
Advances in Science, Technology and Engineering Systems Journal
Vol. 8, No. 2, 44-63 (2023)

www.astesj.com
Special Issue on Computing, Engineering and Multidisciplinary Sciences

ASTES Journal
ISSN: 2415-6698

Hybrid Intrusion Detection Using the AEN Graph Model
Paulo Gustavo Quinan*,1, Issa Traoré1, Isaac Woungang2, Ujwal Reddy Gondhi1, Chenyang Nie1

1University of Victoria, Department of Electrical and Computer Engineering, Victoria, B.C., Canada
2Ryerson University, Department of Computer Science, Toronto, ON, Canada

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 28 November, 2022
Accepted: 21 February, 2023
Online: 11 March, 2023

Keywords:
Attack fingerprint
Anomaly detection
Intrusion detection system
Subgraph matching
Unsupervised machine learn-
ing
Graph database

The Activity and Event Network (AEN) is a new dynamic knowledge graph that models different
network entities and the relationships between them. The graph is generated by processing
various network security logs, such as network packets, system logs, and intrusion detection
alerts, which allows the graph to capture security-relevant activity and events in the network. In
this paper, we show how the AEN graph model can be used for threat identification by introduc-
ing an unsupervised ensemble detection mechanism composed of two detection schemes, one
signature-based and one anomaly-based. The signature-based scheme employs an isomorphic
subgraph matching algorithm to search for generic attack patterns, called attack fingerprints, in
the AEN graph. As a proof of concept, we describe fingerprints for three main attack categories:
scanning, denial of service, and password guessing. The anomaly-based scheme, in turn, works
by extracting statistical features from the graph upon which anomaly scores, based on the bits
of meta-rarity metric first proposed by Ferragut et al., are calculated. In total, 15 features are
proposed. The performance of the proposed model was assessed using two intrusion detection
datasets yielding very encouraging results.

1 Introduction

The Activity and Event Network (AEN) is a new graph that models
a computer network by capturing various network security events
that occur in the network perimeter. The AEN has the purpose of
providing a base for the detection of both novel and known attack
patterns, including long-term and stealth attack methods, which
have been on the rise but have proven difficult to detect.

This paper is an extension of work originally presented in the
3rd Workshop on Secure IoT, Edge and Cloud systems (SIoTEC)
of the 22nd IEEE International Symposium on Cluster, Cloud and
Internet Computing (CCGrid 2022) [1]. In the present paper, we
present an unsupervised ensemble intrusion detection mechanism
composed of two detection schemes, one signature-based and one
anomaly-based, with the goal of leveraging the strengths of both
types of detection methods and mitigating their weaknesses.

Signature-based detection, also known as rule-based detection,
works by searching data for specific characteristics of previously
seen attacks. This makes it good at detecting known attack patterns,
but at the same time renders it ineffective when confronted with new
and unseen attacks. In contrast, anomaly detection methods rely on

the assumption that events deviating from normal usage patterns or
behaviours are potentially malicious. This method has the potential
to detect novel attack patterns but may generate a large number of
false positives due to the fact that atypical events are not necessarily
malicious [2, 3].

To validate the scheme, we provide a collection of attack finger-
prints covering a small subset of known scanning, denial of service
(DoS) and password guessing attacks.

The fingerprints are described using Property Graph Query Lan-
guage (PGQL) because it provides a standardized language for
describing graphical patterns, which we believe makes comprehen-
sion easier than describing the fingerprints algorithmically. We
also provide a subgraph matching algorithm specifically for finding
subgraphs that are isomorphic to the fingerprints.

The anomaly-based scheme, in turn, involves calculating
anomaly scores based on the bits of meta-rarity metric introduced
by [4] for a set of 15 statistical features and underlying distributions
extracted from the AEN graph.

