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Knowledge of pedestrian and vehicle movement patterns can provide valuable insights for city
planning. Such knowledge can be acquired via passive outdoor localization of WiFi-enabled
devices using measurements of Received Signal Strength Indicator (RSSI) from WiFi probe
requests. In this paper, which is an extension of the work initially presented in WiMob 2021,
we continue the work on the mobility intelligence system (Moblntel) and study two broad
approaches to tackle the problem of RSSI-based passive outdoor localization. One approach
concerns multilateration and fingerprinting, both adapted from traditional active localization
methods. For fingerprinting, we also show flaws in the previously reported area-under-the-curve
method. The second approach uses machine learning, including machine learning-boosted
multilateration, reference point classification, and coordinate regression. The localization
performance of the two approaches is compared, and the machine learning methods consistently
outperform the adapted traditional methods. This indicates that machine learning methods are

promising tools for RSSI-based passive outdoor localization.

1 Introduction

City planning initiatives can benefit from insights into mobility
patterns of pedestrians and vehicles. Given the prevalence of WiFi-
enabled devices carried by individuals and their continuous emission
of WiFi probe requests, such mobility patterns can be revealed by
localization of the devices based on measurements of WiFi probe
requests via the recorded received signal strength indicator (RSSI).
Active and passive localization are the two standard modes of RSSI-
based localization [1]. Active localization occurs on the target
device with the help of a custom app that may or may not require
cooperation (e.g., data exchange); it answers the question “Where
am [?” Passive localization occurs without the device’s knowledge
in an anonymous manner; it answers the question “Where are you?”
Due to the apparent difficulty of large-scale mobile app adoption
for localization purposes, passive localization is the more realistic
choice.

High variability in RSSI measurements due to fading (path-loss),
shadowing (temporary obstruction between a sender and a receiver),
and interference (overlap of WiFi channels) is a significant challenge
in RSSI-based localization [2]. To mitigate RSSI variability, some
active localization methods leverage device cooperation to obtain
additional location-sensitive information, such as signal angle of
arrival [3, 4], round-trip time [5], device orientation [6], and device
prior location [7]. However, passive localization cannot benefit from
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these methods, as it does not have the luxury of device cooperation.

Other active localization methods achieve good results without
device cooperation [8]-[13]. Since the operations of these methods
share similarities with passive localization, they might be transfer-
able. However, fundamental differences exist between the two. For
instance, missing data are unlikely in active localization because
the probing signal is emitted by the access points in large numbers.
In passive localization, the probing signal is initiated by the target
device in an uncontrolled and sporadic manner. Consequently, the
active localization methods may have data requirements unachiev-
able in passive localization.

Previous work has also explored methods tailored to passive lo-
calization. However, they typically suit applications on a very small
(indoor) or very large scale (entire city), making them inadequate
for applications on a medium scale (within the span of a city street)
(see Section 2.2 for details).

Therefore, investigation into methods suitable for RSSI-based
passive localization in urban areas at the scale of a city street is nec-
essary. The investigation can be divided into two parts. One focuses
on the feasibility of adapting the methods used in cooperation-free
active localization (hereinafter referred to as “traditional active lo-
calization methods”) to passive localization; the other focuses on
new approaches not fully explored by previous research on passive
localization.

To facilitate the investigation, we have developed a privacy-
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centric mobility intelligence system (Moblntel) consisting of sensors
and cloud infrastructure to collect and analyze RSSI measurements
from anonymized WiFi probe requests. Moblntel has been tested
in downtown West Palm Beach, Florida, to count the number of
WiFi-enabled devices in a sensor’s visible range and to calculate the
percentage of devices that have persisted over time [14].

In this paper, which is an extension of the work initially pre-
sented in WiMob 2021 [15], we discuss a significant augmentation
to the analytical facilities of Moblntel, exploring methods to con-
duct passive localization in a controlled environment, with the goal
of identifying methods that are performant at the scale of a city
street (1.4 km). The specific contributions of the paper include:

1. We conduct a systematic performance evaluation of two adap-
tations of traditional active localization methods—path-loss-
based multilateration and fingerprinting—to support passive
localization. We examine performance impacts under vary-
ing training and testing data sets, including (1) training and
testing on individual RSSI measurements, (2) training and
testing on averaged RSSI measurements, and (3) training
on averaged, but testing on individual RSSI measurements.
We also compare the performance of fingerprinting across
three implementation methods, including vector-based Eu-
clidean distance, Gaussian-based area-under-the-curve, and
Gaussian-based tail probability.

2. For Gaussian-based fingerprinting in particular, we discover
that the previously reported area-under-the-curve method,
based on the arithmetic mean of the area-under-the-curve in a
Gaussian distribution [7], does not perform well when there
is large mismatch between the unknown RSSI measurements
and the fingerprint of a reference point. We propose an alter-
native method, which uses the Gaussian tail probability as the
likelihood of the unknown RSSI measurements originating
from a particular reference point. We show that our proposed
method achieves better localization performance.

3. We carry out a systematic evaluation of the accuracy impact of
integrating machine learning algorithms—multi-layer percep-
tron, support vector machine, and K-nearest neighbors—with
traditional active localization methods. We demonstrate that
the machine learning-based methods outperform their tradi-
tional counterparts, regardless of which model is incorporated,
or which training or testing set is used.

This paper is organized as follows. Section 2 provides a brief
overview of related work in RSSI-based active and passive local-
ization. Section 3 describes how we adapt the localization method
from a traditional active context to a passive context and how we
incorporate machine learning methods to boost performance. Sec-
tion 4 presents details of data collection, including experimental
design, hardware configuration, and data collection procedures. Sec-
tion 5 discusses the preparation of various data sets for analysis.
Section 6 reports the localization performance on methods adapted
from traditional multilateration and fingerprinting. Section 7 de-
scribes the model training process for the machine learning methods
and reports their localization performance. Section 8 compares
localization performance among the best models of each method
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investigated. Finally, Section 9 concludes the paper by presenting
limitations and directions for future work.

2 Related Work

Prior work in RSSI-based localization has been conducted in active
(localization done on the device) and passive (device has no knowl-
edge of localization) settings. Here, a brief review of related work in
both areas is presented. Emphasis is given considering applicability
in urban areas.

2.1 Active Localization

Multilateration is a common method for active localization. It in-
volves estimating distances from the target device to all nearby
access points (APs) using an RSSI-distance model, and then apply-
ing linear least squares regression to pinpoint the device’s location
based on geometric analysis. Most work in multilateration focuses
on building a better or simpler RSSI-distance model. In [12], the
authors use the RSSI path-loss model as a base, treat the path-loss
exponent as a random variable, and apply maximum likelihood
estimation to derive a closed-form distance estimator. In [13], the
authors use linear regression to fit RSSI-distance data to a generic
path-loss model without estimating the path-loss exponent.

