Advances in Science, Technology and Engineering Systems Journal
Vol. 8, No. 1, 01-11 (2023)
www.astesj.com
Special Issue on Innovation in Computing, Engineering Science & Technology

@ASTES

ASTES Journal
ISSN: 2415-6698

Meta-heuristic and Heuristic Algorithms for Forecasting Workload Place-
ment and Energy Consumption in Cloud Data Centers
Amine Bouaouda®, Karim Afdel, Rachida Abounacer

Department of Computer Science, LabSIV, Ibn Zohr University, Agadir, 80000, Morocco

ARTICLE INFO ABSTRACT

Article history:

Received: 30 August, 2022
Accepted: 03 December, 2022
Online: 24 January, 2023

The increase of servers in data centers has become a significant problem in recent years that
leads to a rise in energy consumption. The problem of high energy consumed by data centers is
always related to the active hardware especially the servers that use virtualization to create a
cloud workspace for the users. For this reason, workload placement such as virtual machines
or containers in servers is an essential operation that requires the adoption of techniques that
offer practical and best solutions for the workload placement that guarantees an optimization in
the use of material resources and energy consumption in the cloud. In this article, we propose
an approach that uses heuristics and meta-heuristics to predict cloud container placement and
power consumption in data centers using a Genetic Algorithm (GA) and First Fit Decreasing
(FFD). Our algorithms have been tested on CloudSim and the results showed that our methods
gave better and more efficient solutions, especially the Genetic Algorithm after comparing them
with Ant Colony Optimization (ACO) and Simulated Annealing (SA).
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1 Introduction

This paper is an extension of work originally presented in the Fifth
Conference on Cloud and Internet of Things (CIoT) [1]. By adding
other methods such as the Genetic Algorithm, First-Fit, Random-Fit,
and Simulated Annealing, our approach will predict the energy con-
sumed by the data centers and the workload placement (containers)
in the servers, offering best and optimal solutions to reduce energy
consumption, waste of cloud resources, and have an energy-efficient
container placement policy.

Generally, Cloud Computing is based on a large data center
(server farm), in which many servers are connected to achieve high
performance. The data centers represent an infrastructure of sev-
eral instances (hosts, virtual machines...) [2]-[4]. Each of these
instances requires an allocation at the data center because of the
growing demand for hosting services. For these reasons, they are
considered to be heavy consumers of resources and energy [3]. In
data center, the energy consumed by active servers represents a
large proportion of the total energy [4], [5]. More clearly, the en-
ergy consumed by the hosts or hosting servers plus network and
storage equipment represents about 40% of the total energy [6]-[8].
Cooling equipment uses between 45% and 50% of the total energy,
and the rest is shared among other systems such as lighting [6]-[11].

With the energy of the cooling systems, the costs in the data centers
are experiencing a big explosion, which require a reduction in their
expenses [12]. According to [5][9][13], the main challenges in data
centers are to minimize the heat and energy consumed by cloud
infrastructures and to secure them against threats.

So, to optimize the use of energy in data centers, it is necessary
to define the servers that must be active according to the current
workload and to avoid traditional techniques that negatively influ-
ence the quality of services (QoS) such as stopping components
or reducing their performance [6], [9], [10]. In most data centers,
the consumption of hardware and software resources of each active
physical machine is between 11% and 50% with power consump-
tion between 50% and 70% compared to a server whose resources
are used entirely by the hosting of the instances and applications
executed on these instances [2], [9], [14]. For this, the efficient
placement of virtual instances is very important to control the use
of material resources and prohibit any kind of their waste that can
lead to an increase in energy consumption.

Our approach will have two objectives. The first will be the
prediction of workload placement using the Genetic Algorithm and
the First Fit Decreasing to define a better placement of a new type
of virtual instance called containers. This placement will be con-
strained to define the best lower number of servers to host container
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instances. The second objective is the main one, which will be the
prediction of energy consumed by a data center, by applying our
container placement algorithms to have the best solutions in terms
of reducing the energy consumed by a data center and optimizing
the use of hardware resources such as RAM, Storage, Bandwidth,
etc.

The remainder of this paper is coordinated as follows. We
present the related works in the second section. In the third section,
we propose our methodology. We perform our algorithms in the
fourth section, and the paper is concluded in section five.

2 Related Work

The estimation or prediction of energy consumption in data centers
has become a necessary operation in recent years. Due to the huge
growth in user demands for cloud services, the number of servers
has started to increase to provide the necessary hardware resources.
This implied an increase in energy consumption, which forced large
cloud companies to do studies on the energy consumed by their data
centers, to optimize it in the future, or replace their power source
with a cheaper and guaranteed one.

In this context, several approaches estimate energy consumption
in data centers. Most of these methods focus on servers to estimate
energy. Each server or host is a set of resources such as RAM, HDD,
and CPU. In this case, the energy of the host is relative to the sum
of the power of all its resources, or according to some [15][16].
Mathematically, the energy consumed by a host is represented in
the literature by linear functions that depend on a resource like CPU
[15][17], or non-linear, whose functions are quadratic of the CPU
resource use [17][18]. Heuristics and metaheuristics are methods
that are widely used to estimate the energy in data centers based
on the placement of virtual instances in servers especially meta-
heuristics as they are adaptive for complex problems that require
considerable calculation.

