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 The efficient processing of database applications on computing systems with multi-tiered 
persistent storage devices needs specialized algorithms to create optimal persistent storage 
management plans. A correct allocation and deallocation of multi-tiered persistent storage 
may significantly improve the overall performance of data processing. This paper describes 
the new algorithms that create allocation and deallocation plans for computing systems with 
multi-tiered persistent storage devices. One of the main contributions of this paper is an 
extension and application of a notation of Petri nets to describe the data flows in multi-tiered 
persistent storage. This work assumes a pipelined data processing model and uses a 
formalism of extended Petri nets to describe the data flows between the tiers of persistent 
storage. The algorithms presented in the paper perform linearization of the extended Petri 
nets to generate the optimal persistent storage allocation/deallocation plans. The paper 
describes the experiments that validate the data allocation/deallocation plans for multi-
tiered persistent storage and shows the improvements in performance compared with the 
random data allocation/deallocation plans. 
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1. Introduction  

In the last decade, we have observed the fast-growing 
consumption of persistent storage used to implement operational 
and analytical databases [1]. While the databases become larger, 
the total number of database applications also continuously 
increases and the applications themselves, especially the analytical 
ones, become more sophisticated and advanced than before [2]. 
Such trends increase the pressure on hardware resources for data 
processing, particularly on high-capacity and fast persistent 
storage devices. 

Usually, the financial constraints invalidate the single-step 
replacements of all available persistent storage devices with better 
ones. Instead, a typical strategy is based on the continuous and 
systematic replacements of persistent storage devices with only a 
few at a time. Also, from an economic point of view, it is not worth 
investing significant funds in faster and larger persistent storage 
devices when only some of the available data is frequently 
processed. In reality, only some data sets are accessed more 
frequently than others. Financial and data processing requirements 
lead to the simultaneous utilization of persistent storage devices of 
different speeds and capacities. Therefore, data is distributed over 
many different storage devices with various capacity and speed 
characteristics [3]. This leads to a logical model of the multi-tiered 
organization of persistent storage [4, 5]. The lower tiers (levels) 

consist of higher capacity and slower persistent storage devices 
than the lower capacity and faster devices at the higher levels. 

Several research works have been already performed on the 
automatic allocation of storage resources over multi-tiered 
persistent storage devices and multi-tier caches. For example, in 
one of the solutions, persistent storage can be allocated over 
several cache tiers and in different arrangements [6]. Another 
research work shows how to distribute data on disk storage in the 
multi-tier hybrid storage system (MTHS) [7]. 

A number of approaches schedule the allocation of resources 
over multi-tiered persistent devices based on future predicted 
workloads. The algorithms for an optimal allocation of persistent 
storage on multi-tiered devices in environments where future 
workloads can be predicted have been proposed in [8, 9]. These 
algorithms arrange data according to an expected workload and 
contribute to the automated performance tuning of database 
applications. Most of the existing research outcomes show that 
performance tuning with the predicted database workloads 
improves performance during processing time and reduces 
database administration time [10]. 

A logical model of multi-tiered persistent storage consists of 
several tiers (levels) of persistent storage visible as a single 
persistent storage container. The processing speeds at the same tier 
are alike. Each tier is divided into several partitions, where each 
partition is a logical view of a physical persistent storage device 
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that implements a particular tier. Such a view is compatible with 
the organization of persistent storage within cloud systems. 
Nowadays, data can be stored on several remote devices. It 
contributes to the changes in the working style where the 
employees can work from home or distance. Therefore, storage on 
the cloud is required to provide access to data online anywhere, 
anytime over an internet connection. In addition, cloud storage for 
organizations must be shared by many users. Therefore, 
partitioning of persistent storage is required so that users can 
access storage simultaneously. Also, the efficient management of 
storage allocation on multi-tiered persistent storage with partitions 
is an essential factor for the performance of cloud systems. 

The illustration of multi-tiered persistent storage with 
partitions is shown in Figure 1. Typically, the higher tiers of 
persistent storage have lower capacities and faster access times 
than the lower tiers. In a physical model, a sample multi-tiered 
persistent storage consists of the physical persistent storage 
devices available on the market, such as NVMe, SSD, and HDD 
[3]. 

Efficient processing of data stored at multi-tiered persistent 
storage is an interesting problem. When processed, data can 
“flow” from lower tiers to free space at the higher tiers to speed-
up access to such data in the future. Scheduling the data transfers 
between the tiers require the allocation/deallocation of data based 
on the speed and capacities of the tiers. Thus, making the correct 
scheduling decisions automatically and within a short period of 
time becomes a critical factor for the overall performance of data 
processing. 

Because of its limited capacity, it is impossible to store all data 
at the topmost and the fastest tier. Therefore, we must prepare for 
a compromise between the capacity, speed, and price of available 
multi-tiered persistent storage. Such compromise leads to all data 
being distributed over many tiers of multi-tiered persistent storage. 

 
Figure 1: Illustration of multi-tiered persistent storage with four tiers divided into 

partitions 
 

The main research objective of this work is to speed up data 
processing in environments where all data is located at multi-tiered 
persistent storage. We assume that data processing is organized as 
a collection of pipelines where the outputs from one operation are 
the inputs to the next operation in a pipeline. A strategy to speed 
up the data processing in a pipeline is to write the outputs of each 
operation to the highest available persistent tiers. The benefits of 
such a strategy are twofold. First, data is written faster at the higher 
tiers than at the lower ones. Second, the following operation in a 

pipeline reads input data more quickly from the higher tiers. An 
essential factor in such a strategy is an optimal release of persistent 
storage allocated at the higher tiers to store temporary data. 

Another problem addressed in the paper is the lower-level 
optimization of query processing on multi-tiered persistent 
storage. The present query optimizers do not consider an efficient 
implementation of higher-level operations on data located at multi-
tiered persistent storage. However, it is possible to significantly 
improve performance by implementing higher-level operations in 
ways consistent with the characteristics of available persistent 
storage. Our second research objective is to generate more efficient 
data processing plans for predicted and unpredicted database 
workloads through the optimal implementation of elementary 
operations on data located at multi-tiered persistent storage. 

The contributions of the paper are the following. First, the 
paper shows how to extend and apply a notation of Petri nets to 
describe the data flows in multi-tiered persistent storage. Second, 
the paper presents the algorithms that find optimal query 
processing plans through the linearization of Petri nets. Third, the 
paper analyses the results of experiments to show that query 
processing plans generated by the new algorithms efficiently use 
the properties of multi-tiered persistent storage. 

This paper is an extension of work originally presented in [11]. 
The paper is organized in the following way. Section 2 extends a 
notation of Petri nets to describe data flow in query processing. 
Sections 3 and 4 present the algorithms for the automatic allocation 
of storage available on multi-tiered persistent storage devices. 
Section 5 describes an experiment, and Section 6 summarizes the 
paper. 

2. Basic Concepts 

In this work, we consider a scenario where a database 
application submits an SQL query to a relational database server. 
Then, a typical query optimizer finds an optimal query processing 
plan. Such a plan includes the list of operations organized as a 
directed bipartite graph. Then, to discover the data flows between 
the elementary operations, a plan is transformed into an extended 
Petri Net [12]. Finally, a graphical notation of Petri Nets represents 
the flow of data when processing a query. 