Relying solely on RSSI is usually not sufficient to deliver
high accuracy. Thus, some studies incorporate additional location-
sensitive information to mitigate RSSI variability and improve
model performance. For example, in [5], the authors leverage the
newly added fine timing measurement frame in WiFi protocols
to compute the RF signal round-trip time between device and AP.
Round-trip time is then fused with RSSI using Kalman filter to form
a new parameter that provides better distance estimation than RSSI
alone.

Other studies, as detailed in the review [4], drop RSSI
completely and use signal angle-of-arrival, time-of-arrival, time-
difference-of-arrival, and other more consistent measures to estimate
device-to-AP distance. These techniques yield higher accuracy than
RSSI-based multilateration.

The other commonly used method in active localization is fin-
gerprinting. Fingerprinting has offline and online stages. In the
offline stage, a test device roams around a target area surrounded
by numerous APs. The APs emit RF signals constantly, which are
captured by the test device at various reference points along its path.
The RSSI measurements obtained at each reference point form a
vector, or fingerprint, which describes the RSSI pattern representa-
tive of the reference point in the AP network. Together, the offline
RSSI fingerprints form a radio map that is used during the online
stage to match an unknown vector of RSSI measurements to the
most likely reference point.

Much research has focused on the offline stage to improve the
quality of fingerprints in the radio map. A common strategy is to in-
corporate additional location-sensitive information, such as azimuth
data collected from a device’s magnetometer [6] and a device’s prior
location and speed data [7, 16], such that an enhanced radio map
can be created. These studies have shown that an enhanced radio
map yields better localization performance.
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One challenge in fingerprinting is the scalability of creating
a high quality radio map outdoors. It requires data collection at
a large number of reference points and deployment of more APs,
both of which are daunting tasks. To resolve these issues, the au-
thors of [17] propose crowdsourcing to build radio maps at large
scales. Incentivized volunteers obtain RSSI measurements from
public WiFi hotspots and upload the RSSI and GPS data to a server
for radio map construction. Their work demonstrates the robustness
of crowdsourced data for localization purposes, yet falls short of
implementing an actual crowdsourcing solution.

Since passive localization is largely independent of the device,
any method requiring additional location-sensitive data from the de-
vice cannot be readily adapted. Crowdsourcing might be adaptable
because it does not require device cooperation. However, crowd-
sourcing in passive localization is different from active localiza-
tion, because the participants are APs instead of mobile devices.
In theory, these APs can sniff WiFi probe requests, record their
RSSI measurements, and upload the recorded data. Yet, in prac-
tice, configuring these APs to serve as crowdsourcing endpoints,
which are scattered around private businesses and homes, could be
more challenging than simply generating the radio map manually.
Thus, crowdsourcing is also not readily applicable to passive local-
ization. In summary, the only methods that are readily adaptable
from traditional active localization to passive localization are purely
RSSI-based multilateration and fingerprinting.

2.2 Passive Localization

The authors in [18] were the first to propose the concept of device-
free passive localization. It is based on the idea that an entity can be
detected and tracked in a network of APs that are constantly sending
beacons. Due to shadowing effects on the beacon’s signal, it is pos-
sible to construct a radio map based on RSSI disturbances, and use
fingerprinting to localize the entity even if it has no radio frequency
capability. In [19], the authors push this idea further by creating a
high density AP network, achieving not only localization, but radio
tomographic imaging for one or two entities in the AP network. In
[20], the authors present device-free localization models based on
relevance vector machines and show good performance with single
entity tracking in a cluttered environment.

Despite the progress in device-free passive localization, there are
two major limitations that preclude its use in an urban environment.
First, creating a sufficiently sensitive AP network requires a high
density of APs ([19] use 28 APs and [20] use 24 APs, both in a 6 m
by 6 m area); this is not scalable to city streets. Second, the number
of devices localizable within the AP network is limited because if
too many devices are present, the RSSI disturbances would be too
chaotic to characterize. This limitation means that the device-free
approach cannot handle crowded city streets.

The other approach in passive localization involves the target de-
vice emitting a signal spontaneously, such as a WiFi probe request,
but without actually communicating with the APs. Probe request
sensors are typically deployed at strategic positions to capture and
process probe request data. In [21], the authores use this approach to
localize static devices in an intersection. A target device is localized
to the same position as the sensor that has captured the device’s
probe request. If multiple sensors detect a device, the position of the
sensor receiving the highest RSSI measurements is used. However,
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this method has low resolution if the number of sensors deployed
is small (i.e., many devices would be localized to the same sensor
if that is the only sensor nearby). This can be tolerated if the res-
olution requirement is low—for instance, at the scale of an entire
city, a resolution level of intersections is acceptable—but it is not
sufficient to reconstruct movement patterns on a street. One can
improve resolution by deploying more sensors at smaller intervals,
but this is not scalable.

In [22], the authors also use a qualitative method, but they im-
prove resolution by deploying GPS-enabled mobile sensors carried
by volunteers, who roam the monitored area. Since the sensors are
mobile, localization is not static. If a mobile sensor and a target
device have similar movement patterns, localization resolution can
be high. However, if the mobile sensor moves in the opposite di-
rection as the target device, localization resolution is compromised.
Another drawback is that continuous human-based monitoring is
infeasible over a long period of time. The paper suggests using
drones or robots as alternatives, yet the scalability issue remains.

In [1], the authors propose a quantitative method to localize a
stationary device using a single mobile sensor, without the need for
a radio map. Their method requires the sensor to move either in a
straight or right-angled path close to the target device’s potential
location, taking RSSI measurements from the device’s WiFi probe
requests at distinct points along the path. Using the RSSI path-loss
model, they estimate the distance from the measurement points to
the target device. Using these distance measurements, along with
the known distance between the consecutive measurement points,
they are able to estimate the location of the target device. The advan-
tages of this method include low cost and ease of implementation.
However, the method is limited by the requirement that the target de-
vice be stationary when the sensor is moving on the data collection
path. It also suffers from the scalability issue associated with mobile
sensors, if multiple targets are to be localized simultaneously.

Overall, the methods described above for passive localization
fall short for the requirements of monitoring mobility patterns on
city streets. The device-free methods are appropriate only at small
scales, whereas the qualitative methods are only sensitive enough
for large scales with low resolution requirements. The methods
based on mobile sensors, though capable of delivering higher resolu-
tions, present scalability issues in urban areas. Therefore, to achieve
passive localization on city streets, a different approach is needed
that leverages device participation (but not cooperation), uses static
sensors, and is quantitative in nature.

3 Our Methods

This section describes two general localization approaches that sat-
isfy the abovementioned requirements. The first approach involves
adapting traditional active localization methods, including multilat-
eration and fingerprinting. The second leverages machine learning,
including machine learning-boosted multilateration, classification
of reference points, and regression of reference points’ coordinates.