To evaluate the proposed intrusion detection mechanism, we con-
ducted experiments with two datasets: the Information Security and
Object Technology (ISOT) Cloud Intrusion Detection (ISOT-CID)

*Corresponding Author: Paulo Gustavo Quinan, quinan@uvic.ca

www.astesj.com
https://dx.doi.org/10.25046/aj080206

44

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj080206

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

Phase 1 dataset [5] and the 2017 Canadian Institute for Cybersecu-
rity (CIC) Intrusion Detection Evaluation Dataset (CIC-IDS2017)
[6]. First, each of the two schemes were separately evaluated, and
then an ensemble classification was created that fuses the two re-
sults. The obtained results were promising for both the individual
detection schemes and for the combined method.

The remainder of this paper is structured as follows. In sec-
tion 2, we review the literature on graph-based intrusion detection,
anomaly detection and subgraph matching. In section 3 we give
a brief overview of the AEN graph. In section 4, we present the
fingerprint model and explain how the fingerprints are described and
searched for in the graph. In section 5, we provide detail about the
anomaly detection model, including a description of the anomaly
score calculation and the proposed features model. In section 6, we
present the experimental evaluation of the proposed scheme and
discuss the obtained performance results. Finally, in section 7, we
make concluding remarks.

2 Literature Review

2.1 Graph-based Intrusion Detection

Many different graphical models have been proposed for intrusion
detection or forensic analysis. One traditional focus is on non-
probabilistic models, such as attack graphs. These include state
attack graphs [7]–[9], logical attack graphs [10] and multiple prereq-
uisite graphs [11], each of which aims to either elucidate different
aspects of the system or network’s security issues or, at a minimum,
fix the limitations of the previous models. In general, there are many
open challenges when working with attack graphs [12].

Current approaches are plagued by the exponential growth of
the graph according to its vulnerabilities and network size, making
generation intractable, even for a few dozen hosts. They are limited
in scope, and while they provide static information about the attack
paths and the probability of a vulnerability exploitation, they do not
provide any information about other effective parameters, such as
current intrusion alerts, active responses or network dependencies.
Furthermore, current attack graphs do not capture the dynamic and
evolving nature of the long-term threat landscape. In practice, each
change to the network requires a complete recreation of the graph
and a restart of the analysis, which means they can only be applied
for offline detection.

Another important area of research is in probability or belief-
based models used for signature-based intrusion detection such as
those employing Bayesian networks (BNs) [13]–[15] and Markov
random fields (MRFs) [16, 17]. These models provide good results
for the modelled attacks but have some important limitations. The
first stems from the fact that the entity being modelled is not the
network itself. Instead, the graph is constructed based on prede-
fined features, which limits the extensibility of the models. This
is because each new attack type requires the definition of more
predefined features that must be incorporated into the graph as new
elements. Moreover, these methods require a training phase used
to define the graph’s probabilities, making them fully supervised
methods. Finally, like attack graphs, they need to be reconstructed
whenever the graph changes, which can be time consuming, and in
practice make them unable to perform online detection.

Moving to anomaly detection applied for intrusion detection,
numerous models have been proposed that have used a diverse
range of techniques, such as decision trees [18] and neural networks
[19]–[21]. These models obtain good performance but suffer from
the previously mentioned issues, including necessitating a training
phase, requiring multiple rounds of training in some cases, and
not supporting online detection. Moreover, despite being anomaly-
based, some models have a limited capability to identify novel
attacks due to their structure based on predefined features.

In our work we overcame these problems by modelling the net-
work itself. This allows for greater extensibility in describing new
attacks because, rather than attack features being predefined, they
may be extracted from the graph. Moreover, the AEN graph is fully
dynamic and in constant change. Each new subgraph matching
operation can be performed against the graph online without the
need to recreate it after every change. Finally, the proposed schemes
are all unsupervised, which eliminates the need for a training phase.

2.2 Isomorphic Subgraph Matching

Isomorphic subgraph matching is used to search graphs for sub-
graphs that match a particular pattern. It has been employed exten-
sively in diverse areas, including computer vision, biology, electron-
ics and social networks. However, to the best of our knowledge,
our work is the first to employ isomorphic subgraph matching for
signature-based intrusion detection.