The original Petri net model includes two types of elements: 
places and transactions. Places are denoted as circles, and 
transactions are denoted as vertical rectangles. Zero or more 
tokens, denoted as small black circles, can be located in the places. 
Arcs are connected between places and transactions—the 
illustration of Petri Net is shown in Figure 2. 

An Extended Petri Net is quadruple <B, E, A, W> where B and 
E are disjoint sets of places and transitions. Places are visualized 
as circles, and transitions are visualized as rectangles or bars. Arcs 
A ⊆ (B × E) ∪ (E × B) connect the places and transitions. A place 
may contain a finite number of tokens visualized as black circles, 
or it can be empty. A transition fires depending on the number of 
tokens connected at the input place. When an input place has no 
token, a transition is at a waiting state. 

In our case, sets of places, B, are interpreted as input/output 
data sets, and the sets of transitions, E, are interpreted as operations 
on data sets (see Figure3 below).  
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Figure 2: An original sample structure of a Petri net 

Arcs, A, determine the input and output data sets of the 
operations. A weight function W: A→N+ determines the estimated 
total number of data blocks read and written by each operation. See 
the numbers attached to the arcs in Figure3. The root nodes are the 
places (data sets) in B that do not have the arcs from the transitions 
(operations) E. The root nodes represent the input data sets located 
in a database. An operation can have more than one input and 
output data set. Likewise, more than one operation can share input 
and output data sets. 

There are two types of persistent storage data sets B: permanent 
or temporary. Both types of data sets are stored in multi-tiered 
storage. A temporary data set can be removed from the storage 
when it is no longer needed.  

 
Figure 3: Data processing and data flows represented as an extended Petri net 

 
Let E = {ei, ..., ej} be a set of operations obtained for a query Q 

processing plan created by a database query optimizer. Each 
operation ei is represented by a pair ei = ({Bi, ..., Bm}, {B(m+1), ..., 
Bn}), where {Bi, ..., Bm} are the input data sets and {B(m+1), ..., Bn} 
are the output data sets of an operation ei in E. Some of the input 
and output data sets processed by an operation ei are permanent, 
and some of them are temporary.  

This paper focuses on managing the multi-tiered persistent 
storage efficiently for each input/output data sets of each operation 
and generates the best allocation plan, called a processing plan, for 
each query. A list of persistent storage tiers is denoted as a 
sequence L = <l0, ..., ln>. We have n+1 tiers where l0 denotes the 
lowest tier, called a base tier or a backup tier. The highest tier is 
denoted by ln. Each tier li for i = 0 … n is described as a triple (ri, 
wi, <si1, ..., sin>) where ri is a read speed per data block at tier li, wi 
is a write speed per data block at tier li, and <si1, ..., sin> is a 
sequence of partitions arranged from smallest available storage to 
largest available storage, where sij is an amount of free space 
available in partition j at tier li. The read and write speed per data 
block is measured in the standardized time units that can be 
converted into real-time units when a specific hardware 
implementation of a persistent storage tier is considered.  

The processing plan is denoted as P = <Dij, ..., Dnk>, where Dji 
is a set of plans for an operation ei, where ei is in Esj. Each plan is 
a pair and is denoted as (Bi, sni) and Bi is the total number of 
input/output data blocks located in partition i in tier ln (index of sni). 
If lj = l0, then the data blocks are located at the lowest tier in the 
multi-tiered storage. 

After the output result of the operation ei is allocated, 
unnecessary temporary input storage of operation ei needs to be 
removed from multi-tiered persistent storage according to the 
persistent storage release plan. The persistent storage release plan 
is denoted as a sequence of pairs δ = < (ei, (Bk, …, Bh)), …, (ej, (Bx, 
…, By))>, where each pair (ei, (Bk, ..., Bh) is a group of data sets (Bk, 
..., Bh) that can be released after the results of an operation ei are 
saved.  

Then, the total processing time to read (Bi, sij) data blocks 
located at partition j in tier li is TBi = Bi * ri. Formula (1) given 
below determines the total processing time Tr to read the data 
blocks for each input data set Di = {(B1, snj), …, (Bm, skn)}. 

 Tr = Max� 𝑇𝑇𝐵𝐵1 + ⋯+ 𝑇𝑇𝐵𝐵𝑚𝑚� (1) 

Similarly, formula (2) determines the total processing time Tw 
to write the data blocks for each output data set Dj = {(B(m+1), sij), 
…, (Bn, skh)}.  

 Tw = Max � 𝑇𝑇𝐵𝐵(𝑚𝑚+1) + ⋯+ 𝑇𝑇𝐵𝐵𝑛𝑛� (2) 

Let an Extended Petri Net <B, E, A, W> represent a query 
processing plan. Then, whenever it is possible, the output data sets 
of the operations E = {ei, ..., ek} are written to the tiers located 
above the tiers of their input data sets. In other words, whenever 
possible, each operation tries to push up the results of its 
processing towards the partition at the higher tiers of persistent 
storage.  

The benefits of such a strategy are as follows. First, it is faster 
to write the output data sets at a higher tier than at a lower tier. 
Second, the data sets written at a higher tier can be read faster by 
the next operation in a pipeline of a query processing plan. 
Therefore, the benefits include the time we gain from writing 
output data sets to the higher tiers and from reading the same data 
sets by the other operations. 

3. Resource Allocation for a Single Query 

This section describes the algorithms that convert a query 
processing plan obtained from the execution of EXPLAIN PLAN 
statement for a single query into an Extended Petri Net and 
serialize the operations of the Net in order to minimize the 
amounts of persistent storage required for query processing. 
 
3.1. Creation of Extended Petri Net 

We consider a query Q expressed as a SELECT statement and 
submitted for processing by a relational database server operating 
on multi-tiered persistent storage. A query Q is ad-hoc processed 
by the system in the following way. First, a query optimizer 
transforms the query into the best query processing plan. SQL 
statement EXPLAIN PLAN can be used to list a plan found by a 
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query optimizer. Next, the implementations of extended relational 
algebra operations such as selection, projection, join, anti-join, 
sorting, grouping, and aggregate functions are embedded into the 
query processing plan. Then, the plan is converted into an 
Extended Petri Net. 

Operation ej ∈ E where ej is member of query Q. Each 
operation has the estimated amounts of input data to be read from 
persistent storage and the estimated output amounts of data to be 
saved in persistent storage. Algorithm 1 below transforms a query 
Q into an Extended Petri Net. 

The algorithm obtains a query processing plan from the results 
of the EXPLAIN PLAN statement. From there, we get a set of 
operations E = {ei, ..., em}. A query processing plan provides 
information about the input data sets read by the operations and the 
output data sets written by the operations. The permanent and 
temporary data sets read and written by the operations in E form a 
set of places B in Extended Petri Net. The arcs leading from the 
input data sets to the operations and the arcs leading from the 
operations to the output data sets create a set of arcs A. A query 
processing plan provides information about the amounts of storage 
read and written by the operations. Such values contribute to the 
weight values wj attached to each arc and are represented by a pair 
(aj, wj) in W. A weight value wj attached to an arc between the input 
data set and an operation represents the total number of data blocks 
read by the operation. A weight value wj attached to an arc between 
the operation and output data set represents the total number of 
data blocks written by the operation.  