3.1 Multilateration

The concept of multilateration in active localization is described in
Section 2.1 and a visual representation is available in [23]. Since
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this method is independent of device cooperation, its adaptation to
passive localization is straightforward. Instead of using the RSSI
measurements obtained by the target device from nearby APs, it
relies on RSSIT measurements acquired by the sensors from the target
device.

The RSSI measurements must be converted to distance values
between the target device and each sensor. This can be achieved
using the basic RSSI path-loss model shown in (1), where R is the
RSSI measurement, d is the distance (non-zero) between the sensor
and the target, A is the RSSI measured at a reference distance from
the target (e.g., 1 m), and »n is the mean, environment-specific path-
loss index that describes the speed of signal loss with increasing
distance [24]. In a stable environment, A and n are constants. There-
fore, the path-loss model can be treated as a negative linear relation
between R and log (d), which can be fitted using linear regression
to produce an RSSI path-loss model.

R=A-10nlog(d) (1)

After estimating device-to-sensor distances, we use least squares
optimization to search for the coordinates (X, ) that minimize the
residue in (2). In the equation, d; is the estimated distance be-
tween the target device and the i-th sensor; (x;,y;) represents the
coordinates of the i-th sensor; and (X, y) represents the estimated
coordinates of the target device.

N 2
> (d,- - G 07+ 97

i=1

Residual = 2)

3.2 Fingerprinting

The concept of fingerprinting in active localization is described in
Section 2.2. Similar to multilateration, the adaptation from active to
passive localization only entails changing the manner in which RSSI
is obtained, i.e., instead of measuring RSSI on the target device from
signals sent by nearby APs, we measure RSSI on the nearby sensors
from the signal sent by the target device.

We employ two methods to establish RSSI fingerprints. The
first involves vector-based fingerprinting. We use RSSI vectors
as fingerprints, in which each value is the mean of all RSSI mea-
surements obtained by a specific sensor at a given reference point
[11]. For example, given N sensors S, S», ..., Sy and M reference
points Py, P, ..., Py, we denote R;ji, R;p, R;j3, ..., as the RSSI
measurements emitted from reference point P; (1 < i < M) and
captured by sensor S; (1 < j < N). Let y;; be the mean of R;;1,
Rij, Rij3, .... The vector-based fingerprint of P; can be written as
FY = [pin, Hizs ooy Hin ]

When a target device generates a vector of RSSI measurements
U = [R},R}, ...,R}] at an unknown location, the penalty of match-
ingUto F IV can be approximated by their Euclidean distance. The
smaller the distance, the more likely the target device originates
from reference point P;.

The second method is Gaussian-based fingerprinting. It uses a
set of Gaussian distributions as RSSI fingerprints, where each distri-
bution corresponds to the RSSI measurements obtained by a specific
sensor at a given reference point [7]. Extending the example above,
Gaussian-based fingerprinting computes both the mean (u;;) and
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standard deviation (c;;) of RSSI measurements collected by sensor
S j with regard to reference point P;. The Gaussian distribution is
expressed in (3).
R S
gl](-x) o \/ﬂe

Considering a reference point P;, and N sensors S, S», ...,
S ~, P;’s Gaussian-based fingerprint can be expressed as a set of
distributions FZG = {gil (X), g,-z(x), . giN(x)}.

Given a set of RSSI measurements U = [R|, R}, ..., R};] from
the target device, the penalty of matching U to F’ ZG can be estimated
in two ways. The first is the area-under-the-curve (AUC) method,
proposed by [7]. It computes the AUC (denoted as A,;) for each
R} under the Gaussian distribution g;;(x), as shown in (4). The

3

penalty of matching U to F lG is approximated by the mean of all
A;j. The smaller the mean over A;;, the more likely the target device
originates from reference point P;.

,
f gij(0)dx
U

ij

Ajj= “4)

Our initial localization results show that Gaussian-based finger-
printing with the AUC method does not perform well, especially
when there is significant misalignment between some R; and g,
This is most likely due to the flaw of the penalty structure in the
AUC method (see Section 6.2 for details). To offer a better alter-
native, we propose the tail method, which uses tail probabilities
to represent the likelihood that an individual R’, originates from
8ij(x). The product of all such individual likelihoods is the overall
likelihood that U matches F' lG Concretely, let L;; be a likelihood
estimator, which is the smaller of the two AUCs from the cumulative
density functions extending from R’]. to either tail of the distribution.
Figure 1 illustrates the definition of L;;. In the figure, R} is placed in
a Gaussian distribution g;;(x), with mean y;; and standard deviation
ij. Lij is the AUC from R’ to the right tail. The larger the value
of L;j, or the closer R;. is to y;;, the more likely R} originates from

8ij(x).

Py

‘©

3

) gij(x)

z Li
=

©

o

o

[a 8

Mij R’j
RSSI

Figure 1: Tail Probability of R’/ in a Gaussian Distribution g;;(x)

L;; can be written as (5). The penalty of matching U to F lG
can be approximated by the product over all L;;, which is then con-
verted to the sum of the negative logarithm of all L;; to facilitate
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computation. The smaller the sum, the more likely the target device
originates from reference point P;.

min (R}, Zyij—R;)
Lij = f gij(x)dx
0

Once the penalty is obtained from the target device to all ref-
erence points using either the vector- or Gaussian-based method,
K-nearest neighbors is used to find the top k best-match reference
points. The exact value of k is determined empirically via a valida-
tion set. The average location of the top-k reference points is the
predicted location of the target device.

(&)

3.3 Machine Learning-boosted Multilateration

We use the RSSI path-loss model in (1) to estimate distance based
on RSSI measurement. However, (1) does not capture all the error
terms [10]. While it is possible to create more complex path-loss
models with add-on error terms, we can train a standard machine
learning model to “learn” the relationship between RSSI measure-
ments and distances, with error implicitly included. Machine learn-
ing may capture relationships not explicitly described by a physical
model. Thus, it is likely that a machine learning model will perform
better than the idealized physical model in (1). We use three standard
machine learning algorithms—multi-layer perceptron (MLP), sup-
port vector machine (SVM), and k-nearest neighbors (K-NN)—to
train regression models from RSSI measurements and distance at
each sensor. Each model is then used to conduct multilateration, as
described in Section 3.1.

3.4 Machine Learning Classification of Reference
Points

In fingerprinting, a set of RSSI measurements are passed to a fin-
gerprinting algorithm as inputs, and the most likely reference point
is returned as the localization output. This process is similar to
a machine learning classification model, where input features are
RSSI measurements, and output labels are reference points. The
difference between the two is that the former uses pre-specified
rules to determine how RSSI measurements match reference points,
whereas the matching is “learned” from training data in the latter.
We apply the same machine learning algorithms (MLP, SVM, and
K-NN) to train classifiers that map a set of RSSI measurements to
the best-match reference point.