In [19], they proposed the placement of virtual machines based
on energy consumption by the resources of the data center. One of
the objectives of this approach was to reduce energy consumption
using a simulated annealing algorithm. This technique generates an
initial solution called initial configuration which contains the place-
ment of the VMs in servers, on which they applied at each iteration
one of the three simulated annealing techniques: inversion, transla-
tion, and switching, to get the next configuration. To define which
solution is better, they calculate the energy consumed by the data
center in both cases and choose the one that gives the small energy
value that will be the best solution. The disadvantages of this ap-
proach are the execution time which is very long for large instances,
and its process ends if it finds that a new configuration is better
than the previous one even if they remain several iterations. This
decision does not necessarily indicate that the new configuration is
the best among all other solutions.

The same thing in [20], they used the simulated annealing al-
gorithm to propose an economic placement in terms of energy for
virtual machines. The proposed algorithm goes through the four
stages of the simulated annealing (generation of the initial config-
uration, obtaining the next generation, definition of the objective
function, and timing of temperatures and evolution time). The simu-
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lated annealing proposed was compared by the First Fit Decreasing
multi-start random searching approach. The results obtained show
the effectiveness of the proposed method, but in the case of large
instances, it takes a lot of time to find the best solution. For this,
they used a time limiter to stop the calculation process in a solution
very close to the best.

Other researchers have proposed multi-objective metaheuristics
for the placement of workloads in servers by calculating the energy
consumed by data centers, to select the best placement in terms of
energy minimization. In [21], the authors used the multi-objective
genetic algorithm to provide virtual machine placement by mini-
mizing energy consumption and improving the quality of services
and the use of resources. The contradictory nature of the objectives
defined in this approach has necessarily influenced the distribution
of the load between the resources in a data center.

The same thing in [22] and [23], which proposed an approach
based on the ant colony algorithm to calculate and minimize the
energy consumed by a cloud system based on the placement of
virtual machines. In [23], they built a mechanism for measuring
indirect energy consumption for virtual machines based on a model
for calculating the energy consumed by these machines deployed
in [24], because it is difficult to deduce the energy consumption di-
rectly from the material because of the existence of the virtualization
technology.

Our approach will be different from the old works because we
will use cloud containers instead of virtual machines. More of this,
we will propose a genetic algorithm and a First-Fit-Decreasing al-
gorithm to provide best container placement without wasting the
resources of active servers, with the prediction of energy consumed
by any data center to define which algorithm offers best and op-
timal solutions for the minimization of energy consumed and the
optimization of material resources.

3 Methodology

Our main objective is to predict the energy consumed in a data
center for a given workload using the genetic algorithm and First-
Fit-Decreasing to predict the best or optimal placement of this load
(cloud containers). The best algorithm will be one that offers optimal
solutions in terms of minimizing energy consumption and optimiz-
ing the use of the hardware resources of a data center operating in a
specific context.

3.1 Workload Placement

The placement of workloads is an operation that has a great impact
on several problems in cloud computing such as minimizing energy
consumption. The concept of this placement is to define the servers
that will be active to host several virtual instances. To have an
optimal placement, it is necessary to choose an optimal number of
servers without wasting the material resources of the data center.
The workloads in our approach will be the containers.

Containers are small virtual instances in terms of hardware and
software resources [25]—-[27]. They provide a virtual platform such
as Docker, with which multiple users can drive and run their ap-
plications or images of operating systems directly on the physical
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machine [27], [26].

The containers are efficient compared to the virtual machines
because they are lightweight and their installation takes a few sec-
onds and they run directly on the operating system and the hardware
of the physical machine. On the other hand, virtual machines take a
long time to install and require hypervisors to run [26][25]. In [26],
the author represents a containerization technology for creating con-
tainer instances. It allows users to deploy and run their applications
in process containers.

Container 1 Container 2

Docker Engine .

Operating System

Physical Server

Figure 1: Operation of a container

Our approach will propose two algorithms to predict the best
and optimal placement for containers. The main objective will be
the choice of an optimal number of servers sufficient to host the
containers according to their material resources. This objective is
defined by the following equation:

FX)= " Xuou (1)

Host=1
XH = 1 ’
ost =
O,

To achieve this goal, we have identified three necessary con-
straints. First, each container must have a placement at the end. The
second constraint insists that each container must be placed in a
single host. The latter checks that all containers must not exceed the
host regarding material resources. For example, for RAM, we have
decided to reserve 80% of each active host for container placement
and keep the rest for user processing, ensuring proper load balancing
between servers.

if the host is active
otherwise

3.1.1 Genetic Algorithm

The genetic algorithm [28] is an optimization method (meta-
heuristic) [29] first presented by John Holland in the 1970s. It
is based on techniques derived from genetics and the evolutionary
mechanisms of nature: crossover, mutation, and selection.

It represents a method for solving complex optimization prob-
lems, with or without constraints, based on a natural selection pro-
cess (a process similar to that of biological evolution). More pre-
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cisely, it provides solutions to problems that don’t have calculable
solutions in a reasonable time analytically[30][28].