The general form of this problem is known to be NP-complete
[22]; however, its complexity has been proven to be polynomial for
specific types of graphs, such as planar graphs [23].

Different algorithms have been proposed for this problem. For
example, Ullmann’s algorithm [24] uses a depth-first search algo-
rithm to enumerate all mappings of the pattern. Over the years,
many improvements have been proposed for that algorithm, such as
the VF2 algorithm [25], in attempts to more effectively prune search
paths. More modern algorithms, such as the Turboiso [26] and the
DAF [27], employ pre-built auxiliary indexes to accelerate searches
and facilitate search-space pruning. These algorithms can perform
several orders of magnitude faster than index-less algorithms like
Ullmann’s but require more memory to store the index and also
some pre-processing time to build the indexes.

In our work, we leveraged these ideas to design a custom-made
matching algorithm specifically to match fingerprints, given the
specific characteristics of the AEN and the proposed fingerprints.

3 AEN Graph Overview
The AEN graph was designed to model the variety, complexity and
dynamicity of network activity, along with the uncertainty of its
data, something that is intrinsic to the collection process, through a
time-varying uncertain multigraph. The graph is composed of dif-
ferent types of nodes and edges, with the nodes describing different
types of network elements, such as hosts, domains and accounts,
and the edges describing their relationships, such as sessions (sets
of traffic between two hosts of the same protocol, ports, etc.) and
authentication attempts (an account trying to authentication on a
host). Furthermore, each element type has different sets of proper-

www.astesj.com 45

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

ties, including domain name, account identifier, session protocol and
start and stop time. To build such a graph, data from heterogeneous
sources (e.g. network traffic, flow data) and system and application
logs (e.g. syslog, auditd) are used.

The graph is built online, with elements added or modified as
soon as they are observed in the data and old elements removed
once they are considered stale. Consequently, the graph serves as a
stateful model of the network, and as such, can be used as a basis for
many different types of analyses and inferences. Interested readers
are referred to [28] for more details on the AEN graph model’s
elements and construction.

4 Attack Fingerprints in the AEN Graph
Model

4.1 AEN Fingerprints Framework

4.1.1 Attack Fingerprint Visualization

As a visual example of how attack fingerprints can be mined from
the AEN graph, Figure 1 shows how certain network activity can
create evident patterns in the graph. Specifically, the figure shows
a visualization of a subset of a graph generated from an example
dataset containing a distributed password guessing attack. The hosts
are represented by blue nodes at the center, accounts that were
used in authentication attempts are represented by orange nodes and
the attempts themselves (edges) are either blue when successful or
orange when unsuccessful.

Figure 1: Visualization of an AEN graph containing a password guessing attack.

The figure shows a “cloud” of failed authentication attempts
against the two central hosts using the same set of accounts. Fur-
thermore, the majority of the edges are orange, indicating failed
attempts, but there is a single blue (successful) edge. This pat-
tern makes evident a successful combined credential stuffing and
spraying attack where, after several failed attempts, one login was
successful.

Likewise, other types of attacks insert their own distinct attack
patterns in the graph. It follows that those patterns serve as finger-
prints of these attacks and can, therefore, be mined using subgraph
isomorphism matching algorithms to identify instances of an attack.

The statefulness of the AEN plays an important role here be-
cause it permits the formation of long term patterns. That is in

contrast with traditional intrusion detection systems (IDSs) which
can only identify short-term patterns. In the given example, the
attack could have been carried out over several weeks, which would
have created a challenge for traditional detection mechanisms. In
contrast, because the AEN maintains the relationships over a longer
term, those patterns can emerge and be identified.

4.1.2 Problem Definition

Given a graph G = (NG, EG) where NG is the set of nodes and
EG : NG × NG is the set of edges, the graph F = (NF , EF) is isomor-
phic to a subgraph G′ of G if all nodes and edges of F can be mapped
to nodes and edges of G. More formally, F � G′ ⊑ G if there is a
bijective function f : NF 7→ NG such that ∀u ∈ NF , f (u) ∈ NG and
∀(ui, u j) ∈ EF , (f (ui), f (u j)) ∈ EG.