3.5 Machine Learning Regression of Coordinates

In [9], the authors offer a simple approach to performing active
localization. They train a machine learning regressor that takes
RSSI measurements and propagation delays of transmitted signals
as input, and directly predicts the GPS coordinates of a target de-
vice. Despite not having access to the propagation delay data, we
can still adapt this approach to passive localization using the RSSI
measurements alone. We follow the same setup as in Section 3.4,
but instead of training a classifier, we train two regressors that take
RSSI measurements as input and predict a reference point’s x- and
y-coordinate, respectively. With the two regressors, we can directly
estimate a target device’s location based on the RSSI measurements.
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4 Data Collection

To evaluate the passive localization methods discussed in Section
3, RSSI measurements from mock probe requests, along with the
coordinates of reference points, were collected in a semi-controlled
environment. In the following sections, we present the experimental
setup, experimental design, hardware details (sensor and emitter),
field preparation, and data collection procedure.

4.1 Experimental Design

Figure 2(A) shows the layout of the testbed. Each cell is a I m by 1
m square, making the entire field 15 m by 15 m. Four sensors (red
dots) sy, 52, 53, and s4 are placed at coordinates (0, 15), (15, 15), (0,
0), and (15, 0), respectively. During data collection, an emitter is
placed on each data collection point (blue dots) and allowed to send
approximately one-thousand mock probe requests. Each contains a
Media Access Control (MAC) address that is traceable to a specific
data collection point, distinguishable from a genuine probe request,
and unique. After a mock probe request is captured by a sensor, the
data is uploaded and stored in a database hosted on Amazon Web
Services (AWS). Since four sensors are present in the testbed, at
most four RSST measurements are collected per probe request.

15 @ L ] ® ® o
s1 s2
14 @ L ] ® ® o L}
13 @ L ] L J ® { L J
2 @ ® ® ® ® ®
1 @ L ] ® ® o ®
s3 s4
o o o o [} [}
0 1 2 () 13 14 15 (B)

Figure 2: Experimental design and satellite view of the testbed

4.2 Hardware - Sensor

We used the same sensor described in [14]. It captures WiFi probe
requests from the environment, removes duplicate MAC addresses
at each 30-second window, and uploads aggregated data to AWS.
In this paper, we added a new feature to differentiate mock probe
requests from genuine probe requests, which allows the sensor to
upload mock probe requests to a database dedicated to the exper-
iment. The uploaded data include MAC address, time of capture,
and RSSI measurement.

4.3 Hardware - Emitter

We used the same stress testing device described in [14] as the
emitter of mock probe requests. It emits WiFi probe requests with a
custom MAC address, on a specified channel, at a specified rate.
MAC address customization ensures traceability. The first four
letters of the address are synced to the time of emission (timezone
EST) in the format “HH:MM”. Since the timestamp at each data
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collection point is recorded, a time-stamped MAC address encodes
the location where the mock probe request was emitted. To en-
sure mock probe requests are distinguishable from genuine probe
requests, the fifth and sixth positions of the address are fixed as
“00”. A “HH:MM:00” prefix guarantees few, if any, collisions with
genuine probe requests. Finally, to ensure that mock probe requests
are unique among themselves, the remaining six positions are filled
with random hexadecimals. As an example, a mock probe request
emitted at 3:04 PM EST would have a MAC address similar to
“15:04:00:1A:2B:3C”.

The MAC address customization is only traceable at the granu-
larity of one minute. If two mock probe requests are emitted from
different data collection points within the same minute of an hour,
their locations cannot be distinguished (i.e. the first four letters of
their MAC addresses would be identical). To avoid such complica-
tions, the emitter remains at each data collection point for at least a
full minute before moving to the next. In the experiment, the emitter
uses cronjobs to send approximately 1,000 mock probe requests in
the first 50 seconds of each minute, and zero in the remaining 10.

4.4  Testbed Preparation

An empty outdoor area (GPS: 26.381488, -80.099640) with no
nearby obstacles was used as the testbed to avoid complications in
RSSI measurement. Figure 2(B) shows an overhead view of the
field. Figure 3 provides a detailed view after the 15 m by 15 m grid
has been prepared with spray chalk. The southwestern corner is
chosen as the origin point of the field, with coordinates (0, 0).

S .
P Et
€
E NG
% >
» » i -~
4 |
%, $

3 2% o 7
b ‘~-4 \ﬂ 4 B

b 5 o waye

e W

Figure 3: Mounted sensors on the testbed with grid drawn

The sensors were mounted on tripods, with an elevation of
approximately 1.8 m above the ground. The four tripods were posi-
tioned at s, 53, 53, and sy4, as illustrated in Figure 2. Three of the
tripods are visible in Figure 3.
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4.5 Data Collection Procedure

Data are collected by placing the emitter on each data collection
point. The emitter is mounted on the same type of tripod as the
sensor, but with an elevation of only 1 m. This mimics the height
at which a WiFi-enabled device is likely to be carried by a pedes-
trian. During the first 50 seconds of each minute, the emitter is left
alone on the data collection point, without anyone present within the
boundaries of the testbed. In the remaining 10 seconds, a researcher
enters the field and moves the emitter to the next point. This setup
ensures that signal transmissions are not affected by transient ob-
structions. At each data collection point, the coordinates and the
current timestamp are recorded. This procedure is repeated until all
data collection points are visited.

Data collection for this manuscript was conducted from 15:00
to 20:00 on 2020-07-16.

S Data Preparation

The raw probe request data contains 221,553 observations, one per
mock probe request. Each observation contains five parameters,
corresponding to the RSSI measurement (one per sensor) and times-
tamp. Observations with missing measurements are discarded. The
resulting cleaned data set contains 171,537 observations. To further
reduce the computation cost of model training, and to balance the
number of observations across data collection points, 100 observa-
tions are randomly selected from each data collection point to form
the sampled data set.

The sampled data set is one of the two data sets used in this paper.
It contains 25,200 rows and 11 parameters. Each row corresponds
to an individual mock probe request. The parameters correspond to
four RSSI measurements (R; through Ry4), coordinates of the data
collection points (x and y), distances to each sensor (d; to d4), and
unique labels of the data collection points (label). Table 1 shows
the structure of the sampled data set.

Table 1: Structure of the sampled data set

Rl...R4 X y d[...d4 label
-44..-41 00 1.0 14.0..150 16
-43...-41 00 20 13.0..15.1 32

The other data set used in this paper is the mean data set, de-
rived from the cleaned data set by taking the mean and standard
deviation of RSSI measurements from each sensor at each data
collection point. The mean data set contains 252 rows and 15 pa-
rameters. Each row corresponds to a data collection point. The
parameters correspond to four mean RSSI measurements (u; to uy),
coordinates of the data collection points (x and y), distances to each
sensor (d; to dy), four RSSI standard deviations (o to 04), and
unique labels of the data collection points (label). Table 2 shows
the structure of the mean data set.
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Table 2: Structure of the mean data set

sy X y dy ... dy o1 ...04 label
443,..,-428 0.0 1.0 140..150 093..1.15 16
-44.1,...,-40.7 0.0 20 13.0..151 1.60..0.64 32

After random shuffling, the sampled data set is split into a sam-
pled training set (80%, 20,160 observations) and a sampled testing
set (20%, 5,040 observations) using scikit-learn [25]. The mean
data set cannot undergo the same splitting procedure due to having
only one observation per data collection point. Hence, the entire
mean data set is treated as the mean training set (252 observations).
Finally, the mean and standard deviation of RSSI measurements by
each sensor at each data collection point from the sampled testing
set form the mean testing set (252 observations).

