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 Corn is one of the most important agricultural products in the world. However, climate 
change greatly threatens corn yield, further increasing already prevalent diseases. Northern 
corn leaf blight (NLB) and Gray Leaf Spot are two major corn diseases with lesion symptoms 
that look very similar to each other, and can lead to devastating loss if not treated early. 
While early detection can mitigate the amount of fungicides used, manually inspecting maize 
leaves one by one is time consuming and may result in missing infected areas or 
misdiagnosis. To address these issues, a novel deep learning method is introduced based on 
the low latency YOLOv3 object detection algorithm, Dense blocks, and Convolutional Block 
Attention Modules, i.e., CBAM, which can provide valuable insight into the location of each 
disease symptom and help farmers differentiate the two diseases. Datasets for each disease 
were hand labeled, and when combined, the base YOLOv3, Dense, and Dense-attention had 
𝐴𝐴𝐴𝐴0.5 NLB lesions/𝐴𝐴𝐴𝐴0.5 Gray leaf spot lesions value pairs of 0.769/0.459, 0.763/0.448, and 
0.785/0.483 respectively. 
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1. Introduction  

Worldwide, 10 to 40% of crops die due to pests and diseases 
[1]. This issue will only get worse in the future, as temperature 
changes due to climate change will lead to more favorable 
conditions for pathogens [2]. In order to deal with this growing 
issue, it is necessary to come up with accurate diagnostic methods 
in order to quickly treat diseased plants. Focusing on maize, one of 
the most important crops in the world that accounts for two-thirds 
of the total volume of coarse grain trade globally in the past decade 
[3], in recent years, both Northern corn leaf blight, i.e., NLB, and 
Gray leaf spot disease has become more prevalent. In 2015, NLB 
was ranked first in most destructive corn disease in the northern 
United States and Ontario, Canada, up from seventh in 2012, with 
an estimated loss of 548 million bushels. For comparison, in 2015, 
the second-ranked most destructive corn disease, anthracnose stalk 
rot, had an estimated loss of 233 million bushels, less than half of 
NLB. In 2012, Gray leaf spot was ranked sixth in most destructive 
corn disease and has maintained its place as one of the top four 
most destructive from 2013-2015 [4]. NLB is caused by the 
fungus Exserohilum turcium, and the most distinguishing visual 
symptom of the disease is a cigar-shaped, tan lesion that can range 
from one to seven inches long, as shown in Figure 1. Gray leaf spot 
is a fungal disease caused by Cercospora zeae-maydis with 

rectangular lesions from two to three inches long, as shown in 
Figure 2., often leading to confusion by farmers due to its 
similarity to NLB lesions. Although fungicides can be used as a 
treatment for these two diseases, studies have shown that 
fungicides persist in aquatic systems and are toxic to organisms 
[5]. Early detection can mitigate the necessity of fungicides, 
traditionally through manual scouting [6]. However, this method 
is time-consuming and can result in inaccurate or missed diagnoses 
due to human error. As a result, several types of image-based 
machine learning solutions, such as convolutional neural networks, 
i.e., CNN, and object detection algorithms, have been proposed. 

 
Figure 1: NLB infected maize images from Cornell CALS 

CNNs are commonly used for image classification, which 
involves assigning an entire image to a single class label. However, 
in cases where the location of objects in an image is important, 
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image classification can be difficult to interpret and verify. Object 
detection algorithms, on the other hand, can identify the specific 
location and extent of objects in an image, and can even draw 
bounding boxes around them to highlight their location. These 
algorithms can be useful in situations such as identifying disease 
symptoms in natural environment images, where it is important to 
know the exact location of the symptom. The typical symptoms of 
NLB and Gray leaf spot, which are brown, oval lesions, can be 
difficult to distinguish with the naked eye, but computer vision 
algorithms may be able to identify and differentiate them. 