The process of the genetic algorithm begins with the random
creation of thousands of more or less good solutions, then they will
be subjected to an evaluation to select the most suitable ones ac-
cording to constraints. The population continues to evolve through
the creation of other generations, by crossing the best solutions be-
tween them and having them mutate, then they are brought together
with the best already chosen in the selection. This process will
be restarted in a certain number of iterations to arrive at the best
solutions.

Generation of the initial population: The genetic algorithm in
its nature is a population-based method, i.e., it begins with a set
of initial solutions named the initial population, and in each itera-
tion, it produces a new generation of solutions of the same size as
the initial one. To have an initial population, it must be generated
from a set of solutions, which are called individuals (chromosomes).
The total number of individuals generated represents the size of the
population.

Containers (id)

S

gapnnaaann

——

Hosts (id)

Figure 2: Representation of a chromosome (individual)

So to generate the initial population, you have to create a set of
chromosomes as in the figure 3. This generation will be random
within the constraints of the approach to ensure that each respects
all the constraints of the problem to have a correct initial population.

0o 1 2 3 4 5 6 7 8 9
Chromosome O | 5 |2 |2 |9 (0|7 |5|2|1]0
Chromosome 1 |9 |5 |01 |6 |2 |5]|2|1]8
Chromosome?2 |2 |2 |4 |7 (3|7 |5|2]1]0
Chromosome3 | 8 |0 |5 (4|4 |3]|0(2]1]0

Figure 3: Representation of the structure of an initial population

Selection: For our approach, we decided to set the number of
chromosomes in four for the initial population and the one to be
built in each iteration and select the two best individuals (parents)
among each created population, on which the crossing operator will
apply to have two new individuals (sons) to build a new generation
with new features. The selection of the best individuals is based
on a criterion called the Fitness function. It is an equation defined
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according to the problem studied, to determine the best solutions
that satisfy this function.

To determine the best individuals, we have based on the princi-
ple of our objective which serves to minimize the number of active
hosts. More clearly, if a chromosome of a population respects all
the constraints of the problem and contains the minimum possible
hosts, then it represents a good solution among those in the studied
population. This choice makes it possible to calculate the number
of active hosts in an individual and choose two individuals which
contain the minimum number of hosts, or the reciprocal of the num-
ber of active hosts, and then choose the two large values obtained.
We represent below the equation of the Fitness function to select
the best individuals.

f) =1/Nan )

e [ : The individual being studied.
e f(I) : The Fitness function of individual I.

e N,y : Number of active hosts in the individual /.

The Fitness function will be applied at the beginning of the
initial population to determine the individual parents, who will be
the inputs of the next phase (the crossover). This function will
be applied to each new generation created until the last iteration.
These kinds of individuals, who represent the parents are feasible
(workable) solutions for the problem studied. Workable individuals
are solutions that met the needs of a problem.

So, the individual (parents) selected according to the Fitness
function in each iteration are feasible solutions among others to dis-
cover probably in the following iterations. But instead of choosing
both parents, we decided to compare them by choosing the best
among them (the one that has the greatest value of Fitness, if they
have equal values, then both will be chosen as feasible solutions).
And each feasible solution represents one of the best-suggested
ways to place containers in a minimum number of hotels without
any waste of resources or energy consumed.

Crossover: The choice of the best individuals in the selection
phase is the starting point of the crossover. These selected indi-
viduals are genetically better according to the function of Fitness,
and they contain characteristics that will improve each population
by producing new individuals called sons. The creation of new
individuals is done by a crossover applied to the parents explained
by the following two points:

e Divide each parent individual into two parts (from the mid-
dle), if the size of the individual is even, then both parts will
have the same length, otherwise, the first part will exceed the
size of the second with an element.

e Concatenate the first part of the first parent with the second
of the other to have the first son, then the second part of the
first parent with the first of the other parent to have the second
son.

After creating the new individuals (sons), the parent individuals
are kept to build a new generation of four chromosomes as the initial
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population after the application of the mutation operation on the
sons. Keeping parents is not optional, but it has two very important
roles in the algorithm process.

First, it avoids the case of having a bad generation, because
parents are already good solutions according to the Fitness function
applied in the selection, on the other hand, there is no information
about the nature of new individuals created, whether they are good
solutions to the problem or not, until the application of the mutation
phase and build a new population and apply the selection operator
to it to indicate the individuals who will be the new parents who
may be one of the created sons of the previous iteration or both or
none.

Secondly, the conservation of parents and combining them with
the new individuals makes it possible to respect the rule of construc-
tion of a population in the genetic algorithm which indicates that all
generations must be of the same size as the one at the beginning, as
well as this combination guarantees diversity in the best solutions
and increase the proportion of having several that are feasible.