The definition above can easily be extended to apply to more
complex graphs that contain labels and properties, such as the AEN,
by applying f to those labels and properties as well.

Finally, the problem of matching a fingerprint is defined as the
following: Given an AEN graph G and a fingerprint F, find all
distinct subgraphs of G that are isomorphic to F.

4.1.3 Describing Attack Fingerprints

In this study, the attack fingerprints are described using the PGQL
query language [29] because it provides a standardized language
for describing queries, or patterns, that we wish to search for in a
property graph. We believe this makes comprehension easier than
when the fingerprints are described algorithmically. This is because
PGQL’s syntax follows SQL where possible, except that instead
of querying tables, it aims to find matches in the nodes and edges
of a graph. Doing so requires specific symbols and constructs for
that purpose, but is still easily understandable by those who already
know SQL.

Other graph query languages, such as Cypher [30], are also
descriptive for this purpose but are less like SQL and have a distinct
set of supported features. Still, in most cases, PGQL queries can
easily be adapted to other graph query languages.

A simple example of PGQL query is as follows:
Algorithm 1: PGQL query example

SELECT s, d
MATCH (s:HOST)-[e:SESSION]->(d:HOST)
WHERE e.duration > 30

The SELECT clause specifies what values are to be returned,
while the MATCH clause specifies the pattern to match. The parenthe-
ses are used to describe nodes, while the square brackets describe
edges, with the arrow specifying the direction, if any. Inside the
brackets, the colon separates the variable name to the left and the
optional label, or type, to the right. The above example matches
any pattern in the graph that involves two nodes, s and d, of type
HOST connected by a directed edge, e, of type SESSION, from s to
d, whose duration is greater than 30, and then returns the two nodes
for each match.

In general, PGQL allows for a rich description of graph patterns;
however, it has limitations which make it impossible to fully express
certain attack patterns and, in particular, the information we wish to

www.astesj.com 46

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

retrieve from it. For our specific use case, PGQL has the following
key limitations:

1. Subquery is not supported in the FROM clause.

2. There is limited array aggregation support: In some cases, it is
desirable to group matches by destination (the victim) and get
an array of sources. However, the current PGQL specification
supports only array aggregation of primitive types in paths
(using the ARRAY AGG function). Therefore, only properties
like IDs can be aggregated in this way. Note that there are
some cases where only the LISTAGG function is supported.
In those cases, we use the ARRAY AGG function to substitute
for LISTAGG as if the former had similar support as the latter
for simpler pattern description.

To overcome these limitations, the fingerprints contain a post-
processing phase during which the query results are processed to
reach a final match result.

4.1.4 Attack Fingerprint Matching

Finding matches to fingerprints in the AEN graph requires the
application of an isomorphic matching algorithm. How this is ac-
complished depends on the graph engine used to store the AEN
graph.

In engines that natively support PGQL, such as PGX and Or-
acle’s RDBMS with the OPG extension, the fingerprints can be
used directly to query the database, with only the post-processing
phase requiring further implementation. In this case, the matching
algorithm is implemented by the graph engine itself.

Similarly, in engines that support other graph query languages,
such as neo4j, the fingerprints need first to be converted to the sup-
ported query language, but after that, only the post-processing phase
requires implementation.

In contrast, when using any graph engine that does not support
a graph query language, the whole fingerprint matching algorithm
must be implemented. There are several general isomorphic match-
ing algorithms, including Ullmann’s algorithm [24] and its deriva-
tions (e.g. VF2 [25]), the Turboiso [26] algorithm and the DAF
[27] algorithm. However, the specific characteristics of the AEN
graph and the proposed fingerprints means that a simpler searching
algorithm can be employed.

Specifically, the small diameter of the fingerprints means that
recursion or any type of partial matching is unnecessary, while the
types and properties of the nodes and edges allow for large swathes
of the search space to be quickly pruned. In practice, the custom
graph engine implemented for the AEN speeds up searching at the
cost of extra memory by maintaining separate sets of nodes per
type, as well as separate sets of edges per type and per source and
destination pair. This can be considered analogous to the indexes
employed by the general algorithms mentioned previously, such as
the Turboiso and the DAF.