 
Figure 2: Gray leaf spot infected maize images from Cornell CALS 

Many different object detection algorithms have been created, 
such as YOLOv3, which is both accurate and has low inference 
speed. Low inference speed is essential to speed up traditional 
manual practices and increases the likelihood of detecting a lesion 
on live video. However, one of the tradeoffs for its high inference 
speed is reduced accuracy. As a result, an optimized algorithm 
based on YOLOv3 was proposed in this paper by applying two 
methods: Dense blocks and convolutional block attention modules, 
i.e., CBAM. These optimizations were chosen to increase accuracy 
while maintaining or reducing inference speed compared to the 
base YOLOv3. In addition to proposing an improved algorithm, 
one of the main challenges of object detection is the need for more 
high-quality datasets, especially in niche areas such as plant 
disease detection. It is much easier to create image classification 
datasets because the label for an entire image is a single class or 
word. For object detection datasets, each image may contain more 
than one class, numerous objects per class, and requires the tedious 
work of locating all objects in an image and drawing bounding box 
labels around them. As a result, if there are no object detection 
datasets for a specific class, datasets originally for CNNs may be 
used instead by converting them to the correct format. In summary, 
this paper offers   the following contributions:  

• Application of machine learning to detect NLB and gray leaf 
spot lesions 

• An optimized YOLOv3 with improved detection ability 
without significantly increased inference speed 

• A NLB and grey spot dataset suited for object detection 

This paper is an extension of work originally presented in  
IEEE 12th Annual Computing and Communication Workshop and 
Conference (CCWC) [7], and the paper is structured as follows: 
Section 2 is the related works. Section 3 explains the YOLOv3 
model and its optimizations. Section 4 shows how the dataset was 
created and explains the evaluation metrics. Section 5 shows the 
performance of the algorithms, and section 6 is the conclusion. 

2. Related Works 

 Both image classification algorithms, such as CNNs and 
object detection algorithms, have been successfully applied for 
plant disease diagnosis. In [8], the authors used a CNN for plant 

disease diagnosis, training it on an extensive image dataset of 
close-up, individual diseased leaves using the Plant Village 
dataset. The dataset consists of images of twenty-six diseases of 
plants, such as those that affect corn and apple. They reported 
99.35% accuracy on a held-out test set. However, the images in the 
dataset were taken in a lab environment, where variables such as 
the presence of multiple leaves in an image, orientation, brightness, 
and soil presence are not considered. Solving this issue, high-quality 
datasets have been created by experts.  In [9], the authors took images 
of NLB-infected corn and annotated each lesion individually with line 
annotations, which is the same dataset used in this paper. Because the 
images covered a large area, the actual lesions took up a small portion 
of the overall image. As a result, using a CNN on scaled-down versions 
of the images resulted in 70% accuracy. It was only after dividing the 
image into grids and associating a diseased-or-not class to each grid 
using their line annotations that resulted in 97.8% accuracy. Although 
successful, the process of dividing the image and then running 
inferences finally resulting in a high accuracy indicates a potential 
limitation of CNNs – they are not suited when the characteristics that 
define a class are small compared to the entire image.   

On the other hand, object detection algorithms are suited to 
looking for specific areas in an image. The single shot detector, 
i.e., SSD [10] object detection algorithm, was used to detect apple 
diseases such as Brown Spot and Grey spot [11]. Instead of 
labeling an entire infected leaf as belonging to a class, the author 
only labeled the specific symptoms, such as spots, allowing the 
SSD algorithm to learn that the presence of a particular cluster of 
pixels determines the final output. The YOLOv3 [12] object 
detection algorithm was used to locate characteristics of various 
tomato diseases, such as early blight and mosaic disease [13]. The 
authors collected their own tomato dataset and annotated them by 
grouping clusters of diseased symptoms. In [14], the authors used 
a variant of an SSD and the Faster R-CNN [15] algorithm for grape 
plant disease object detection. They used existing datasets such as 
the Plant Village dataset, which mentioned previously is used for 
CNN training, drew boxes around the grape disease, converting it 
for object detection use. However, instead of drawing boxes 
around the grape disease symptoms, they label the entire leaf 
containing the disease, meaning it could be more specific. In [16], 
the authors also annotated the Plant Village dataset with 
bounding boxes for object detection. Instead of limiting to only 
certain disease classes, the entire dataset was used, resulting in 
about 54,000 annotated images. In [17], the authors created their 
object detection dataset called PlantDoc, which includes corn 
diseases, including both NLB and gray leaf spot. However, the 
dataset is small, less than 200 images per class, and the annotations 
are not very specific – clusters of lesions are grouped. This leads 
to the additional problem of determining whether two lesions 
belong to the same or different clusters, especially in images where 
lesions make up most of the corn leaf.   