Mutation: Generally, the mutation principle is used to apply more
change to the sons created in the crossover phase to obtain a rich
and different population from the previous one. These changes will
apply to some genes of one or more chromosomes. In our case, the
genes on each chromosome are the identifiers of the hosts chosen to
host the containers, as shown in the figure 4.

onnpEnBRnn

——

Genes

Figure 4: Individual-level active hosts represent their genes

So the change in the hosts of an individual involves a modifica-
tion in the location of the containers. For this reason, the mutation
phase for our approach will be slightly different compared to those
of other problems that use the genetic algorithm. More precisely,
The main role of the mutation will be corrective, that is to correct
the faults produced by the crossing at the level of the son individu-
als. This crossing can cause false locations for containers at these
individuals. For this reason, we must first check the location of
the containers in each child’s individual if one or more exceed the
host that hosts them in terms of RAM. In this way, the two sons
will be corrected by ensuring that they respect the constraints of the
approach before combining them with the parents to build a new
generation.

This “corrective” mutation has another impact because the cor-
rection made at the level of the sons will have a great chance of
bringing back new characteristics. After all, the containers in those
chromosomes have probably different locations to those in the indi-
vidual parents, and therefore the possibility of having other better
solutions. With all these characteristics, the mutation phase will
have a great impact on the realization of a good dynamic container
placement which is one of the big goals of this optimization problem,
meaning the appearance of the migration notion of virtual instances
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between active hosts, which is absent in the static placement which
prevents the migration of a container from one host to another after
having placed it.

Algorithm 1: Container Placement based on Genetic Al-
gorithm

Data: List of container requests and list of hosts
Result: Deploy containers on hosts
HL < HostsList,
CL « ContainerslList;
fori=1t04do
listrisials olutions <— createChromosome(HL, CL);
maplnitialPopulazion~add(ia lisrlnitialSolutions);
liStInitia/Solutionx — [ ];
end
for i = 1 to max = 100 do
MapPpests < SeleCtion(maplnitiulPopulutian);
Map feasivies < Workable(mappess, HL, CL);
for key : map feasivies-keyS et() do

liStfea‘vibleS olutions ~add(mapfeasihlex -gEI(ke)’));
end
mapcrossover < CrOSSOV6r(mapbests);
MAPmutation < Mutation(map ossover, HL, CL);
mapnG < Newc;eneration(mapbesls, mapmutation);
MAp mnitialPopulation <~ MAPNG;

end

liStres « Optimize(liSIfeasibleS olutionss HL, CL)’

Deploy list of feasible solutions (list,.,) that represent the
best container placements in the host;

Algorithm 1 shows the principle of the genetic algorithm and

the main methods used to achieve the objective of the problem.

Input data is set before starting initialization. This entry will help
the different operations related to the algorithm to determine the
possible feasible solutions that will be the result, which represent
several best container placements.

The algorithm starts by checking the selected input data, which
are the hosts and the containers to be placed. This operation checks
whether the total sum of Rams of all outbound hosts is greater than
that of containers, to ensure that there is sufficient space for the
placement of the container request. Then, if the verification is done
and the input data is accepted, then the construction of the initial
population begins by creating four chromosomes. Each individual
built (as a list) will be added to the Map which represents the initial
population until the end of the operation by obtaining an initial
generation of four individuals.

The selection phase will be applied to the initial population
obtained to determine the best individuals who will be the parent
chromosomes. The best individuals (parents) selected will be the
entry of the method responsible on the crossing to produce new
individuals (the sons), the result of this method will be after the
entry of mutation.

In the end, a new generation will be created, after the end of the

mutation phase, which will be the population of the second iteration.

The final list of feasible solutions will go through the optimization
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phase to further verify the placement of the containers and improve
it if possible.

3.1.2  First-Fit Decreasing

First-Fit Decreasing is one of the best-known algorithms for the
classic problem of Bin Packing [31]. The FFD’s strategy for place-
ment is defined by three points. At first, we set the elements in
descending order of size. Secondly, we put each item we get there
in the oldest bin (opened the earliest) into which it fits (whenever an
item fits the capacity of bin 1, put it there, otherwise, it fits into bag
2, if it fits). Thirdly, the opening of a new bag or bin is only done
if the item does not fit into a bag that already contains something
[30, 32]. For our problem, the items to put in the bin will be the
containers, while the bags or bins will be the hosts.

The following algorithm shows the process of placing containers
in servers with the FFD.

Algorithm 2: FFD-based container placement

Data: List of container requests and list of hosts
Result: Deploy containers on hosts

Set the container list in decreasing order of RAM;
HS « The size of the host list;

CS « The size of the container list;
fori=0t0CS - 1do

for j=0t0o HS — 1do
The Resource is a vector that contains the values of

four resources (RAM, CPU, Storage, Bandwidth);
if Resourceyy; >= Resourceconiner; and
\PrevHostList.contains(i) then
PlacementList.add(j);
Resourceps; <
Resourceyos; — Resourcecontainer;s
PrevHostList.add(i);,
end

end

end
Deploy the PlacementList that contains the placement of
the container list in the hosts;

3.2 Forecasting Energy Consumption

To predict the energy consumption in the data centers, we will
calculate the energy consumed by the system of active hosts and
storage. This energy will help us predict the energy consumed by
other equipment such as the cooling system. The following figure
shows the distribution of energy consumed by a data center based
on studies and previous work.
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IT equipment;
40%
Cooling
Systems; 45%

Figure 5: The distribution of energy consumption of a data center

To predict the energy consumed by active hosts, we rely on the
placement of containers in these servers. This workload placement
will help us determine the percentage used for hardware resources
(RAM, CPU, Storage, Bandwidth) of each active host. The calcu-
lated percentages will be sorted between 0 (0%) and 1 (100%) to
simplify their use in the CloudSim power model. Based on these
percentages, we will define for each host the energy consumed by
each resource in watts. The following equation represents the energy
consumed in watts by a resource according to its percentage of use
for a host.