Algorithm 1: Create Extended Petri Net according to input a 
query q 
 
Input: a query Q 
Result: an extended Petri Net <B, E, A, W> 
 
(1) Get a query processing plan through the application of 
EXPLAIN PLAN statement. 
(2) Get operations from a query processing plan with the 
estimated amounts of input and output storage required by 
each operation. Then, create a set of operations E where ei is 
an operation. 
(3) while Iterate over E do 
 - Let the current operation be ei.  

- Let Bi, ..., Bm be the input data sets and let B(m+1), ..., Bn 
be the output data sets of an operation ei. 
- Append to A the arcs a1, …, am linking Bi-1, ..., Bi-m and 
operation node. 
- Next, label the arcs with the values wi1, …, wim 
representing the total number of input data blocks read by 
an operation ei and append the pairs to a weight function 
W. 
- Append to A the arcs am+1, …, an linking an operation 
node ei and the nodes {B(m+1), ..., Bn}. Then, label the arcs 
with values representing the total number of output data 
blocks written by an operation ei and append the pairs (a1, 
wi1), …, (am, wim) to a weight function W. 

end    
 

 
3.2. Serialization of Extended Petri Net  

Preparation of an Extended Petri Net <B, E, A, W> for 
processing requires serialization of its operations in a set E. 
Serialization arranges a set of operations E into a sequence of 
operations Es. There exist many ways that the operations in E can 
be serialized in the implementations of more complex queries. If 
the operations in E can be serialized in more than one way, then 
we try to find a serialization that requires smaller amounts of 
persistent storage for its processing. Algorithm 2 finds a 
serialization of operations in E that tries to minimize the total 
amounts of persistent storage allocated during query processing. 
As a simple example, consider an Extended Petri Net given in 
Figure 3. The operations e1 and e2 write 100 and 200 units of 
persistent storage. Then, 100 units of persistent storage are 
released after the processing of operations e3 and e6, and 200 units 
of persistent storage are released after the processing of operations 
e3 and e4. Since the processing of e3 and e4 releases more storage, 
we assign e3 and e4 before e6 in the serialization. 

A root operation in E is an operation such that at least one of 
its input arguments is a permanent data set that belongs to the 
contents of a database. A top persistent storage data set in B is a 
data set that contains the final results of query processing and such 
that is not read by any other operation in E. It is possible that a 
query may output more than one top persistent storage data set. A 
top operation is an operation that writes only to the top persistent 
storage data sets.  

Algorithm 2 traverses the arrows in A backward from the top 
operations to the root operations and generates a sequence of 
operations Es from a set of operations E.  

At the very beginning, a sequence of operations Es is empty, 
and none of the persistent storage data sets in B is marked as 
released. In the first step, the algorithm finds the top operations 
and inserts such operations into a set of candidate operations Ec.  

For each operation in Ec, the algorithm computes profit using 
formula (4). To compute profit, the algorithm deducts the total 
amounts of persistent storage allocated by an operation from the 
total amounts of persistent storage released by an operation. For 
example, assume that the current operation is ei. To find the 
amounts of persistent storage released by an operation ei, we 
perform the summation of the amounts of storage in all input data 
sets of operation ei not marked as released yet. It is denoted by 
∑ 𝐵𝐵𝑗𝑗𝑛𝑛
𝑗𝑗=1 . To find the profits from the processing of an operation ei, 

we deduct from the released amounts the amounts of persistent 
storage included in the output data sets of the operation and 
denoted as ∑ 𝐵𝐵𝑘𝑘𝑚𝑚

𝑘𝑘=(𝑛𝑛+1)  in formula (3) below.  

  p(ei) = ∑ 𝐵𝐵𝑗𝑗 − ∑ 𝐵𝐵𝑘𝑘𝑚𝑚
𝑘𝑘=(𝑛𝑛+1)

𝑛𝑛
𝑗𝑗=1    (3) 

The profits are computed for each operation in Ec. The 
algorithm selects an operation with the smallest profit. If more than 
one operation has the smallest profit, then the algorithm randomly 
chooses one of them. Let a selected operation be ei. The algorithm 
removes ei from Ec, appends it in front of Es, and marks all data 
sets read by ei as released. Next, the algorithm finds the operations 
that write only to data sets marked as released by ei, such that data 
sets released by ei are read only by the operation already in Es. An 
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objective is to find the operations that can be appended to Ec in a 
correct order of processing determined by a set of arcs A. Then, 
the algorithm appends those selected operations to a set of 
candidate operations Ec and the profits for each operation in Ec are 
computed again. An operation with the lowest profits is appended 
in front of Ec. The algorithm repeats the procedure until all 
operations in E are appended in front of Es. 

Algorithm 2: Generating Sequence of Operations Es 
 
Input: An Extended Petri Net <B, E, A, W> from Algorithm 1. 
Result: A sequences of operations Es for query Q. 
 
(1) Create empty sequence Es = <> for Q, create empty candidate 
operation sets Ec = ∅, 
(2) Use a Petri Net <B, E, A, W> and get the top operation(s) from 
Petri Net that is connected to the top container/container that 
stored the final result and put those operation(s) into a set of 
operations Ec = {ei, …, ek}. 
(3) while Ec not empty do 
   if Ec contains more than one operation then 
  - Use formula (3) to compute the estimated profit for each 

operation in Ec. 
- Get all the operations with the smallest profit and 
randomly select one of the operations with the smallest 
profit. 

  end    
 - Let selected operation be ei.   

- Append ei in front of Es and remove it from Ec. 
- Mark all data sets read by ei as released. 
- Find all operations that write only to the data sets marked as 
released and save them in a set Ew. 
- Remove from Ew the operation that writes to data sets read by 
the other operations not in Es. 
- Append the operations from Ew to Ec.  

end 
(4) End algorithm and return the result Es. 