3. Methods 

In this section, deep learning methods such as the usage of 
dense blocks, CBAM, and the proposed optimized algorithm to 
detect corn disease will be introduced. 

3.1. Base Algorithm: YOLOv3 

YOLOv3 is an object detection algorithm that boasts high 
accuracy without sacrificing speed. It is an improvement of YOLO 
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in 2016 [18] and YOLOv2 in 2017 [19]. Although newer variants 
exist, such as YOLOv4 [20], for this study, YOLOv3 was chosen 
as the algorithm to focus on because there is many open source 
code for the algorithm, meaning it was easier to find a repo with 
an implementation that could easily be modified. Also, YOLOv3, 
as shown in Figure 3, uses the darknet-53 backbone to extract 
features of images. The backbone network utilizes residual blocks 
containing skip connections, which was introduced in ResNet [21]. 
These skip connections skip some layers in the backbone, helping 
to alleviate the vanishing gradient problem and making it easier to 
tune the earlier layers of a network. In the figure, the 
residual N blocks consist of a 3×3 convolutional layer 
and N residual units. The detection stages contain additional 
convolutional layers for further feature extraction and detect 
potential objects on three different scales. These scales are used to 
detect large, medium, and small-sized objects. This improves the 
performance of varying image sizes. According to the YOLOv3 
paper, performance on the Microsoft Common Objects in Context, 
i.e., MS COCO, dataset, a benchmark used for evaluating object 
detection algorithms in which the accuracy metric mean average 
precision, i.e., mAP, is commonly used, showed that the three 
fastest were YOLOv3-320, SSD321, and DSSD321 [22] with 51.5 
mAP-50/22 ms, 45.4 mAP-50/61 ms, and 46.1 mAP-50/85 ms, 
respectively, indicating mAP and inference time. Compared to the 
other algorithms, YOLOv3 is significantly faster while achieving 
better mAP. As a result, YOLOv3 was selected as the base 
algorithm of our research because efficiency is critical for 
searching through large cornfields. 

 

 
Figure 3: YOLOv3 diagram 

3.2. Dense Block 

DenseNet [23] is a convolutional neural network architecture 
that uses dense blocks, in which the output of each convolution 
layer is connected to the inputs of all subsequent layers. This 
allows later layers to use information learned in earlier layers and 
reduces the number of parameters, improving computational 
efficiency and mitigating the vanishing gradient problem. 
Transition layers, which consist of a 1×1 convolution and average 
pooling layer, are placed between groups of dense blocks to 
reduce the number of parameters and dimensionality. The growth 
rate, denoted by k, determines the number of new feature maps 
added for each layer in a dense block. 

 
Figure 4: Diagram of 4 layer dense block 

3.3. CBAM 

CBAM [24] is a method that uses the attention mechanism to 
replicate how humans pay attention to their environment. It uses 
both channel and spatial attention to focus on particular objects in 
a scene and enhance the feature maps of the convolutional layers. 
Channel attention selects the most important channels and weighs 
them to improve them, while spatial attention applies max pooling 
and average pooling to help the model know where to focus in the 
image. Using this method leads to improved accuracy with only a 
limited amount of extra computation. 