Powerresourcei = getpower(Useresource,-)

3)

Predicting the energy consumed by each resource will help us
to define the energy consumption for a single host and for all active
servers that are defined by the following two equations.

4
Powery,,s; = Z getPower(Use;), Use; € [0, 1] @)

i=1

The Use, is the used value of the RAM, U se, is the used value
of CPU, Uses is the used value of the BW, and Use, is the used
value of the Storage.

N

Powerpjitosts = § Powery,g
i=1

®)

We represent below our algorithm for predicting the energy
consumed by a data center based on container placement.
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Algorithm 3: Forecasting energy consumption

Data: List of container requests and list of hosts
Result: Predict the energy consumed by the data center
Apply the Genetic Algorithm or FFD to predict container
placement;
Group the percentages of use of each resource for each
server in a map named UseMap;
for key : UseMap.keyS et() do
for i = 0 to UseMap.get(key).size() do
Apply the Equation (3) to calculate the energy
consumed by each resource (RAM, CPU, Storage,
Bandwidth); Apply Equation (4) to calculate the
total energy consumed by a single host;
end
Apply Equation (5) to predict the energy consumed by
all active servers;

end
DataCenter Power(Powerajposts);

So, to predict the total energy consumed by a data center, we
will rely on the energy predicted for the active host system. Algo-
rithm (3) predicts the energy consumed by the active hosts in the
data center based on the placement of workloads. Based on Figure
5 and previous work, we noted that the energy consumption of a
data center is divided into three classes. The cooling system takes
a large proportion with a value between 45% and 50% (47% on
average). For the active host system and storage equipment, their
consumption is between 36% and 40% (38% on average). Other
systems such as lighting and communication equipment consume
15% of the total energy.

4 Experiments and Results

To evaluate our approach, we used CloudSim 4.0 to apply our al-
gorithms to homogeneous and heterogeneous cloud systems. Our
experiments will present the prediction of container placement, then
the energy consumption for each system. In this section, we will
perform three different experiments. In the first two applications,
we will have two scenarios.

4.1 Application I : Homogeneous System

The homogeneous system we used in this experiment consists of 50
identical servers in terms of material resources and 3000 containers
of different classes.

Table 1: Details of the Application 1

System Number E\?g; (I’\;u(r;:)[ejz Bandwidth S(t:zg%e

Hosts 50 65536 512 2000000 | 2000000
Containers (class 1) 1000 512 1 2500 1024
Containers (class 2) 1000 256 1 2500 1024
Containers (class 3) 1000 128 1 2500 1024
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4.1.1 SCENARIO 1 : When all hosts are active and the percentage
of use of each resource = 50%

In this scenario, we decided to predict the energy consumed by
this data center in the case where the use of each material resource
equals 50%. The following table shows the results obtained in
detail.

Table 2: Energy consumption for the scenario 1 of Application 1

RAM use
(watts)

CPU use
(watts)

Bandwidth use
(watts)

Storage use
(watts)

5800

5800

5800

5800

Number of active hosts : 50

Energy consumption
of active hosts (38%)

Energy consumption
of cooling system (47%)

Energy consumption
of others (15%)

Energy consumption
of the data center

23200.0 watts

28694.736 watts

9157.895 watts

61052.63 watts

4.1.2 SCENARIO 2 : Genetic Algorithm application

This scenario represents the application of our genetic algorithm for
the prediction of container placement and the energy consumption
of the different systems of the data center. The results obtained are

as follows.

Table 3: Energy consumption for the scenario 2 of Application 1

RAM use CPU use Bandwidth use Storage use
(watts) (watts) (watts) (watts)
2288.932 1920.636 1828.676 1738.72

Number of active hosts : 18

Energy consumption
of active hosts (38%)

Energy consumption
of cooling system (47%)

Energy consumption
of others (15%)

Energy consumption
of the data center

7776.964 watts

9618.877 watts

3069.8542 watts

4.1.3 SCENARIO 3 : FFD application

20465.693 watts

In this scenario, we applied the First-Fit Decreasing algorithm to
place the container list and predict the energy consumed by this
data center after completing the workload placement. The following
table shows the results obtained.