Example1: The example explains a sample trace of Algorithm 
2 when applied to an Extended Petri Net given in Figure3. In the 
first step, Ec contains only one operation e8 connected to top data 
set B11. Therefore, e8 has the lowest profit in Ec. We append it in 
front of Es = <e8> and we remove it from Ec. The data sets B5, B6, 
and B7 read only by e8 are marked as released. The operations 
writing only to the data sets B8, B9, and B10 are e5, e6, e7. None of 
the data sets B8, B9, and B10 are read by an operation that is not in 
Es. Hence the operations e5, e6, e7 can be added to Ec = {e5, e6, e7}. 
The estimated profits for each operation computed with a formula 
(3) are the following: p(e5) = (0 – 400) = -400, p(e6) = (100 – 50) 
= 50 and p(e7) = (430 – 300) = 70. According to those results, e5 is 
picked, appended in front of Es = <e5, e8>, and removed from Ec = 
{e6, e7}. A data set B7 is an input data set, and it cannot be marked 
as released. As no new data sets are released, Ec remains the same. 
Next, an operation e6 which has the second smallest profit, is taken 
from Ec. It is appended in front of Es = <e6, e5, e8> and is removed 
from Ec = {e7}. A data set B3 read by e6 is marked as released. A 
data set B3 is marked as written by operation e1 and later it is read 
by e3. In this case, e1 cannot be appended to Ec because a data set 
B3 is read by e3 that is not assigned to Es yet. Next, e7 is taken from 
Ec, it is appended in front of Es = <e7, e6, e5, e8>, and is removed 

from Ec. A data set B5 read by e7 is marked as released. A data set 
B5 is written by the operations e3 and e4. Both operations are 
appended to Ec = {e3, e4}. The computations of the profits provide: 
p(e3) = 0 – 280 = -280 and p(e4) = 0 – 150 = -150. According to 
the results, e3 is appended in front of Es = <e3, e7, e6, e5, e8> and it 
is removed from Ec = {e4}. The data sets B3 and B4 read by e3 are 
marked as released. The operations e1 and e2 are written to data 
sets B3 and B4. An operation e1 can be appended into Ec because e6 
that read B3 is already assigned in Es. An operation e2 cannot be 
appended into Ec = {e1, e4} because e4 that reads a data set B4 is not 
in Es yet. The computations of the profits provide: p(e1) = 0 – 100 
= -100 and p(e4) = 200 – 150 = 50. According to the results, e1 is 
appended in front of Es = <e1, e3, e7, e6, e5, e8> and is removed from 
Ec = {e4}. Operation e1 reads an input data set, therefore, no new 
operations can be added to Ec. Next, operation e4 is append to Es = 
<e4, e1, e3, e7, e6, e5, e8> and is removed from Ec. A data set B4 read 
by e4 is marked as released and operation e2 is appended to Ec. 
Finally, operation e2 is appended in front of Es = <e2, e4, e1, e3, e7, 
e6, e5, e8>. Operation e2 reads from an input data set and because 
of that, no more operations can be assigned to Ec. The final 
sequence of operations Es = <e2, e4, e1, e3, e7, e6, e5, e8> is generated 
at the end.  

3.3 Estimation of Storage Requirements and Generation of 
Persistent Storage Release Plan 

A sequence of operation Es obtained from the linearization of 
an Extended Petri Net with Algorithm 2 is used to estimate the 
requirements on the amounts of persistent storage needed for the 
processing of the sequence. Algorithm 3 estimates the persistent 
storage requirements while processing the operations in Es. The 
output of Algorithm 3 is the estimated processing time T for Es 
using the read/write speed of single-tier, the maximum required 
storage V to process Es, and a sequence of the persistent storage 
release plans 𝛿𝛿 = <(ei, (Bk, …, Bh)), …, (ej, (Bx, …, By))>.  

 Algorithm 3 uses a sequence of operations Es and information 
about reading speed per data block rn and writing speed per data 
block wn parameters unchanged and extracted from a single tier in 
multi-tiered persistent storage. Typically, the algorithm is 
processed with the read/write parameters of the highest tier. First, 
the algorithm sets V = 0, which stores the maximum storage 
required to be allocated in the multi-tiered persistent storage, and 
T = 0, which stores the estimated processing time for Es. Next, the 
algorithm iterates over Es in step (2) in Algorithm 3 and lets the 
current operation be ei. First, the total read storage Vr is computed 
by summing all input storage for ei and the total write storage Vw 
is computed by summing all output storage for ei. After that, the 
current temporary storage Vtemp = Vtemp + Vw is updated, where Vtemp 
stores the temporary storage required to process until the current 
operation. Next, the algorithm compares Vtemp with V. If Vtemp is 
larger than V, then V = Vtemp is updated. Next, the algorithm 
computes the estimated total processing time ti for current 
operation ei using the following equation. 

 T(ei) = (Vr * rn) + (Vw * wn)   (4) 

Then, the algorithm updates the total processing time until 
operation ei by summing T = T + T(ei). 

Next, the algorithm gets the storage released by operation ei, 
denoted as a pair (ei, (Bx, …, By)). The detailed procedure is shown 
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from step (2)(vi) to step (2)(viii) in the algorithm. After this, the 
storage is appended into the persistent storage release plan 𝛿𝛿. 

If ei is the member of 𝛿𝛿 then the algorithm needs to release data 
blocks after the output data blocks of ei are allocated. Next, the 
algorithm needs to update Vtemp = Vtemp - the total number of release 
storage by ei.  

Algorithm 3 iterates those procedures above for each operation 
from the input sequence Esi. Finally, Algorithm 3 will generate V, 
T, and 𝛿𝛿 = <(ei, (Bk, …, Bh)), …, (ej, (Bx, …, By))>. 

Algorithm 3: Estimate the total storage required, estimate the 
execution time, and create a persistent storage release plan. 
 
Input: A sequence of operations Es = <ei, …, ek> obtained 
from Algorithm 2 and information about the reading speed per 
data block rn and the writing speed per data block wn of a single 
tier in multi-tiered persistent storage. 
Result: The maximum storage V and the estimated processing 
time T required to process Es and a sequence of the persistent 
storage release plan 𝛿𝛿 = <(ei, (Bk, …, Bh)), …, (ej, (Bx, …, By))>. 
 
(1) Set V= Vtemp = T = 0, Etemp = {} and 𝛿𝛿 =<> 
(2) while iterate over Esi do 
 (i) Let current operation be ei = ({Bj, …, Bk}, {Bm, …, Bn}) 

where {Bj, …, Bk} is the input set of the number of data blocks 
and {Bm, …, Bn} is the output set of the number of data blocks.  
(ii) Next, get the total reading (Vr) and writing (Vw) data 
blocks for ei. 
(iii) Next, use the values of Vr, Vw, rn, wn to compute T(ei) by 
using a formula (4). Update T = T + T(ei). 
(iv) Update Vtemp = Vtemp + Vw. 

 (v) if Vtemp > V then V = Vtemp. 
 (vi) Get all the input storage read only by ei and get all the 

input storage connected to both ei and other operations in 
Etemp and create a group of data sets (Bx, …, By). 
(vii) Next, remove a data set from (Bx, …, By) if the data set 
is the input argument of root operations in Es. 
(viii) Create a pair (ei, (Bx, …, By)) and append it into 𝛿𝛿. 

 if ei ∈  𝛿𝛿 then 
  - Add the storage requirements of (Bx, …, By) to get the 

total number of data blocks Ri released by ei. 
- Update Vtemp = Vtemp – Ri. 

 end 
end 
(3) Return V, T and 𝛿𝛿 = <(ei, (Bk, …, Bh)), …, (ej, (Bx, …, By))>. 

Example 2: A sample trace of Algorithm 3 is performed on a 
sequence of operations Es = <e2, e4, e1, e3, e7, e6, e5, e8> from 
Example 1 together with the reading and writing speed per data 
block from the highest tier l3 = (0.05, 0.055, <500, 300, 100>). As 
it has been mentioned before, the reading and writing speed per 
data block is measured in the standardized time units. 