3.4. Proposed Algorithm 

The proposed algorithm for an input image of 512x512 pixels 
is shown in Figure 5. The algorithm includes changes to the base 
YOLOv3 model, indicated by the yellow and green shaded 
portions. After the third residual block, a four-layer dense block is 
inserted, followed by a transition layer which reduces the number 
of filters and dimensions by half. The fourth and fifth residual 
blocks of the original backbone network are replaced with two six-
layer dense blocks, with another transition layer in between. The 
growth rate, k, for all dense blocks is set to 128 to create a wide 
and shallow network for increased speed efficiency. CBAM 
blocks, which implement the attention mechanism, are placed at 
the beginning of the detection stages to refine the final feature 
maps and improve accuracy. The entire proposed model is called 
the Dense-attention algorithm, while the Dense algorithm is the 
same but without the CBAM blocks. 

 

 
Figure 5: Proposed algorithm diagram 
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4. Experimental Setup 

4.1. Datasets 

To evaluate the proposed method in this paper, two datasets, 
one for NLB and the other for gray leaf spot, are combined. For 
the first dataset, the Field images of maize annotated with disease 
symptoms dataset [25] was used. The dataset consists of natural 
environment 4000×6000 pixel images of maize leaves taken by 
hand during the 2015 growing period in Aurora, New York. The 
main axis of the NLB lesions in each image is annotated with line 
annotations. 376 images are extracted. Because of the high image 
resolutions, each image is split into a 2×3 grid for pixel 
preservation. For the original line annotations, multiple lines 
would be used to signify one contingent lesion when only one label 
should be used. As a result, annotations are reconverted into 
bounding box format by hand under the supervision of the original 
line annotations. Figure 6 shows the annotation process. Images 
without lesions are discarded, resulting in 999 final images. Data 
augmentation using random rotation and zoom was then used to 4x 
the dataset size. 

Unlike for NLB, high quality datasets for gray leaf spot disease 
taken from the natural environment and annotated by experts are 
rare. Although an annotated gray leaf spot dataset from Plant Doc 
exists, as mentioned in the related works section, few images are 
provided. Additionally, clusters of spots are grouped as one label, 
as opposed to the individual disease symptom labeling that the 
format of the NLB dataset is in. As a result, the Plant Village 
dataset was chosen to be annotated, starting from scratch. Because 
the dataset was initially intended for CNN training, annotations are 
not provided. As a result, like the NLB dataset, new annotations 
around each spot were created. However, in the gray leaf spot 
dataset, no expert guidance was provided, meaning best guesses 
for what constituted a spot were made. Figure 7 shows examples 
of grey spot annotations. Although fewer images of gray leaf spot 
were used compared to NLB, more annotations per image for gray 
were created, balancing the total number of annotations per class. 
The Plant Village dataset, in addition to the gray leaf spot, contains 
healthy corn images. 200 healthy images from each dataset were 
added. Several dataset groupings were used in this study.  

Table 1: Dataset description 

Dataset Training 
images 

Validation 
images 

Testing 
images 

Total 
label 
count 

NLB 3,145 135 135 5,255 
Gray 608 24 30 5,677 
NLB+Gray 3,753 159 165 10,932 
Healthy 4,033 219 225 10,932 

Dataset NLB: NLB infected images only, Dataset Gray: Gray 
leaf spot infected images only, Dataset NLB+Gray: only NLB and 
gray leaf spot images, and finally, Dataset Healthy: a combination 
of dataset NLB+Gray with healthy images. Healthy images from 
the original NLB and Plant Village datasets were also included so 
that the algorithms could better learn what is not considered 
diseased through more examples. More info regarding dataset size 
and label counts is shown in Table 1. Data is available at a project 
github sitea. 