Table 4: Energy consumption for the scenario 3 of Application 1

RAM use
(watts)

CPU use
(watts)

Bandwidth use
(watts)

Storage use
(watts)

2288.932

1826.91

1830.826

1739.208

Number of active hosts : 18

Energy consumption
of active hosts (38%)

Energy consumption
of cooling system (47%)

Energy consumption
of others (15%)

Energy consumption
of the data center

7782.606 watts

9625.8545 watts

3072.0813 watts

20480.543 watts

The objective of the first scenario is to see the rate of energy
that will be consumed if a data center hosts a given workload but
without any strategy to define its conception so as not to fall into
the problem of waste of resources which implies an expansion of
energy consumption. In this scenario, each host consumed 464
watts because they are identical. The fact that the 50 hosts are all
active, involved an expansion of the total energy consumed that
exceeded 61052 watts, which is ordinary because all servers are
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active. This scenario shows the importance of defining a strategy
for the placement of data center workloads and seeing the impact
when a strategy is applied to place containers in an minimal num-
ber of servers. The application of the genetic algorithm gave two
solutions of 18 servers for each that will be active to host the 3000
containers. We noticed in each solution that the power consumption
of the hosts is close to each other (between 400 and 476 watts). As
well as workloads are well distributed among active servers (a good
load balancing). For total energy consumption, the first solution
predicted a value of 20465.693 watts with 40586.937 saved energy
compared to the first scenario. The second solution estimates the
energy consumption with 20466.234 watts and 40586.396 watts of
energy saved when compared with the solution of scenario 1.
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Figure 6: The energy consumed in watts by each resource for the GA first solution -
Application 1

Like the genetic algorithm, the FFD proposed a single arrange-
ment of 18 hosts among the starting 50 to place the list of containers.
So, 32 will be retained, contrary to the first scenario. Of the 18
active servers, 9 hosts each consumed more than 423 watts, 8 others
consumed between 427 and 476 watts for each, and only one server
that is the last one consumed less than 400 watts (383.59146 watts).
The placement proposed by the FFD also gave good results for the
total energy consumption (20480.543 watts) which is lower than in
the first scenario with a value of 40572.087 watts of energy saved.
But the solutions of the genetic algorithm are better in terms of the
energy consumed but identical to that of the FFD in the number of
active hosts.
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4.2 Application 2 : Heterogeneous System

In this application, we used a heterogeneous system that consists of
three different types of hosts with a total number of 50, and 3000
containers.

Table 5: Details of the Application 2

System Number l(j\?g; (I)\Ifucr:rgalejz Bandwidth S(ll(\)/}';g)e
Hosts (class 1) 17 32768 256 2000000 | 2000000
Hosts (class 2) 17 65536 512 2000000 | 2000000
Hosts (class 3) 16 131072 640 2000000 | 2000000
Containers (class 1) 1000 512 1 2500 1024
Containers (class 2) 1000 256 1 2500 1024
Containers (class 3) 1000 128 1 2500 1024

4.2.1 SCENARIO 1 : When all hosts are active and the percentage
of use of each resource = 50%

In the first scenario of application 2, we predicted the energy con-
sumed for a heterogeneous system when all servers are active.
Table 6: Energy consumption for the scenario 1 of Application 2

RAM use
(watts)

CPU use
(watts)

Bandwidth use
(watts)

Storage use
(watts)

6202 6202 6202 6202

Number of active hosts : 50

Energy consumption
of the data center

Energy consumption
of cooling system (47%)

Energy consumption
of others (15%)

Energy consumption
of active hosts (38%)

24808.0 watts 30683.578 watts 9792.632 watts 65284.21 watts

4.2.2 SCENARIO 2 : Genetic Algorithm application

Scenario 2 represents the application of the genetic algorithm on
our heterogeneous system. The results are as follows.
Table 7: Energy consumption for the scenario 2 of Application 1

RAM use
(watts)

CPU use
(watts)

Bandwidth use
(watts)

Storage use
(watts)

1944.637 1594.332 1450.27 1193.698

Number of active hosts : 11

Energy consumption
of the data center

Energy consumption
of cooling system (47%)

Energy consumption
of others (15%)

Energy consumption
of active hosts (38%)

6182.937 watts 7647.3164 watts 2440.633 watts 16270.887 watts

4.2.3 SCENARIO 3 : FFD application

For this scenario, we applied the FFD algorithm. Below is the pre-
diction of the energy consumed by our system after this application.
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Table 8: Energy consumption for the scenario 3 of Application 2

CPU use
(watts)

Bandwidth use
(watts)

RAM use
(watts)

Storage use
(watts)

3049.891 2592.923 2448.035 2358.184

Number of active hosts : 26

Energy consumption
of the data center

Energy consumption
of cooling system (47%)

Energy consumption
of others (15%)

Energy consumption
of active hosts (38%)

10449.033 watts 12923.805 watts 4124.6187 watts 27497.457 watts

In the second application, we used a heterogeneous system to
see if the placement of the containers and the rate of energy con-
sumption will be influenced by the nature of the system. In the first
scenario, the 50 hosts consumed a different energy rate because they
are heterogeneous. The first 17 servers consumed 408 watts each,
and the last 16 consumed the high value (624 watts each). The other
servers consumed 464 watts each. For the total energy consumption,
the system consumed 65284.21 watts with superiority of 4231.58
compared to scenario 1 of the first application.

The application of the genetic algorithm for this heterogeneous
system gave two different solutions in contrast to scenario 2 of Ex-
periment 1 which proposed two identical solutions at the level of
the proposed number of active hosts. The heterogeneous nature of
this system has increased the chance of having diversified solutions
in terms of the hosts used and their number.