The training sets are used exclusively for model training and
validation. In particular, the sampled training set is used in all
methods except fingerprinting; the models thus trained are called
sampled models. The mean training set is used in all methods;
the models thus trained are called mean models. The difference
between sampled and mean models is that the former is tuned using
the individual observations in a training set, whereas the latter is
tuned by their mean values. It is worth noting that averaging RSSI
measurements seems to have both positive and negative impacts on
model performance, as it simultaneously reduces random error [2]
and training size. It is thus interesting to study how the performance
of the mean model compares to that of the sampled model.

All data preparation procedures were conducted using the
pandas Python library [26]. Figure 4 illustrates the relationships
among the derived data sets, where their names, lineage, and shapes
(rows X columns) are shown.

—

S —
_
M

Raw Dataset
221,553

Exclude missing data

100 random samples
per reference point [—————— |
Cleaned Dataset

171,537

Take mean

Mean Training Set
252

1000 random samples

Sampled Dataset
25,200

Sampled Testing Set
5,040

Random split

e

=

Sampled Training Set
20,160

<
S

Mean Testing Set
252

Figure 4: Relationship among all data sets

Sampled Validation Set

Take mean

6 Traditional Methods

In this section, we present the adapted multilateration and finger-
printing methods for passive localization and consider their per-
formance. Here, localization performance is visualized by the cu-
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mulative distribution function (CDF) curve of localization error.
Localization error is defined as the Euclidean distance between the
predicted and the true coordinates of a test observation. The larger
the area-under-the-curve of a CDF curve of localization error, i.e.,
the closer the curve gets to the top and left corner, the better the
localization performance.

6.1 Multilateration

Two RSSI path-loss models, one using the sampled training set
and one using the mean training set, are created by linear regres-
sion according to (1) for each sensor. The performance of the two
models, evaluated on the sampled testing set, is shown in Table
3. The R? score describes the amount of variance explainable by
the path-loss model, and the mean absolute error (MAE) describes
the error between the estimated and actual distance. Within each
sensor, the two models have almost identical performance. This
means that averaging RSSI measurements does not alter model per-
formance. Across the models of different sensors, s4 has the best
performance, whereas s; has the worst. This may be explained
by a consistent source of interference from the northwest corner
of the testbed. Since s; is closest to the northwest corner, it was
affected the most. s4 is furthest from the interference source, so
it was affected the least. However, the validity of this explanation
cannot be verified until the same performance pattern repeats over
time in future research.

Table 3: Metrics of the path-loss model

Sensor Sampled Mean

R* MAE R*> MAE
51 0.61 462 061 4.63
52 0.65 4.06 0.65 4.07
53 0.61 4.03 0.61 4.03
4 0.71 344 0.71 3.46

Two multilateration models are generated, one based on the sam-
pled RSSI path-loss model and the other based on the mean RSSI
path-loss model. We first convert RSSI measurements to distances,
and then pass the distance data to scipy’s least squares optimiza-
tion API to estimate the target device’s coordinates [27]. Figure
5(A) demonstrates the localization performance of the traditional
multilateration method. The x-axis denotes localization errors, and
the y-axis denotes the probability that a model’s localization error
is smaller or equal to a selected x-axis value. The blue (sampled-
sampled), orange (mean-sampled), and green (mean-mean) curves
represent the localization performance under three scenarios: the
sampled model tested on the sampled testing set, the mean model
tested on the sampled testing set, and the mean model tested on the
mean testing set, respectively.

The sampled-sampled curve does not show on the figure because
it overlaps with the mean-sampled curve. This is expected because
the sampled and the mean RSSI path-loss models have similar dis-
tance estimation performance. The mean-mean scenario performs
slightly better than the other two. However, this is likely an artifact
because the mean training and testing sets are very similar. Recall
that the cleaned data set is the source of the mean training set, and
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the sampled testing set is the source of the mean testing set (Figure
4). Since the sampled testing set is a subset of the cleaned data set,
the mean testing set shares information with the mean training set.
The similarity between the mean testing and training sets inflates
the measured performance of the mean-mean scenario.

6.2 Fingerprinting

The radio map for vector-based fingerprinting is a 252 X 4 matrix
prepared from the mean training set, where each row represents a
reference point, and each column represents the mean RSSI measure-
ments from a sensor. As mentioned in Section 3.2, we empirically
determine k, the number of top-match reference points that produces
the best coordinate estimation. A series of fingerprinting models
parameterized with different values of k are used to perform localiza-
tion on a validation set. The k leading to the least validation error is
selected. Usually, the validation set is withheld from the training set.
However in fingerprinting, the mean training set, which is also the
radio map, has no redundancy to supply a validation set. Therefore,
we set aside 1,000 observations from the sampled testing set as the
validation set (Figure 4). The observations in the validation set are
not included in evaluating model performance. Validation error is
defined as the root mean squared localization error, following [11].

1.07 =
0.8 f (A) Multilatertion
" 0.6 /
a
O
0.4
—— sampled-sampled
0.2 mean-sampled
—— mean-mean
0.0
1.0
0.81 (B) Fingerprinting
0.6
5 —— v-mean-sampled
© v-mean-mean
0.4
—— g-auc-mean-sampled
—— g-auc-mean-mean
0.2 —— g-tail-mean-sampled
—— g-tail-mean-mean
0.0
0 2 4 6 8 10

Localization Error (m)

Figure 5: CDF curves of error in traditional methods

We use scikit-learn’s K-nearest neighbor API to search
for the optimal k. The API is called with default settings, except
algorithm is set to brute, and n_neighbors is set to k, which
ranges from 1 to 20 for each validation run. For the data sets col-
lected, we find that the validation error reaches its minimum when
k = 2. Using this k, we evaluate the performance of vector-based
fingerprinting; results are shown in Figure 5(B). The axis layout
is the same as described earlier. The blue (v-mean-sampled) and
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orange (v-mean-mean) curves represent localization performance
when vector-based fingerprinting is tested on the sampled (exclud-
ing the validation set) and mean testing sets, respectively. Similar
to traditional multilateration, the performance of v-mean-mean is
better than that of v-mean-sampled. Again, this is most likely an
artifact due to information overlap between the mean testing and
training sets.