 
Figure 6: NLB annotation process 

 
Figure 7: Grey leaf annotation examples 

4.2. Evaluation Metrics 

Evaluating accuracy for object detection algorithms requires 
comparing both the label and location of the predicted bounding 
box to those of the ground truth. IoU, i.e., intersection over 
union, as given in equation (1), is the value of the intersection 
area of the bounding box, AreaPred, and the area of the ground 
truth box, AreaTruth, over the union area of the two 
aforementioned boxes. 

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∩𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇ℎ
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∪𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇ℎ

                        (1) 

 If IoU is above a certain threshold value, that prediction is 
counted as a true positive. If not, it is considered a false positive. 
As shown in equation (2), precision, or PR, is the number of true 
positives divided by the sum of the number of true positives and 
false positives. Recall, or RE, shown in equation (3), is the 
number of true positives divided by the true positives and false 
negatives.  

𝐴𝐴𝑃𝑃 = 𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴
𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴+𝐹𝐹𝐴𝐴𝐹𝐹𝑃𝑃𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴

                         (2) 

𝑃𝑃𝑅𝑅 = 𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴
𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴+𝐹𝐹𝐴𝐴𝐹𝐹𝑃𝑃𝐴𝐴 𝑁𝑁𝐴𝐴𝑁𝑁𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴

                        (3) 

Average precision, i.e., AP, is calculated by finding the area 
under the precision-recall curve, shown in formula (4). P(r) is the 
precision value at recall value r. AP subscript k indicates the 
average precision when IoU is at threshold k. 𝐴𝐴𝐴𝐴0.5  indicates 
average precision at the 0.5 IoU threshold. If three lesions had IoU 
of 0.2, 0.6, and 0.3, only the lesion with the IoU 0.6 would be 
counted as a true positive. 

𝐴𝐴𝐴𝐴 = ∫ 𝑝𝑝(𝑟𝑟)𝑑𝑑𝑟𝑟1
0                                    (4) 

Inference speed, parameter count, and MFLOPs were also 
measured. MFLOPs is a unit for how many million floating point 
operations per second the computer can operate. All results were 

ahttps://github.com/beans1321/NLB-Grey-dataset/tree/main  
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tested on the same GPU and Google colab environment settings 
for fair comparisons. 

5. Results 

Model training and evaluation were done on colab with an 
Nvidia P100 GPU, Intel Xenon 2.2 GHz CPU, and 13 GB of 
RAM. Code implementations were done using TensorFlow 1.15.0 
and Keras 2.1.6 with Python 3.7. The three different algorithms, 
(i) Base, (ii) Dense, and (iii) Dense-attention were trained and 
evaluated on images sized 512×512 pixels. 

Table 2 shows the 𝐴𝐴𝐴𝐴0.5 of the algorithms on the datasets On 
the NLB dataset, Base, Dense, and Dense-attention had 𝐴𝐴𝐴𝐴0.5 of 
0.774, 0.806, and 0.821, respectively. In the Gray 
dataset, Base, Dense, and Dense-attention had 𝐴𝐴𝐴𝐴0.5 of 0.484, 
0.471, and 0.496, respectively, showing that locating the exact 
boundaries of the grey spot is much more complicated than finding 
NLB lesions. One of the possible reasons for this is that NLB may 
appear more distinctive in the images since the lesions in the 
images tend to appear brighter than lesions in the Gray dataset. In 
the NLB+Gray dataset, individual 𝐴𝐴𝐴𝐴0.5 was recorded for each 
class. The 𝐴𝐴𝐴𝐴0.5 for each class decreased slightly compared to 
detecting them in dataset NLB and dataset Gray, in which only 
one class was present in each, which is expected as multiclass 
detection is more difficult than single class detection. The slight 
decrease in 𝐴𝐴𝐴𝐴0.5  also indicates that the model has learned to 
differentiate NLB and Gray leaf spot. In the Healthy dataset, the 
usage of images of healthy images decreased performance. All 
results for healthy were worse than the results for the NLB+Gray 
dataset. Base outperformed Dense and Dense-Attention in terms 
of finding NLB lesions, with 𝐴𝐴𝐴𝐴0.5 of 0.714, 0.675, and 0.702, 
respectively. However, in terms of finding gray lesions, Dense-
attention’s 𝐴𝐴𝐴𝐴0.5  of 0.473 was still higher than Base’s 𝐴𝐴𝐴𝐴0.5  of 
0.425. One possible reason that adding healthy images did not help 
performance is that the healthy images may have simply included 
more objects that looked like lesions, such as a dry or dead leaf, 
which are common, making training harder for the models. 