The first solution obtained by the genetic algorithm has proposed
13 servers that will be active to host the container list, which is the
best number compared to the first scenario. The energy consumption
of the 13 active servers is between 350 and 800 watts because of the
hosts’ diversity in the hardware resources. This diversity influenced
the rate of energy consumed by the data center which did not exceed
17623.83 watts with 47660.38 watts of energy saved compared to
scenario 1.

The second solution was the best with 11 active hosts and less
than 2 servers compared to the first solution to host workloads. The
values consumed of energies differ from one host to another because
of the diversity in material resources. This number of active servers
influenced the energy consumption rate, which was minimized at
the level of all the data center systems and 1352.943 watts for the
total consumption.
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Figure 8: The energy consumed in watts by each resource for the GA second solution
- Application 2

The unique solution of the FFD is different from those of the
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genetic algorithm. The solution offers 26 servers for container place-
ment which is not optimal when compared with the solutions of
scenario 2. This increase in the number of active hosts for the FFD
is because of its way of assigning containers to servers which is
classic and avoids waste of space but is not always effective if there
is a list of containers in a defined order (increasing or decreasing).
For this reason, most of the active hosts (17) belong to class 1 and
the others belong to the second class.

So workloads were not well distributed between the active hosts
about the solution of the genetic algorithm, which is a weak point
in the FFD algorithm. The high number of active servers consumed
between 370 and 480 watts for each, implied an increase in the rate
of energy consumed by the data center with a value of 27497.457
watts.

We note that the genetic algorithm guarantees best container
placement and minimal energy consumption due to its functioning
which is adaptive to different types of systems. But in general, both
algorithms offer a good solution for virtualization in a data center,
which is important for the whole system to operate without any
waste of resources that can increase energy consumption
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Figure 9: The energy consumed in watts by each resource for the FFD solution -
Application 2

4.3 Application 3 : Global Comparison

After testing our algorithms, we decided to compare them with other
previous heuristic or meta-heuristic methods to properly evaluate
our algorithms. For this, we chose the approach in [19] which uses
the Simulated Annealing (SA) algorithm to predict the placement
of virtual machines based on the estimate of energy consumption
to choose the best placement. In our case, we will evaluate this
algorithm using container instances to compare it with our genetic
algorithm (GA). More of this we will compare the approach pro-
posed in [33] which applies the Ant Colony Optimization (ACO)
for container placement with our genetic algorithm (GA).

The choice of the Simulated Annealing and ACO to examine the
effectiveness of our genetic algorithm was not random, but due to
several reasons. First of all these three algorithms belong to the class
of metaheuristics which is inspired by nature to solve optimization
problems. More of that, they can adapt to problems with a high
complexity and which require a huge calculation. Another point that
encouraged us more to compare our Genetic Algorithm with Simu-
lated Annealing and the ACO is that the works [19] and [33] have
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the same vision regarding the placement of virtual instances by opti-
mizing the use of material resources and uses the same procedure,
except that the work [19] are based on virtual machines instead of
containers. For the FFD, we will evaluate it with First-Fit (FF) and
Random-Fit (RF) which are algorithms of the Bin Packing problem
such as the FFD. Table 9 shows the resources of the different cloud
systems used on which we will perform our comparison.

Table 10 represents the results obtained for the energy consump-
tion of several data centers for each algorithm.

Table 10 represents three main results for six algorithms. For
each system, we applied six algorithms to predict the energy con-
sumed by each data center based on container placement. As well
as, we calculated the energy saved or conserved for each system
by comparing the predicted energy consumption with the energy
consumed when all the hosts of a system are active and the percent-
age of use of each resource = 50%. In addition, we calculated the
execution time of each algorithm.

For the first system which is homogeneous, we notice that the
energy consumption obtained by the genetic algorithm does not ex-
ceed 13460 watts with 47594.73 watts of saved energy. For the ACO
algorithm, the energy consumption exceeded the value predicted by
the genetic algorithm twice with 32931.009 watts of stored energy.
Similarly, for the SA algorithm, the energy consumed exceeded
that of GA but with a big difference which influenced the rate of
energy saved which was less than 10380 watts. On the other hand,
the execution time of the genetic algorithm was very high (more
than 31 seconds) compared to that of ACO which gave its result
in 0.297 seconds and the SA in 5.62 seconds. The reason why the
execution time of the genetic algorithm is very high is because of
its execution process that operates under several iterations (in our
case 100 iterations).

For heuristics, the three Bin Packing problem-solving algorithms
(FFD, FF, and RF) predicted energy consumption values close to
each other. The values proposed by the FFD and FF were identi-
cal to the superiority of the RF algorithm which gave a value of
13447.468 watts which is optimal compared to those of the FFD
and FF. For the energy saved, the three heuristics provided better
values with the genetic algorithm, but they are fast in execution
time because they produce a single solution without using several
iterations.

