, "Critical Analysis of
Big Data Challenges and Analytical methods". In Journal of Business
Research, 70, 263--286, 2017.

[3] S. wang, Z. Lu, Q. Cao, H. Jiang, J. Yao, Y. Dong, P. Yang, C. Xie,
"Exploration and Exploitation for Buffer-controlled HDD-Writes for SSD-
HDD Hybrid Storage Server", ACM Trans. Storage 18, 1, Article 6,
February 2022.

[4] Apache Ignite Multi-tier Storage, https://ignite.apache.org/arch/multi-tier-
storage.html (accessed on 30 April 2021)Trans. Roy. Soc. London, A247,
529–551, April 1955.

[5] Tiered Storage, https://searchstorage.techtarget.com/definition/tiered-
storage (accessed on 30 April, 2021).

[6] E. Tyler, B. Pranav, W. Avani, Z. Erez, "Desperately Seeking Optimal Multi-
Tier Cach Configurations", In 12th USENIX Workshop on Hot Topics in
Storage and File System (HotStorage 20), 2020.

[7] H. Shi, R. V. Arumugam, C. H. Foh, K. K. Khaing, "Optimal disk storage
allocation for multi-tier storage system", Digest APMRC, Singapore, 2012,
1-7.

[8] N.N. Noon, "Automated performance tuning of database systems", Master
of Philosophy in Computer Science thesis, School of Computer Science and
Software Engineering, University of Wollongong, 2017.

[9] N.N. Noon, J.R. Getta, "Optimisation of query processing with multilevel
storage", Lecture Notes in Computer Science, 9622 691-700. Da Nang,
Vietnam Proceedings of the 8th Asian Conference, ACIIDS 2016.

[10] B. Raza, A. Sher, S. Afzal, A. Malik, A. Anjum, Adeel, Y. Jaya Kumar,
"Autonomic workload performance tuning in large-scale data repositories",
Knowledge and Information Systems. 61. DOI: 10.1007/s10115-018-1272-
0.

[11] N.N. Noon, J.R. Getta, T. Xia, "Optimization Query Processing for Multi-
tiered Persistent Storage", IEEE 4th International Conference on Computer
and Communication Engineering Technology (CCET), 2021, 131-135, doi:
10.1109/CCET52649.2021.9544285.

[12] R. Wolfgang, "Understanding Petri Nets: Modeling Techniques, Analysis
Methods, Case Studies", Springer Publishing Company, Incorporated, 2013.

APPENDIX

A processing plan for the experiments described in a section 6
of the paper is the following sequence P of the individual plans.

P = < D71, D81, D83, D82, D84, D61, D62, D63, D11, D13, D12, D14, D15,
D16, D17, D18, D19, D51, D53, D55, D52, D54, D56, D59, D58, D510, D41, D42,
D44, D43, D45, D22, D25, D21, D24, D27, D29, D23, D26, D28, D211, D210,
D212, D31, D33, D32, D34, D37, D35, D38, D36, D311, D310, D39, D312, D313,
D314, D315>

Each plan Dij is the following set of pairs:

D71 = {(50, s31), (100, s32)}, D81 = {(40, s31), (10, s31), (30, s32)}

D83 = {(20, s32)}, D82 = {(10, s31)}, D84 = {(10, s31)}

D61 = {(100, s32)}, D62 = {(50, s31)}, D63 = {(20, s32)}

D11 = {(100, s32)}, D13 = {(50, s31)}, D12 = {(50, s32)}, D14 = {(20,
s32)}, D15 = {(50, s32)}, D16 = {(20, s31), (20, s31)}, D17 = {(10, s31)},
D18 = {(10, s31)}, D19 = {(10, s31)}

D51 = {(50, s31), (100, s32), (50, s21)}, D53 = {(100, s21)}, D55 =
{(50, s31)}, D52 = {(50, s32)}, D54 = {(30, s32)}, D56 = {(20, s32)}, D57
= {(50, s32)}, D59 = {(30, s32), (10, s21)}, D58 = {(30, s32)}, D510 =
{(50, s31)}

D41 = {(70, s32)}, D42 = {(30, s31), (30, s32)}, D44 = {(10, s31)},
D43 = {(20, s31)}, D45 = {(20, s31)}

D22 = {(70, s32)}, D25 = {(30, s32)}, D21 = {(50, s31)}, D24 = {(30,
s32)}, D27 = {(50, s31)}, D29 = {(30, s32)}, D23 = {(60, s32)}, D26 =
{(40, s31)}, D28 = {(20, s32)}, D211 = {(20, s31)}, D210 = {(10, s31)},
D212 = {(20, s31)}

D31 = {(150, s21), (100, s22), (50, s31), (100, s32)}, D33 = {(50, s11),
(100, s22)}, D32 = {(150, s21), (50, s31), (100, s32)}, D34 = {(150, s11),
(50, s22), (50, s22)}, D37 = {(100, s32)}, D35 = {(30, s31)}, D38 = {(10,
s31)}, D36 = {(20, s21), (10, s31)}, D311 = {(60, s21)}, D310 = {(10, s31)},
D39 = {(20, s32)}, D312 = {(10, s31)}, D313 = {(50, s32)}, D314 = {(40,
s31)}, D315 = {(50, s32)}

http://www.astesj.com/
https://www.spiceworks.com/marketing/reports/storage-trends-in-2020-and-beyond/
https://www.spiceworks.com/marketing/reports/storage-trends-in-2020-and-beyond/
https://ignite.apache.org/arch/multi-tier-storage.html
https://ignite.apache.org/arch/multi-tier-storage.html
https://searchstorage.techtarget.com/definition/tiered-storage
https://searchstorage.techtarget.com/definition/tiered-storage

	2. Basic Concepts
	3. Resource Allocation for a Single Query
	3.1. Creation of Extended Petri Net
	3.2. Serialization of Extended Petri Net
	3.3 Estimation of Storage Requirements and Generation of Persistent Storage Release Plan

	- Append to A the arcs am+1, …, an linking an operation node ei and the nodes {B(m+1), ..., Bn}. Then, label the arcs with values representing the total number of output data blocks written by an operation ei and append the pairs (a1, wi1), …, (am, wim) to a weight function W.
	4. Resource Allocation for a Group of Queries
	5. Example/Experiment
	6. Summary and Future Work
	Conflict of Interest
	Acknowledgment

	References
	APPENDIX