The radio map for Gaussian-based fingerprinting is a 252 x 4
matrix prepared from the mean training set, where each row repre-
sents a reference point, and each column represents the Gaussian
distribution, modeled from the mean and standard deviation of the
RSSI measurements from the corresponding sensor. We follow the
same procedure described above to find the best k, except that in
the K-nearest neighbor API, (4) and the mean over A;; are used
for the AUC method, whereas (5) and the sum over negative loga-
rithm of L;; are used for the tail method. The result of the search
shows that the minimum validation error is reached when k = 2
for both the AUC and the tail methods. Figure 5(B) shows the
localization performance of Gaussian-based fingerprinting based
on the optimal k value. The green (g-auc-mean-sampled) and red
(g-auc-mean-mean) curves represent the performance under the
AUC method, while the magenta (g-tail-mean-sampled) and brown
(g-tail-mean-mean) curves represent the performance under the tail
method. Both the g-auc-mean-sampled and g-tail-mean-sampled
curves are based on the sampled (excluding the validation set) test-
ing set, whereas both the g-auc-mean-mean and g-tail-mean-mean
curves are based on the mean testing sets. The g-auc-mean-mean
and g-tail-mean-mean curves again exhibit better performance than
the g-auc-mean-sampled and g-tail-mean-sampled curves, respec-
tively, which is likely an artifact.

Comparing performance across all curves (excluding the ones
under mean-mean scenario), the vector-based fingerprinting (v-
mean-sampled) performs the best. However, its lead over Gaussian-
based fingerprinting under the tail method (g-tail-mean-sampled) is
very modest.

Comparing the two methods within Gaussian-based fingerprint-
ing, the tail method consistently outperforms the AUC method. This
is most likely due to the difference in penalty structure, where the
AUC method, unlike the tail method, does not penalize misalign-
ment proportionally to its severity. Figure 6(A) shows an example
of how the penalty structure of the AUC method would fail to match
a set of unknown RSSI measurements to the most probable finger-
print. In the figure, a Gaussian-based fingerprinting radio map is
visualized, which contains two reference points (P and P,), each
fingerprinted by two sensors (S| and S,). The two blue distribu-
tions represent the RSSI fingerprint of P;, denoted by the means
[11, 12]. Similarly, the two orange distributions represent the RSSI
fingerprint of P, denoted by the means [u,], t22]. For simplicity, all
distributions are assumed to have the same standard deviation. The
set of unknown RSSI measurements, U = [R’I,R’Z], are illustrated
by two black dashed lines. Finally, the areas-under-the-curve used
in the AUC method are labeled as A;; and A;, for Py, and A,; and
A22 for P, 2.
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Figure 6: Example of matching under AUC or tail methods

Although it is clear that P; is a better match for U than P,,
it is not apparent in Figure 6(A). According to the AUC method
described in Section 3.2, the match is selected as the smaller of
A1 + App and Ay + Apy. Due to the large misalignment between
R’2 and both u;, and py,, we have Ay = Aj. Thus, the actual
comparison is between A} and A,;, which does not yield a clear
winner at first glance. However, the decision should not have been
left to a comparison between Aj; and A in the first place. The
extreme misalignment between R}, and u»; should have already dis-
qualified P,. The AUC method is unable to recognize this because
its penalty structure is inversely proportional to the severity of RSSI
misalignment (i.e., the amount of penalty per unit of misalignment
decreases as misalignment becomes more severe). R, demonstrates
how this penalty structure fails. While it is expected that a match
between R/, and u; is penalized much more than a match between
R’2 and u,, the actual penalty associated with the former (Ay) is
almost the same as the penalty associated with the latter (A,). Thus,
the failure to proportionally penalize misalignment makes the AUC
method ill-equipped for Gaussian-based fingerprinting.

On the contrary, Figure 6(B) illustrates that the tail method can
readily match U to P; as expected. The layout of Figure 6(B) is
the same as Figure 6(A), except that the areas-under-the-curve are
redefined and labeled as L;; and L, for Py, and L,; and Ly, for P,.
According to the tail method described in Section 3.2, the match is
selected as the smaller of —Ig(L;;) — lg(Ly2) and —Ig(Ly) — Ig(Lyy).
While L, and L,; remain similar, the difference between L, and
Ly, is large, with Ly, being virtually 0. As aresult, —Ig(L;1)—Ig(L2)
is easily smaller than —Ig(L,;) — Ig(Ly2), which matches U to P;.
The reasons why the tail method works are two-fold. First, its
penalty structure is proportional to the severity of RSSI misalign-
ment, which ensures that larger misalignment receives exponentially
more penalty. Second, multiplication of tail probabilities (or the
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sum of their negative logarithms) further amplifies the misalignment
penalty. In an extreme case, imagine that R is perfectly aligned
with wp; in Figure 6(B), and thus receiving the least amount of
penalty. Yet, the severe misalignment between R’, and us; would
still overwhelm the overall penalty for P, and readily make it a
worse match than P;. Therefore, the tail method is better-suited for
Gaussian-based fingerprinting than the traditional AUC method; the
difference in their localization performance is thus unsurprising.

7 Machine Learning Methods

Three methods—machine learning-boosted multilateration, machine
learning classification of reference points, and machine learning
regression of coordinates—are evaluated for RSSI-based passive
localization. Each method is approached using three standard ma-
chine learning algorithms, MLP, SVM, and K-NN. Each model is
trained on sampled and mean training sets to produce sampled and
mean models, respectively.

During model training, we conduct two rounds of cross-
validation to tune hyperparameters. For the sampled model, standard
five-fold cross-validation is used. For the mean model, multi-fold
cross-validation is not possible because the mean training set lacks
sufficient redundancy. Thus, the same validation set discussed in
Section 6.2 is used. In the first round of hyperparameter tuning, a
wide range of values are provided, such that an optimal range can
be identified for each hyperparameter. In the second round, values
within each optimal range are used to find the exact hyperparameter
values that minimize cross-validation error.

The finalized hyperparameter values are used to re-train the
model, which is then subject to performance evaluation. The out-
come of the evaluation is visualized as a CDF curve of the local-
ization error in the same manner as described in Section 6. The
sampled model is evaluated on the sampled testing set only, produc-
ing a sampled-sampled curve. The mean model is evaluated on both
the sampled and mean testing sets, producing mean-sampled and
mean-mean curves, respectively. As mentioned before, the valida-
tion set is excluded from evaluating the localization performance of
the mean models.

All machine learning and hyperparameter tuning algorithms are
executed using the corresponding APIs in scikit-learn.