 At the very beginning, we set V = Vtemp = T = 0, and 𝛿𝛿 =
<>. Next, we iterate over Es, and let the current operation be e2. It 
reads Vr = 300 data blocks and writes Vw = 200 data blocks. Next, 
we compute t2 = (300*0.05) + (200*0.055) = 26 and update T = T 
+ t2 = 26. Then, we set Vtemp = V = 200. A persistent storage release 

plan 𝛿𝛿  remains empty because e2 is the first operation in the 
sequence Es. 

In the next iteration, the current operation is e4. We compute t4 
= (200*0.05) + (150*0.055) = 18.25 and update T = 26 + 18.25 = 
44.25 and Vtemp = 200 + 150 = 350. Due to Vtemp being larger than 
V, we increase V = 350. The operation does not release storage and 
there is no need to update 𝛿𝛿. 

In the next iteration e1 is the current operation.  T  = 59.75, Vtemp 
= 350 + 100 = 450 and V= 450. 

 In the next iteration e3 is the current operation.  T = 90.15, Vtemp 
= 450 + 280 =730 and V = 730. This time, e3 released 200 data 
blocks, therefore, we need to update 𝛿𝛿 = <(e3, (B4))>. Total number 
of data blocks released by e3 is 200. Therefore, we update Vtemp = 
730 – 200 = 530. 

In the next iteration, e7 is the current operation.  T = 128.15 and 
Vtemp = 530 + 300 = 830 and V= 830. This time we release storage 
B5 and update 𝛿𝛿 = <(e3, (B4)), (e7, (B5)) > and Vtemp = 830 – 430 = 
400. 

In the next iteration, e6 is the current operation.  T = 135.9 and 
Vtemp = 400 + 50 = 450 and V= 830. The storage released by e6 is 
B3 and update 𝛿𝛿 = <(e3, (B4)), (e7, (B5)), (e6, (B3)) > and Vtemp = 450 
– 100 = 350. 

In the next iteration, e5 is the current operation. The algorithm 
computes T = 182.9 and Vtemp = 350 + 400 = 750 and V= 830. An 
operation e5 does not release any storage. 

The last operation from the sequence Es is e8. The algorithm 
computes T = 247.9 and Vtemp = 750 + 500 = 1250 and V= 1250. 
This operation releases three storages, B8, B9, and B10. The updated 
storage released plan is 𝛿𝛿 = <(e3, (B4)), (e7, (B5)), (e6, (B3)), (e8, (B7, 
B8, B9))>. 

Finally, Algorithm 3 returns T = 247.9 of time units, V = 1250 
data blocks and 𝛿𝛿 = <(e3, (Bi4)), (e7, (B5)), (e6, (B3)), (e8, (B7, B8, 
B9))> for a sequence of operations Es. 

4. Resource Allocation for a Group of Queries 

Algorithm 4 takes on input a set of query processing plans ℰ =
 {Es1, …, Esn} created by Algorithm 2, a set of estimated processing 
times 𝒯𝒯 = {T1, …, Tn}, a set of maximum storage requirements for 
each processing plan 𝒱𝒱 = {V1, …, Vn}, a set of deallocation plans 
𝒟𝒟 = {𝛿𝛿1, … , 𝛿𝛿𝑛𝑛}  from the Algorithm 3, and a sequence of 
persistent storage tiers L = <l0, …, ln>. The output of the algorithm 
is a sequence of storage allocation plans P. 

First, the algorithm gets the estimated processing time T and 
the estimated highest allocation storage V for processing plans 
from ℰ. Next, the algorithm collects the candidate operations from 
ℰ , where a candidate operation is the first operation from each 
sequence, and puts them into a set of candidate operations Ec. Next, 
the algorithm picks one operation from Ec in the following way. 
First, the algorithm picks the operations from the sequences with 
the smallest volume, V. If more than one operation is found, then 
from the operations found so far, the algorithm picks the operations 
from the sequences with the shortest time, T. If again more than 
one operation is found, then the algorithm uses formula (3) to 
compute a profit for each operation and picks the operations with 
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the highest profit. Again, if more than one operation is still found, 
then the algorithm randomly picks one operation. Let selected in 
this way, the candidate operation be ei = ({Bi, …, Bj}, {Bk, …, Bh}), 
and the total number of data blocks in output data sets of the 
operation be Vw. 

Algorithm 4 passes the information about L, Vw, and P to 
Algorithm 4.1 to find the best partition and generate the updated 
storage allocation plan P. Next, Algorithm 4 must update L with 
information about temporary storage to be released after the 
processing of ei. To do so, Algorithm 4 passes a deallocation plan 
𝛿𝛿𝑖𝑖 for Esi, a sequence of tiers L, and the operation ei to Algorithm 
4.2 to update information about available storage in L. 

Finally, an operation ei is removed from Esi. The algorithm 
repeats the steps above for each operation from each sequence until 
all sequences are empty. The algorithm returns the final storage 
allocation plan P. 

Algorithm 4: Generating storage allocation plans 
 
Input: A set of processing plans ℰ = {Es1, …, Esn} from algorithm 
2, deallocation plan 𝛿𝛿, the maximum storage V, and the estimated 
processing time T for each sequence from Algorithm 3. A 
sequence of tiers L = <l0, …, ln> where each tier li is described as 
triple (ri, wi, <sij, …, sii>). 
Result: A sequence of allocation plans P = <Dij, …, Dnk>. 
 
(1) Create empty sequence of allocation plans P = < >. 
(2) While until all sequences in ℰ are empty do 
 - Create an empty set of candidate operations Ec = {}.  

- Get the first operations from the sequences with the smallest 
volume V and put them into Ec. 

 if more than one operation is found in Ec then 
  - Keep the operations from the sequence Es1, …, Esn with 

the smallest estimated processing time T and remove the 
rest of the operations from Ec. 

 else if more than one operation is found in Ec then 
  - Keep the operations with the highest profit using formula 

(3) and remove the rest of the operations from Ec. 
 else if more than one operation is found in Ec then 
  - Select one operation randomly and make Ec empty. 
 end 

- Let the selected operation be ei = {Bi, …, Bj}, {Bk, …, Bh} 
from Esj and its input storage be {Bi, …, Bj} and its output 
storage be {Bk, …, Bh}. 
- Let the number of total output storage be Vw. 
- Use the information of L, Vw, and P to find the best partition 
using Algorithm 4.1 and get the result of updated plan P from 
algorithm 4.1. 
- Pass the information about a deallocation plan 𝛿𝛿𝑗𝑗, a state of 
multi-tiered persistent storage L, and the operation ei to 
Algorithm 4.2 to update L with information about temporary 
storage released by ei. 
- Remove ei from Esj. 
- Update estimated processing time T and V for Esj. 

end  
(3) Return the sequence of multi-tiered storage allocation plans 
P = <Dij, …, Dnk>. 

 

Algorithm 4.1 finds the best partition using the information in 
L, Vw, P and ei provided by Algorithm 4.  