Consequently, finding pairs of nodes per type and edges between
them is a constant-time operation. Conversely, iterating the set of
edges or groups is done linearly because no index per property is
maintained. However, this operation can be trivially parallelized.

Aggregating values, such as summing up properties of elements in
groups, must also be done linearly.

A generic fingerprint matching algorithm equivalent is presented
in Algorithm 2. The algorithm starts by pairing nodes of the desired
types (note that each pair is directed). Then, for each pair, it finds
all edges between the source and the destination nodes. For each
of those edges, the matches function is used to test whether the
edge matches all of the WHERE clauses of the fingerprint and then
accumulates the matching edges.

Afterwards, edges are grouped into sets according to the GROUP
BY expression specified in the fingerprint. Subsequently, each set
(group) is tested for matches to all of the HAVING clauses of the
fingerprint. If true, the results are extracted from the elements in the
set based on the SELECT expression. These results map to what is
returned by the PGQL queries.
Algorithm 2: Generic fingerprint matching algorithm

pairs ← pairNodes(nodes, srcType, destType)

matched ← {}

foreach pair in pairs do
s, d ← pair

edges ← getEdges(s, d, edgeType)

foreach e in edges do
if matches(e, whereClauses) then
matched ← matched ∪ {e}

groups ← group(matched, groupingExpr)

preResults ← {}

foreach g in groups do
if matches(g, havingClauses) then
gr ← extractPreResult(g, selectExpr)

preResults ← preResults ∪ {gr}

return preResults

As mentioned previously, many fingerprints also require a post-
processing phase, for which Algorithm 3 is the generic algorithm
used. It returns a set of matches of the fingerprint as described in
the respective section of each fingerprint.
Algorithm 3: Generic fingerprint post-processing phase algorithm

postProcGroups ← group(preResults ,

postProcGroupingExpr)

results ← {}

foreach ppg in postProcGroups do
if matches(ppg, postProcClauses) then
r ← extractFinalResult(ppg,

postProcSelectExpr)

results ← results ∪ {r}

return results

Finally, as explained in the following sections, some fingerprints

www.astesj.com 47

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

employ the sliding window algorithm to define time windows. In
those cases, Algorithms 2 and 3 are applied for each time window
separately, although it would be straightforward to apply the post-
processing phase to the combined results of all time windows and
group them accordingly. Because the consecutive time windows
share some elements, it is possible that the same results will ap-
pear on different windows. Therefore, an optional final step when
the sliding window is used is the deduplication of results in differ-
ent time windows, which can be applied to the results returned by
Algorithm 3.

Also, to speed up searching in those cases, the sets of edges
between nodes are sorted by the desired sliding property so that
the start and end indexes of each window can be quickly identified
through the application of a binary search. Moreover, the algorithm
maintains a cursor to the initial position of the previous window so
that older elements do not need to be searched.

4.2 Scanning Attacks

Scanning attacks consist of probing machines for openings that can
be further explored for vulnerabilities and then exploited. They are
part of the initial information gathering phase of an attack.

These attacks can target a variety of protocols and applications
but are most commonly employed for scanning TCP and UDP ports
[31]. They can be deployed by a single source or be distributed
among several attackers. In addition, there are many different tech-
niques used for scanning, with each focusing on different layers and
using different methods to avoid detection [32, 31].

Scanning attacks can be classified based on several different
properties. With regard to their footprints, they can be classified
into three major types [32]:

• Vertical scan, which scans multiple ports on a single host

• Horizontal scan, which scans the same port across multiple
hosts

• Block scan, which is a combination of both vertical and hor-
izontal scans, whereby multiple ports are scanned across
multiple target hosts

With regard to their timing, they can be classified as a slow scan
or a fast scan, with the latter being easier to spot than the former,
given its speed and short duration [33].