7.1 Machine Learning-boosted Multilateration

In machine learning-boosted multilateration, the RSSI path-loss
model is replaced by a machine learning regressor to estimate dis-
tance based on RSSI measurements. The advantage of this approach
is that it assumes no prior knowledge of the complex RSSI-distance
relationship and conducts regression without the constraints of a
physical model.
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Table 4: Metrics of machine learning RSSI-distance regressors

MLP SVM K-NN
Sampled Mean Sampled Mean Sampled Mean
Sensor R> MAE R* MAE R* MAE R MAE R* MAE R’ MAE
1 053 248 052 250 053 245 053 247 052 248 053 248
52 0.64 205 064 205 063 205 063 206 0.63 212 0.64 2.07
53 0.57 239 056 240 056 235 055 236 057 239 056 244
54 068 192 067 193 067 189 066 192 0.67 189 0.67 1.92
1.0 The hyperparameters tuned for the MLP regressor are
P 1 hidden_layer_sizes, activation, and solver; C, kernel,
0.81 > (A) MLP and gamma for the SVM regressor; and n_neighbors, weights,
/ algorithm, and leaf_size for the K-NN regressor. The maxi-
0.6 mum number of tuning iterations is 1,000 for the MLP, and 20,000
é for the SVM and K-NN regressors.
0.41 Table 4 lists the R?> and MAE values for the machine learning
—— mlp-sampled-sampled RSSI-distance regressors after two rounds of hyperparameter tun-
0-2] mip-mean-sampled ing. Across machine learning algorithms, the sampled and mean
0.0 — mlp-mean-mean models exhibit similar performance. Across sensors, s4 exhibits the
lowest error, whereas s; exhibits the highest error. This follows the
10 results from the RSSI path-loss model. Comparing the performance
0.5 (B) SVM between the machine learning and the RSSI path-loss models, we
' observe that the former consistently outperforms the latter in terms
0.6 of MAE.
é We use each machine learning RSSI-distance regressor to gener-
0.4 ate its corresponding multilateration model as described in Section
6.1. Figures 7(A), (B), and (C) demonstrate their localization per-
—— svm-sampled-sampled
0.21 svm-mean-sampled formance. Across all three machine learning algorithms, the models
—— svm-mean-mean have similar performance, which is not surprising, given the similar
0.0 performance in RSSI-distance regression mentioned above. The
1.0 : mean-mean curve performs slightly better, which, as described in
Section 6, could be an artifact.
0.81 / (CHIENN A comparison is also made among the best CDF curves across
06 v the three methods (mean-mean curve excluded), as shown in Figure
wo 7(D). There is little difference in localization performance among
© them.
0.4
—— knn-sampled-sampled
0.21 knn-mean-sampled
—— knn-mean-mean . . . .
0.0 7.2 chhme Learning Classification of Reference
Lo Points
0.81 (D) Comparison Machine learning classification is an alternative to the traditional
fingerprinting method. A trained machine learning classifier takes
0.61 four RSSI measurements from a target device as input and produces
é a predicted label as output. The label can be mapped to a refer-
0.4 ence point, which is considered the estimated location of the target
—— mip-sampled-sampled device.
0.21 svm-sampled-sampled The hyperparameters tuned for the MLP classifier are
— knn-sampled-sampled hidden_layer_sizes, activation, solver, and alpha; C,
0.05 2 4 6 8 10 kernel, gamma, and decision_function_shape for the SVM
Localization Error (m) classifier; and n.neighbors, weights, algorithm, and
leaf size for the K-NN classifier. The maximum number of
Figure 7: CDF curves of error in machine learning-boosted multilateration tuning iterations is 1,000 for all classifiers.

www.astesj.com 278


http://www.astesj.com

F. Bao et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 269-282 (2022)

Table 5: True and adjacent accuracy of machine learning classifiers

MLP SVM K-NN
Accuracy Sampled Mean Sampled Mean Sampled Mean
True 0.63  0.55 0.70  0.68 0.69 0.68
Adjacent 0.81 0.78 0.84 0.83 0.84  0.80
1.0 sents the proportion of testing observations with correctly predicted
— T labels. Adjacent accuracy denotes the proportion of testing observa-
0.81 (A) MLP tions with predicted labels that either match the true labels or one
of the eight surrounding labels. The purpose of including adjacent
0.6 accuracy is to reveal the degree of inaccuracy when a wrong pre-
é diction is made. Due to this intentional leniency, adjacent accuracy
0.41 is always better than true accuracy. Across machine learning algo-
—— mip-sampled-sampled rithms, the sampled model performs slightly better than the mean
0.21 mlp-mean-sampled model. MLP performs the worst, whereas SVM and K-NN have
—— mlp-mean-mean similar performance.
0.0
1.0 _ Figures 8(A), (B), and (C) illustrate the localization performance
of all three algorithms. Across machine learning algorithms, the
0.81 (B) SVM sampled-sampled curve exhibits slightly better performance than
the mean-sampled curve, but the mean-mean curve tops them both,
0.61 with zero meter localization error more than 90% of the time. As dis-
é cussed earlier, the exceptional performance exhibited by the mean-
0.4 mean curve is most likely an artifact. However, the exaggeration
— sm-sampled-sampled in ?lgssiﬁcation is much more pronounce(.l tha.m in multilateratior.l.
0.21 svm-mean-sampled This is due to the way we compute localization errors for classi-
—— svm-mean-mean fiers. Since we consider a correct match to a reference point as
0.0 being equivalent to zero meter localization error, we accumulate
1.0 many zero-error instances when evaluating the localization perfor-
| mance of classifiers. These zero-error instances inflate the CDF
0.8f (C) kNN curves. In contrast, multilateration methods never exhibit zero meter
localization errors.
5 e We also compare the best CDF curves across the three machine
o4l learning algorithms, with the mean-mean curves excluded. Figure
8(D) shows the results, where SVM performs slightly better than
—— knn-sampled-sampled
0.21 knn-mean-sampled the others.
—— knn-mean-mean
0.0
1.0
0.8 (D) Comparison 7.3 Machine Learning Regression of Coordinates
0.6
o Machine learning regression of coordinates trains two RSSI-
© 0.4l coordinate regressors based on the x- and y-coordinates, respec-
tively. It allows direct quantitative estimation of a target device’s
021 — :)E}'_Z?SE‘Z’_Z’:}?E position. Each regressor takes four RSSI measurements from an
—— knn-sampled-sampled observation as input and produces a pair of estimated coordinates as
0.0 output.
0 2 4 6 8 10

Localization Error (m)
Figure 8: CDF curves of error in machine learning classification

Table 5 lists the true and “adjacent” accuracy of each classifier

The hyperparameters tuned for the MLP regressor are
hidden_layer_sizes, activation, solver, and alpha; C,
kernel, and gamma for the SVM regressor; and n_neighbors,
weights, algorithm, and 1eaf_size for the K-NN regressor. The
maximum number of iterations is 1,000 for the MLP regressor, and

after two rounds of hyperparameter tuning. True accuracy repre- 20,000 for the SVM and KNN regressors.
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Table 6: Metrics of machine learning RSSI-coordinate regressors