Let ei be a member of Esj, and a set of allocation plans for ei is 
denoted Dji. First, the algorithm needs to find the best partition 
located at the highest possible tier in order to achieve the best 
processing time. Next, the algorithm finds a partition that can 
accommodate the storage Vw where Vw is the total output storage 
required to store the temporary/permanent result of ei. The input 
storage {Bi, …, Bj} is already assigned to one of the partitions on 
L. Therefore, the algorithm needs to find the best storage allocation 
for Vw only. 

Next, the algorithm iterates over the tiers in L. Let the current 
tier be (rn, wn, <snj, …, sni>). The algorithm needs to check whether 
the required storage Vw can be allocated entirely in one partition or 
over more partitions. When the amount of storage available at one 
of the partitions in the highest tier is larger or equal to Vw, the 
algorithm creates an allocation plan (Bi, snj) where Bi = Vw and 
appends that plan to Dji. But sometimes, the amounts of storage 
available at all partitions in the highest tier are smaller than the 
required storage Vw. In that case, the algorithm splits storage Vw 
into multiple storages Vw', …, Vw''. Some storage is to be allocated 
at the faster tier, and some may be at the lower tier. For that case, 
the algorithm splits Vw to allocate more than one partition and 
creates allocation plans (Bi, snj), …, (Bj, snk). Next, the algorithm 
appends all those plans into Dji. Finally, the allocation plan Dji is 
appended to P and returned to Algorithm 4. 

Algorithm 4.1: Finding the best partition and generating a plan 
for storage allocations 
 
Input: A multi-tiered persistent storage L = <l0, …, ln>, storage 
requirements Vw of an operation ei, a sequence of storage 
allocation plans P. 
Result: The updated sequence of storage allocation plans P. 
 
(1) Let the amounts of temporary storage Vtemp = 0 and let an 
initial storage allocation plan Dji for the operation ei be empty. 
(2) while iterate over L in reverse order do 
 (i) Let current tier be li = (ri, wi, <sii, …, sin>) and let <sii, …, 

sin> be a sequence of partitions in li arranged from the 
smallest to the largest partition. 
(ii) Iterate over partitions <sii, …, sin> and choose a partition 
sik such that its size is equal or larger than Vw.  

 (iii) if size of sik is larger or equal to Vw then 
  - Create a pair (Bi, sni) where Bi = Vw and append it into Dji. 

- Update sik = sik – Vw and Vw = Vtemp. 
- Sort a sequence of partitions arranged from smallest 
available storage to largest available storage. 

 else if all storage in current set is smaller than Vw then 
  - Update Vtemp = Vw. 

while iterate over partition in reverse order and until Vtemp 
= 0 or all available storage become zero do 

   - Let the current storage in a set be sik. 
- Split storage into two parts: Vw, where Vtemp = Vtemp - sni 
and Vw = sik 
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- Create a pair (Bi, sik) where Bi = Vw and append it into 
Dji. 
- Update sii = 0, and Vw = Vtemp. 
- Sort a sequence of partitions arranged from smallest 
available storage to largest available storage. 

  end 
 end 
end 
(3) Append Dji = {(Bi, sni), …, (Bj, smk)} into P.  
(4) Return P. 

Algorithm 4.2 releases persistent storage no longer needed by 
an operation ei. An input to the algorithm is a deallocation plan 𝛿𝛿𝑖𝑖, 
a sequence of tier L = <(rn, wi, <sni, …, sni>), …, (r0, w0, <sn0, …, 
snj>)>, and the operation ei passed from Algorithm 4. 

Algorithm 4.2 checks whether ei releases any persistent 
storage. If ei is a member of the deallocation plan 𝛿𝛿𝑖𝑖 , then the 
algorithm needs to update L according to the deallocation plan, 
such as removing the storage released by ei from the occupied 
storage. If ei is not a member of the deallocation plan, then the 
algorithm does not need to update L. 

Algorithm 4.2: Deallocation the storage 
 
Input: A deallocation plan 𝛿𝛿𝑖𝑖, a multi-tiered persistent storage L 
= <l0, …, ln>, and the operation ei. 
Result: The updated multi-tiered persistent storage L = <l0, …, 
ln>. 
 
(1) if ei ∈ 𝛿𝛿𝑖𝑖 then 
 - Get the storage released by ei like (Bx, …, By). 
 while iterate over (Bx, …, By) do 
  - Let current storage be Bi and the location of Bi be (Bi, shi) 

where storage Bi is located at partition i from tier lh. 
- Remove a storage Bi from partition i in level lh and update 
shi = shi + Bi. 
- Let shi is belong to the sequence <shx, …, shy>. 
- Sort a sequence of partitions <shx, …, shy> arranged from 
smallest available storage to largest available storage. 

 end 
end 
(2) Return the updated L = <l0, …, ln>. 

 Algorithm 5 computes the total processing time Tf for the 
allocation plan P created by Algorithm 4. First, the algorithm 
iterates over plan P. Let the current set of plans be Dji = {(Bi, sni), 
…, (Bj, sik)} where Dji is a set of plans for the operation ei in 
sequence Esj. Next, the algorithm iterates over Dji. Let the current 
pair be (Bi, sni). Then, the algorithm computes the processing time 
for that pair. If Bi is a member of input data blocks for ei, then 
compute Tf = Tf + (Bi * rn) where rn is a reading speed per data 
block. If Bi is the member of output data blocks for ei, then compute 
Tf = Tf + (Bi * wn) where wn is a writing speed per data block. Next, 
the algorithm checks whether ei is the last operation in the 
sequence Esj or not. If ei is the last operation, then the algorithm 
needs to compute the reading time for final storage such as Tf = Tf 
+ (Vw * rn), where Vw is the total data blocks written by operation 

ei. Finally, the algorithm returns the total execution time for plan 
P. 

Algorithm 5: Final estimated processing time for allocation 
plan 
 
Input: A sequence of allocation plans P = <Dij, …, Dnk>. 
Result: Total estimated processing time Tf for allocation plan P. 
 
(1) Let total processing time for sequences be Tf = 0.  
(2) while iterate over P do 
 - Set total writing data block be Vw = 0. 

- Let the current plan be Dji = {(Bi, sni), …, (Bj, sik)} for 
operation ei = {Bi, …, Bj}, {Bk, …, Bh} from Esj. 

 while iterate over Dji then 
  - Let current pair be (Bi, sni) where Bi is a total number of 

data blocks allocated at a tier n in a partition i (sni). 
if Bi is member of input storage {Bi, …, Bj} then 

   - Tf = Tf + (Bi * rn)  
  else 
   - Tf = Tf + (Bi * wn) 
  end 
 end 
 if ei is the last operation from Esj then 
  - Read the final result and release the storage. 

- Update Tf = Tf + (Vw * rn). 
 end 
end 
(3) Return total processing time for allocation plan Tf. 

Example 3: In this example, we use a multi-tiered persistent 
storage with 3 tiers. We assume that the highest tier l2 has 3 
partitions, the lower one l1 has 2 partitions, and the bottom tier l0 
has 3 partitions. The parameters of the tiers are listed below. 