Table 2: Performance of algorithms measured in 𝐴𝐴𝐴𝐴0.5 

Dataset Base Dense Dense-
attention 

NLB 0.774 0.806 0.821 
Gray 0.484 0.471 0.496 
NLB lesions 
in 
NLB+Gray 

0.769 0.763 0.785 

Gray lesions 
in 
NLB+Gray 

0.459 0.448 0.483 

NLB lesions 
in Healthy 

0.714 0.675 0.702 

Gray lesions 
in Healthy 

0.425 0.428 0.473 

 Examples of detections are shown in Figure 8 and 9. Figure 8 
shows detections of NLB by the Dense-attention trained from the 
NLB+Gray dataset. Figure 9 shows detections of Grey spot, also 
by Dense-attention trained from NLB+Gray. In Figure 9, it can be 
shown that the model has difficulty determining if two lesions 

close to each other are one or two lesions, as shown in the top row. 
In the bottom row, it can be shown that the model also has 
difficulty finding very small lesions. 

  
Figure 8: NLB detection of Dense-attention trained on NLB+Gray dataset 

 

 

 

Table 3: General algorithm performance 

Algorithm Inference 
Speed (ms) 

Parameters 
(millions) 

MFLOPs 

Base 36.9 61.5 123.0 
Dense 37.4  40.8 81.6 
Dense-
attention 

39.1  40.9 81.7 

Table 3 shows the general performance of the algorithms, 
which shows constant results for the algorithms, no matter what 
dataset is used. Base has the fastest inference speed of 36.9 ms, 
followed by Dense with a speed of 37.4 ms, and finally Dense-
attention, with a speed of 39.1 ms. There is not much of a major 
difference in inference speeds among all three algorithms. The 
usage of dense blocks to replace several layers of the original 
YOLOv3 backbone has greatly reduced the number of 
parameters. Base has 61.5 million parameters, Dense has 40.8 
million, and Dense-attention has 40.9 million. The usage of 
CBAM has only increased the number of parameters slightly. The 
ratios of the parameter count between the algorithms are similar 
to the ratio of MFLOPs. Base has 123.0 MFLOPs, Dense 81.6, 
and Dense-attention 81.7. While Base is the fastest, Dense and 
Dense-attention are similar in speed while having drastically 

Figure 9: Gray detections of Dense-attention (right column) trained on 
NLB+Gray dataset side by side with ground truth (left column) 
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fewer parameters and MFLOPs. In terms of 
accuracy, Dense seems to have similar results with Base, although 
it was more accurate in the NLB dataset. Dense-attention, based 
on the results shown in Table 2, mostly outperforms 
both Base and Dense-attention.  

6. Conclusion 

The new proposed model, called dense-attention, was built off 
of YOLOv3 and optimized for both accuracy and speed. New 
datasets for NLB and gray leaf spot were created and reannotated 
to be more suitable for object detection tasks. The results showed 
that dense-attention outperformed the base model in terms of 
accuracy, parameter count, and computational efficiency, 
although it was slightly slower. When both NLB and gray leaf spot 
were combined in the dataset, performance for each class 
decreased slightly compared to training on just one of the diseases. 
This suggests that the model was able to distinguish between the 
two visually similar diseases. In future work, it may be helpful to 
annotate the gray leaf spot dataset with experts and to include 
wider views of diseased leaves in the dataset. 
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