MLP SVM K-NN
Sampled Mean Sampled Mean Sampled Mean

Coordinate ~ R* MAE R* MAE R*> MAE R* MAE R* MAE R*> MAE

X 084 124 083 130 091 071 082 129 091 071 088 097

y 08 1.16 08 124 090 074 08 121 091 071 090 0.80
1.0 RSSI-coordinate regressors after two rounds of hyperparameter tun-
ing. Across all regressors, the sampled model has better regression
0.8 (A) MLP performance than the mean model, which is likely due to the differ-
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mlp-mean-sampled
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Figure 9: CDF of error with machine learning RSSI-coordinate regression

Table 6 lists the R* and MAE values for the machine learning
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ence in training size. However, it is worth noting that the difference
in training set size does not affect the performance of the RSSI-
distance regressors (Section 7.1). A possible explanation of why
the RSSI-coordinate regressor is more sensitive to training set size
is that it is a more complex model (four features as input) than the
RSSI-distance regressor (one feature as input). Across algorithms,
the sampled models of SVM and K-NN perform slightly better than
that of MLP, while the mean model of K-NN outperforms that of
MLP and SVM. Between the two coordinates, y-coordinates gener-
ally have lower estimation error than x-coordinates. We speculate
that this is the result of how our testbed is prepared, where there is
more measuring variability in the x- versus y-axis.

Figures 9(A), (B), and (C) summarize the localization perfor-
mance of all three algorithms. Within MLP and K-NN, the sampled-
sampled curve performs slightly better than the mean-sampled curve,
but the mean-mean curve outperforms both. This aligns with our
earlier hypothesis that indicates performance exaggeration in the
mean-mean curve. However, in the SVM models, the situation is
surprisingly reversed. The sampled-sampled curve shows better
performance than the exaggerated mean-mean curve. This is most
likely due to the superior RSSI-coordinate regression performance
of the SVM sampled model compared to the SVM mean model.

We then compare the performance of the best CDF curves across
the three machine learning algorithms (excluding the mean-mean
curves), as shown in Figure 9(D). The results show that the sampled-
sampled SVM model performs the best.

8 Royal Rumble

To find the best-performing model overall, we juxtapose the best
model within each method (excluding the mean-mean curves) in
the same plot. If multiple models show equally good performance
within a particular method, a model is arbitrarily selected. The result
is shown in Figure 10. The axes are the same as before. The blue
curve corresponds to the best performant model in traditional multi-
lateration (sampled-sampled); the orange curve corresponds to the
best in traditional fingerprinting (v-mean-sampled); the green curve
corresponds to the best in machine learning-boosted multilateration
(mlp-sampled-sampled); the red curve corresponds to the best in
machine learning classification of reference points (svm-sampled-
smapled); and the purple curve corresponds to the best in machine
learning regression of coordinates (svm-sampled-sampled). Several
observations can be made.

First, the best machine learning models outperform the best
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traditional models. Specifically, machine learning-boosted multilat-
eration performs better than its traditional counterpart. Similarly,
machine learning classification performs better than traditional fin-
gerprinting. This is not surprising because machine learning meth-
ods can train regressors and classifiers based on RSSI measurements
without the constraints imposed by an underlying physical model.
It allows them to capture patterns that might be ignored in the
traditional methods.

1.0
0.8
0.6
w
a
(@)
0.4 —— traditional-multilateration
traditional-fingerprinting
0.21 —— ml-multilateration
' —— mi-classification
—— ml-rssi-coord-regression
0.0 . ; ; . ; ;
0 2 4 6 8 10 12

Localization Error (m)
Figure 10: The best CDF curves of error among all methods

Second, the best non-multilateration models outperform the best
multilateration models by a wide margin. This is most likely due to
the nature of the multilateration methods, where two rounds of esti-
mation are involved: RSSI to distance and distance to coordinates.
Since each round of estimation incurs error, the multilateration
methods accumulate more error than the other methods, where only
one round of estimation is involved.

Third, except for fingerprinting, where there is no sampled-
sampled option, all of the CDF curves used for comparison in
Figure 10 are sampled-sampled curves. In other words, given the
same sampled testing set, the sampled models either outperform or
perform as well as the mean models for all methods. This result
answers the question raised at the close of Section 5: The benefit of
reduced random error in the mean training set does not outweigh
the costs of reducing the size of the training set.

Finally, for a localization model to function at the scale of a city
street, its error must be below a certain threshold. Ideally, the error
should be small enough to tell whether a target device has moved
from one business to another. Based on this reasoning, the best ma-
chine learning classifier (svm-sampled-sampled), the best machine
learning RSSI-coordinate regressor (svm-sampled-sampled), and
the best traditional fingerprinting (v-sampled-sampled) are the best
candidates, as they all exhibit above 90% probability of having four
meters or less localization error. However, future research must
examine their spatial robustness (e.g., does the model work outside
the testbed?) and temporal robustness (e.g., does the model work
on data collected a week or a month later?).

9 Conclusion

In this paper, we have systematically evaluated the localization
performance of several RSSI-based passive localization methods
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using data collected in a semi-controlled, obstruction-free outdoor
environment. The methods include two adaptations of traditional
active localization methods (multilateration and fingerprinting) and
three machine learning methods (machine learning-boosted multi-
lateration, machine learning classification of reference points, and
machine learning regression of coordinates). The results show that
the machine learning methods perform better than the traditional
methods. Further, the SVM sampled model in the classification-
based approach, the SVM sampled model in the RSSI-coordinate
regression-based approach, and the traditional fingerprinting ap-
proach seem to have sufficiently good performance to be considered
for use in real-world mobility monitoring. However, several limita-
tions in formulating and evaluating these methods must be addressed
and improved upon in future research.

First, all the models in this paper are trained and tested on data
collected in a five-hour window on the same day. In practice, we
have documented and verified that RSSI measured under identi-
cal emitter, sensor, and visible environmental conditions exhibits
temporal variability [28]. Thus, a localization model must possess
temporal robustness such that the time of data collection is irrele-
vant to its performance. Further, the exceptional performance of the
mean-mean curves in almost all models appears to be an artifact due
to the information overlap between the mean testing and training
sets. It will be interesting to see whether the mean-mean curves
remain exceptional when the mean testing set comes from data col-
lected during a different session. Future research will pursue this
evaluation.

In addition, the data used in this paper were collected in a near-
ideal environment, free of obstructions and adverse weather events.
We have yet to include samples with missing data in the analysis
(e.g., three instead of four RSSI measurements in a sample). How-
ever, signal noise and incomplete data are inevitable in practice.
Thus, future research will investigate how model performance de-
teriorates when data are collected with missing features (e.g., not
all sensors capture a probe request), under unfavorable weather
conditions (e.g., rain), in the presence of obstructions (e.g., walls,
people), or with interference from other devices.

Relatedly, all the models trained in this paper are based on data
collected by exactly four sensors. This presents a scalability issue,
in which the addition or removal of a few sensors could require
model re-training. Since scaling sensor deployments up and down
is not uncommon, future research will focus on generating models
resistant or adaptable to small changes in sensor availability.
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