L = <l0, l1, l2> 

- l0 = (0.2, 0.21, <200, 500, 1000>)  

- l1 = (0.1, 0.105, <100, 200>)   

- l2 = (0.05, 0.055, <40, 50>)  

Next, we use a set of sequences ℰ = {Es1, Es2, Es3}. A sequence 
Es1 consists of the following 3 operations Es1 = <e1, e2, e3> where 

- e1 = ({50, 50}, {100})  

- e2 = ({100}, {50})  

- e3 = ({50}, {20}) 

The total estimated processing time for Es1 is T2 = 37.85 and V1 
= 150. 

The sequence Es2 consists of one operation, Es2 = < e1> where  

- e1 = ({150}, {100}) 

The total estimated processing time for Es2 is T2 = 40.50 and V2 
= 100. 

The last sequence Es3 consists of 4 operations Es3 = < e1, e3, e2, 

e4, > where 
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- e1 = ({50}, {40, 40})  

- e2 = ({40}, {20})  

- e3 = ({40}, {10})  

- e4 = ({30}, {10})  

The total estimated processing time for Es3 is T3 = 22.60 and V3 
= 110. 

Following step (2) of Algorithm 4, we picked an operation e1 
from sequence Es2, because V2 is the smallest volume, and put it 
into Ec = {e1}. Since we have only one candidate operation, it is 
passed to Algorithm 4.1 to find the storage allocations for the 
outputs of operation e1. According to Algorithm 4.1, the best 
storage is s23 and therefore, we created a plan like (100, s23). We 
then appended the plan into P = <(100, s23)>. Next, Algorithm 4 
released storage if e1 needs to release some storage. According to 
Algorithm 4.2, e1 does not need to release any storage. We repeated 
the above procedure and finally get the plan P for ℰ where P = 
<{(40, s21), (50, s22), (10, s11)}, {(40, s21), (40, s22)}, {(10, s22), (10, 
s11)}, {(10, s21)}, {(10, s21)}, {(40, s21), (50, s22), (10, s11)}, {(50, 
s11)}, {(20, s21)}>. 

Next, we compute the processing time for a sequence of plan 
P by using the algorithm 5. The total processing time Tf for ℰ is 
112.55 time units. With random allocation, the total processing 
time for ℰ  become 143.45 time units. Without multi-tiered 
persistent storage with partitions, the total execution time for ℰ is 
219.90 time units. 

5. Example/Experiment 

Different types of persistent storage devices such as SSD, 
HDD, and NVMe can be used to create a multi-tiered persistent 
storage system. In the experiment, we picked a sample multi-tiered 
persistent storage L that consists of 4 tiers <l0, l1, l2, l3>, where l3 
is the fastest tier such as NVMe and l0 is the slowest tier, such as 
HDD and l2 and l1 are faster and slower SSDs. Each tier is divided 
into two partitions of different sizes. Table 1 shows the read and 
write speed per data block expressed in standardized time units and 
the total number of data blocks available at each partition.  
Table 1: Read/Write Speed with Available Size for Multi-tiered Storage Devices 

Level of 
Devices 

Reading 
Speed 

Writing 
Speed 

Partition 1 Partition 2 

l0 0.15 * 103 0.155 * 103 1000 2000 
l1 0.1 * 103 0.105 * 103 500 600 
l2 0.08 * 103 0.085 * 103 150 200 
l3 0.05 * 103 0.055 * 103 50 100 

In the experiment, we applied Algorithm 1 to convert eight 
query processing plans into the Extended Petri Nets. Next, we used 
Algorithm 2 to find the optimal sequences of operations for each 
Petri Net. Next, Algorithm 3 was used to get the deallocation plans 
𝛿𝛿, the maximum volumes V, and the estimated execution times T 
required for each sequence of operations found by Algorithm 2. 
The values for each sequence are the following. 

Es1= <e1, e3, e2, e4, e5, e6, e7, e8, e9>  

V1 = 150, T1 = 110.70 
Table 2: Operations With Input and Output Data sets For Es1 

Operation Input data set Output data set 

e1 300 100 
e2 200 50 
e3 100 50 
e4 50 20 
e5 50, 20 50 
e6 50 20, 20 
e7 20 10 
e8 20 10 
e9 10, 10 10 

Es2= <e2, e5, e1, e4, e7, e9, e3, e6, e8, e11, e10, e12>  

V2 = 300, T2 = 108.35 
Table 3: Operations with Input and Output Data sets For Es2 

Operation Input data set Output data set 
e1 100 50 
e2 100 70 
e3 100 60 
e4 50 30 
e5 70 30 
e6 60 40 
e7 30, 30 50 
e8 40 20 
e9 50 30 
e10 20 10 
e11 30 20 
e12 20, 10 20 

Es3= <e1, e3, e2, e4, e7, e5, e8, e6, e11, e10, e9, e12, e13, e14, e15> 

V3 = 300, T3 = 147.40 
Table 4: Operations with Input and Output Data sets For Es3 

Operation Input data set Output data set 
e1 500 400 
e2 600 300 
e3 400 100, 50 
e4 300 200, 50 
e5 100 30 
e6 50 30 
e7 200 100 
e8 50 10 
e9 30 20 
e10 30 10 
e11 100, 10 60 
e12 20 10 
e13 60 50 
e14 50 40 
e15 10, 10, 40 50 

Es4= <e1, e2, e4, e3, e5 >  

V4 = 250, T4 = 100.70 
Table 5: Operations with Input and Output Data sets For Es4 

Operation Input data set Output data set 
e1 80 70 
e2 70 30, 30 
e3 30 20 
e4 30 10 
e5 20, 10 20 

Es5= <e1, e3, e5, e2, e4, e6, e7, e9, e8, e10 > 

V5 = 200, T5 = 93.50 
Table 6: Operations with Input and Output Data sets For Es5 

Operation Input data set Output data set 
e1 300 100 
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e2 100 50 
e3 200 100 
e4 50 30 
e5 100 50 
e6 30 20 
e7 100 50 
e8 50 30 
e9 20, 50 40 
e10 30, 40 50 

Es6 = <e1, e2, e3>  

V6 = 150,  T6 = 37.85  
Table 7: Operations with Input and Output Data sets For Es6 

Operation Input data set Output data set 
e1 50, 50 100 
e2 100 50 
e3 50 20 

Es7 = < e1> 

V7 = 100, T7 = 40.50 
Table 8: Operations with Input and Output Data sets For Es7 

Operation Input data set Output data set 
e1 150 100 

 Es8 = < e1, e3, e2, e4, > 

V8 = 110, T8 = 22.60  
Table 9: Operations with Input and Output Data sets For Es8 

Operation Input data set Output data set 
e1 50 40, 40 
e2 40 20 
e3 40 10 
e4 20, 10 10 

Next, we used Algorithm 4 to decide on an order of concurrent 
processing of operations from the sequences in ℰ. Algorithms 4.1 
and 4.2 were used within Algorithm 4 to find the best allocation of 
partitions and to generate a persistent storage allocation plan. The 
details of the plan are listed in the Appendix. After that, we used 
Algorithm 5 to simulate the processing of the plan to get the total 
estimated execution time Tf, see Table X. 