In the second system, which is heterogeneous, the results ob-
tained by the genetic algorithm for the energy consumed and saved
are the best when compared with those of ACO and SA and also
with the three heuristics. On the other hand, its execution time
which reached 31 seconds is very high compared to the other al-
gorithms. We also notice that the FFD, FF, and RF gave the same
energy consumption value (31874.584 watts), but the RF surpasses
them in the execution time (0.08 seconds). The same goes for the
third system, which has a superiority of the genetic algorithm over
the others in terms of the energy consumed which is optimal, but
the execution time has increased greatly (301.769 seconds) because
of the size of the number of instances in this system. The SA also
took 103.123 seconds which is high compared to other methods.

For other systems, our genetic algorithm was the best in systems
5 and 6 in terms of optimal energy consumption, but it takes a long
time to finish its execution and give the final results. In system 4, the
FFD and FF heuristics proposed optimal solutions with an energy
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Table 9: Details of the Application 3

Hosts Containers
RAM | Number . Storage RAM | Number . Storage
System || Number (GB) | of CPUS Bandwidth (MB) Number (MB) | of CPUS Bandwidth (MB)
334 512 1 1024 2500
1 50 32 256 2000000 | 2000000 334 256 1 1024 2500
332 128 1 1024 2500
17 16 128 2000000 | 2000000
2 17 32 256 2000000 | 2000000 1000 512 1 1024 2500
16 64 512 2000000 | 2000000
25 16 128 2000000 | 2000000 667 128 1 1024 2500
3 25 32 256 2000000 | 2000000 667 256 1 1024 2500
25 64 512 2000000 | 2000000 666 512 1 1024 2500
1667 512 1 1024 2500
4 100 64 512 2000000 | 2000000 1667 256 1 1024 2500
1666 128 1 1024 2500
34 32 256 2000000 | 2000000 1667 128 1 1024 2500
5 34 64 512 2000000 | 2000000 1667 256 1 1024 2500
32 128 1024 2000000 | 2000000 1666 | 512 1 1024 2500
30 256 1024 4000000 | 4000000
3500 | 256 1 1024 2500
6 30 128 1024 4000000 | 4000000
30 64 512 4000000 | 4000000
3500 | 512 1 1024 2500
30 32 256 4000000 | 4000000
Table 10: Comparison of different algorithms for predicting the energy consumption of different cloud systems
GA ACO SA
Svstem Data Center Energy Saved Execution time Data Center Energy Saved Execution time Data Center Energy Saved | Execution time
¥s Energy (watt) (watt) (second) Energy (watt) (watt) (second) Energy (watt) (watt) (second)
1 13457.9 47594.73 31.954 28121.621 | 32931.009 0.297 50678.336 | 10374.294 5.62
2 18792.02 42260.61 31.004 39339.375 | 21713.255 0.179 51927.41 9125.22 4.034
3 20413.207 | 71165.743 301.769 53369.266 | 38209.684 0.264 77419.08 14159.87 103.123
4 43210.434 | 121000.086 5304.5 67590.805 | 96619.715 1.496 100156.78 | 64053.74 3870.694
5 28867.098 | 101701.322 3886.164 77247.85 53320.57 1.17 98288.49 32279..93 1165.504
6 19218.874 | 148149.546 | 11634.408 31827.826 | 135540.594 1.126 116079.95 | 51288.47 1317.876
FFD FF RF
Svstem Data Center Energy Saved Execution time Data Center Energy Saved Execution time Data Center Energy Saved Execution time
y Energy (watt) (watt) (second) Energy (watt) (watt) (second) Energy (watt) (watt) (second)
1 13462.325 | 47590.305 0.194 13462.325 | 47590.305 0.122 13447.468 | 47605.162 0.118
2 31874.584 | 29178.046 0.116 31874.584 | 29178.046 0.062 31874.584 | 29178.046 0.08
3 40164.184 | 51414.766 0.351 40546.266 | 51032.684 0.2 40333.258 | 51245.692 0.287
4 43202.652 | 121007.868 7.788 43202.652 | 121007.868 8.441 43329.03 120881.49 2.856
5 48174.152 | 82394.268 293 48301.848 | 82266.572 2.594 48233.105 | 82335.315 2.186
6 21229.072 | 167368.42 12.186 21242.38 146126.04 8.91 21098.488 | 146269.932 10.894

value of 43202.652 watts which is less than 7782 watts compared
to the value proposed by the genetic algorithm. Generally, our GA
has proposed best values for energy consumption for most systems
ahead of other metaheuristics (ACO and SA) and even heuristics.
On the other hand, execution time remains its main weakness be-
cause of its way of solving the problem. FFD was best with RF in
the heuristics used. In terms of execution time, the ACO was the
best with an average time of 0.75 seconds. More of this the SA
algorithm proposed large energy values and ranked second before
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the genetic algorithm at the level of execution time.

5 Conclusion

In this paper, we have presented an approach based on heuristics
and metaheuristics for predicting the energy consumed by different
data centers based on the placement of workloads. Our approach
has proposed a genetic algorithm and a First-Fit Decreasing using
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cloud containers to predict the best and optimal placement for these
instances in several servers without wasting hardware resources.
The results obtained showed that the genetic algorithm guarantees a
good placement for containers and minimizes the energy consump-
tion in the data centers, after comparing it with other metaheuristics
such as Ant Colony Optimization and Simulated Annealing.
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