In the following, we propose a fingerprint for single-source fast
vertical scans. Fingerprints for other types of scans can be derived
by slightly modifying the fingerprint parameters as demonstrated in
subsection 4.3 for the different DoS attacks.

As already mentioned, vertical scans target a specific host by
sweeping across the port space, looking for open ports and running
services. Unique characteristics can be summarized as follows [31]:

• The packets are sent from one source host to one destination
host.

• The packets have several different destination ports.

• The amount of data/bytes exchanged is never large. For TCP
scans, for instance, connections are almost never even estab-
lished.

• The time frame of each single session is very short.

Taking into consideration these characteristics, we can define
a typical attack as one with a short duration and a small amount of
data exchanged, particularly from the victim. Otherwise the attack
would be too heavy and easier to spot, but with a large number of
ports involved. This definition can be described by the following
fingerprint:
Algorithm 4: Fingerprint for scanning attack

SELECT s, d
MATCH (s:HOST)-[e:SESSION]->(d:HOST)
WHERE e.destSize < sizeThr
AND e.duration < durThr

GROUP BY s,d
HAVING count(DISTINCT e.destPort) > portThr

where:

• destSize corresponds to the cumulative size of the packets
of the session sent by the destination of the session, which in
this case is the target host;

• sizeThr defines a threshold for a maximum expected
destSize;

• duration corresponds to the total time duration of a session;

• durThr defines a threshold for a maximum expected
duration;

• destPort corresponds to the target ports; and

• portThr defines a threshold for the minimum number of
distinct destination ports.

When applied, the fingerprint returns all pairs of source and
destination hosts where the sources and destinations correspond to
the attackers and the victims, respectively, according to the afore-
mentioned characteristics.

4.3 Denial of Service

DoS is a family of attacks that aim to disrupt the service of a tar-
get server or network resource and make it completely or partially
unavailable to users. They are broadly divided into two categories
[34, 35]:

• Volumetric attacks, where the target is inundated with huge
amounts of traffic that overwhelm its capabilities. These
include most flood attacks and amplification attacks.

• Semantic attacks, also known as resource depletion attacks,
where weaknesses in applications or protocols are exploited
in order to render a resource inoperable without requiring the
same large volume of traffic as pure volumetric attacks. These
include attacks like TCP SYN flood and slow-rate attacks like
Slowloris [36].

www.astesj.com 48

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

Based on the source of attack, DoS attacks can be single-source
or distributed, in which case they are commonly referred to as dis-
tributed DoS (DDoS). In this section, we use DoS to refer to both
types.

Another common characteristic of many DoS attacks is that the
source IP address can be spoofed in order to hide the true source
of the attack and to deflect replies away from the attacker. This
introduces asymmetry into the traffic load between the attacker and
the victim [37, 38]. In other words, the IP addresses identified by
the fingerprints as sources of attacks might be spoofed IP addresses
in many cases.

In this section, we focus on selected flood attacks covering
both categories of DoS attacks under different layers of the OSI
model, specifically layers 3 (network layer), 4 (transport layer) and
7 (application layer).

The fingerprints follow a basic pattern of counting the number of
matching sessions of a specific attack type within a short time frame.
For this reason, we employed a sliding window mechanism with
large overlaps between each window and applied the fingerprints
separately for each window. Sliding windows were used instead
of simply slicing the timeline so that any short duration attack that
would otherwise be divided between two windows could be fully
inside at least one window. This had no effect on long duration
attacks, as they would fully cover at least one window regardless.
In the fingerprints, the start and end times of a time window are
represented by twStart and twEnd parameters, respectively.

4.3.1 ICMP ping flood

ICMP ping flood is an attack where a high volume of ICMP
echo/ping requests are sent to a target IP address in the expec-
tation of flooding the victim with more traffic than it is capable of
handling [38].

Based on this, we identified the primary typical characteristics
of an ICMP ping flood as the following:

• The attacker host sends a large number of ping requests (i.e.
ICMP packets) to the target host.

• The packets correspond to echo requests and replies and thus
are small.

• The time frame for any single session is very short.