In the second experiment, we used the same set of sequences 
of operations ℰ, and whenever more than one operation could be 
selected for processing, we randomly picked an operation. The 
total execution time for the second experiment is given in Table X. 

In the third experiment, we used only a single tier of persistent 
storage, and like before, whenever more than one operation could 
be selected for processing, we randomly picked an operation. The 
final results of all experiments are summarized in a Table X. 

Table 10: Summary of Experimental Results 

Experiment Method Total execution 
time-units 

Experiment 1 Using allocation plan over 
multi-tiered persistend 
storage that proposed in this 
work. 

857 

Experiment 2 Using random allocation plan 
over multi-tiered persistend 
storage. 

1,068.35 

Experiment 3 Using allocation plan without 
multi-tiered persistend 
storage. 

1,466.95 

 

By comparing those three results, one can find that the 
execution plan for experiment 1 achieves better performance and 
faster execution time than experiment 2 and experiment 3. 

6. Summary and Future Work 

This paper presents the algorithms that optimize the allocations 
of persistent storage over a multi-tiered persistent storage device 
when concurrently processing a number of database queries. The 
first algorithm converts a single query processing plan obtained 
from a database system into an Extended Petri Net. An Extended 
Petri Net represents many different sequences of database 
operations that can be used for the implementation of a query 
processing plan. The second algorithm finds in an Extended Petri 
Net a sequence of operations that optimizes storage allocation in 
multi-tiered persistent storage when a query is processed. The third 
algorithm estimates the maximum amount of persistent storage and 
processing time needed when a sequence of operations found by 
Algorithm 2 is processed.  

In the second part of the paper, we considered the optimal 
allocation of multi-tiered persistent storage when concurrently 
processing a set of queries. We assumed that the first three 
algorithms are used for individual optimization of storage 
allocation plans for each query in a set. The fourth algorithm 
optimizes the allocation of multi-tiered persistent storage when a 
set of sequences of operations obtained from the first three 
algorithms is concurrently processed. The algorithm creates a 
persistent storage allocation and releases a plan according to the 
available size and speed of the devices implementing multi-tiered 
persistent storage.  

The last algorithm processes a storage allocation plan created 
by the previous algorithm and returns the estimated processing 
time. To validate the proposed algorithms, we conducted several 
experiments that compared the efficiency of processing plans 
created by the algorithms with the random execution plans and 
execution plans without multi-tiered persistent storage. According 
to the outcomes of experiments, the storage allocation plans 
obtained from our algorithms consistently achieved better 
processing time than the other allocation plans. 

Several interesting problems remain to be solved. An optimal 
allocation of persistent storage in the partitions of multi-tiered 
storage contributes to a dilemma of spreading a large allocation 
over smaller allocations at many higher-level partitions versus a 
single allocation at a lower partition.  

Another interesting question is related to a correct choice of a 
level at which storage is allocated depending on the stage of query 
processing. It is almost always such that the initial stages of query 
processing operate on the large amounts of storage later reduced to 
the smaller results. It indicates that the early stages of query 
processing should be prioritized through storage allocations at 
higher levels of multi-tiered storage. It means that the parameters 
of multi-tiered storage allocation may depend on the phases of 
query processing with faster storage available at early stages. 

The next interesting problem are the alternative multi-tiered 
storage allocation strategies. In one of the alternative approaches, 
after the serialization of Extended Petri Nets representing 
individual queries, it is possible to combine the sequence of 
operations into one large Extended Petri Net and apply 
serialization again. Yet another idea is to combine the Extended 
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Petri Nets of individual queries into one Net and try to eliminate 
multiple accesses to common data containers.  

The next stimulating problem is what to do when the 
predictions on the amounts of data read and/or written to multi-
tiered persistent storage do not match the reality. A solution for 
these cases may require ad-hoc resource allocations and dynamic 
modifications of existing plans. 

It is also possible that a set of queries can be dynamically 
changed during the processing. For example, a database 
application can be aborted, or it can fail. Then, the management of 
persistent storage also needs to be dynamically changed. A 
solution to such a problem would require the generation of a plan 
with the options where certain tasks are likely to increase or 
decrease their processing time. 
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APPENDIX 

A processing plan for the experiments described in a section 6 
of the paper is the following sequence P of the individual plans. 

P = < D71, D81, D83, D82, D84, D61, D62, D63, D11, D13, D12, D14, D15, 
D16, D17, D18, D19, D51, D53, D55, D52, D54, D56, D59, D58, D510, D41, D42, 
D44, D43, D45, D22, D25, D21, D24, D27, D29, D23, D26, D28, D211, D210, 
D212, D31, D33, D32, D34, D37, D35, D38, D36, D311, D310, D39, D312, D313, 
D314, D315> 

Each plan Dij is the following set of pairs: 

D71 = {(50, s31), (100, s32)}, D81 = {(40, s31), (10, s31), (30, s32)} 

D83 = {(20, s32)}, D82 = {(10, s31)}, D84 = {(10, s31)} 

D61 = {(100, s32)}, D62 = {(50, s31)}, D63 = {(20, s32)} 

D11 = {(100, s32)}, D13 = {(50, s31)}, D12 = {(50, s32)}, D14 = {(20, 
s32)}, D15 = {(50, s32)}, D16 = {(20, s31), (20, s31)}, D17 = {(10, s31)}, 
D18 = {(10, s31)}, D19 = {(10, s31)} 

D51 = {(50, s31), (100, s32), (50, s21)}, D53 = {(100, s21)}, D55 = 
{(50, s31)}, D52 = {(50, s32)}, D54 = {(30, s32)}, D56 = {(20, s32)}, D57 
= {(50, s32)}, D59 = {(30, s32), (10, s21)}, D58 = {(30, s32)}, D510 = 
{(50, s31)} 

D41 = {(70, s32)}, D42 = {(30, s31), (30, s32)}, D44 = {(10, s31)}, 
D43 = {(20, s31)}, D45 = {(20, s31)} 

D22 = {(70, s32)}, D25 = {(30, s32)}, D21 = {(50, s31)}, D24 = {(30, 
s32)}, D27 = {(50, s31)}, D29 = {(30, s32)}, D23 = {(60, s32)}, D26 = 
{(40, s31)}, D28 = {(20, s32)}, D211 = {(20, s31)}, D210 = {(10, s31)}, 
D212 = {(20, s31)} 

D31 = {(150, s21), (100, s22), (50, s31), (100, s32)}, D33 = {(50, s11), 
(100, s22)}, D32 = {(150, s21), (50, s31), (100, s32)}, D34 = {(150, s11), 
(50, s22), (50, s22)}, D37 = {(100, s32)}, D35 = {(30, s31)}, D38 = {(10, 
s31)}, D36 = {(20, s21), (10, s31)}, D311 = {(60, s21)}, D310 = {(10, s31)}, 
D39 = {(20, s32)}, D312 = {(10, s31)}, D313 = {(50, s32)}, D314 = {(40, 
s31)}, D315 = {(50, s32)} 
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