These characteristics can be expressed by the following finger-
print:
Algorithm 5: Fingerprint for ICMP Flood DoS attack

SELECT s, d, count(e)
MATCH (s:HOST)-[e:SESSION]->(d:HOST)
WHERE e.protocol = 'icmp'
AND e.destSize < sizeThr
AND e.startTime > TIMESTAMP 'twStart'
AND e.stopTime < TIMESTAMP 'twEnd'

GROUP BY s,d
HAVING count(e) > sessionThr

where sessionThr defines a threshold for the minimum number of
distinct sessions to trigger the fingerprint.

The query returns the number of sessions between each pair
of hosts matching the defined conditions, where the source is the
attacker, or the spoofed host, and the destination is the victim. These
results might be enough for single-source attacks, but to obtain a
final result for distributed attacks, they need to be further processed.

This post-processing step is completed by aggregating the re-
sults for each destination host in each time window and applying a
further threshold, cntThr, on the aggregated count (sum) of match-
ing session per destination. The final result is then a set of attack
instances, each one containing the victim host, the cumulative sum
of matching sessions and a set of attacker hosts.

Since each time window is considered separately, longer attack
instances can end up being reported repeatedly in multiple adja-
cent windows. To improve on that, the results can be deduplicated
by aggregating the results of a same target that fall in contiguous
windows.

4.3.2 IP Fragmentation Attack

IP packet fragmentation is a normal event whereby packets larger
than the maximum transmission unit (MTU) of the route (normally
1500 bytes) are fragmented into smaller packets that are reassem-
bled by the receiver. A problem arises when systems have trouble
reassembling the packets or will expend too many resources doing
so. Attackers take advantage of the situration by crafting special
fragmented packets that are impossible to reassemble, causing tar-
gets to either crash due to related bugs or to expend more and
more resources trying to handle the reassembly of these degenerate
packets [35, 39].

Different protocols can be used for fragmented attacks, includ-
ing UDP, ICMP and TCP. Moreover, fragmented packets can be
used to deceive IDSs by crafting fragmented packets that are re-
jected by the IDS but not by the end system, or vice versa, such that
the extra or missing packets prevent the IDS from identifying an
attack it otherwise would [39].

From that, we identified the general characteristics of an IP
fragmentation attack as follows:

• A medium to high absolute number of fragmented packets
can be observed.

• The ratio of fragmented packets to all packets is high.

• The time frame of a single session is very short.

To be able to capture the ratio of fragmented packets, we intro-
duced two properties to the session edge: one that tracks the number
of packets, pktCnt, comprising the session and another that tracks
the number of fragmented packets among those, fragPktCnt.

The fingerprint can be expressed as the following query:
Algorithm 6: Fingerprint for IP Fragmentation attack

SELECT s, d, count(e), sum(e.fragPktCnt)
MATCH (s:HOST)-[e:SESSION]->(d:HOST)
WHERE e.fragPktCnt / e.pktCnt > fragRatioThr
AND e.startTime > TIMESTAMP 'twStart'
AND e.stopTime < TIMESTAMP 'twEnd'

GROUP BY s, d
HAVING count(e) > sessionThr

www.astesj.com 49

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

where fragRatioThr defines a threshold for the minimum ratio of
fragmented packets to all packets of each session that is considered
to be matching the fingerprint.

As before, this query returns the number of sessions matching
the defined conditions between each pair of hosts, where the source
is the attacker and the destination is the victim. In addition, it also
returns the sum of the fragmented packet counts from all grouped
sessions.

A post-processing phase is included where the results are aggre-
gated by destination host in each time window so that distributed
attacks can be identified. A further threshold, fragPckCntThr,
was applied to the aggregated sum of fragmented packet counts
to guarantee that normal absolute amounts of fragmented packets
exchanged between hosts are filtered out.

The final result is then a set of attack instances, each contain-
ing the victim host, the cumulative sum of matching sessions and
fragmented packet counts, and a set of attacker hosts.

Finally, a deduplication step can also be executed to combine
instances from adjacent time windows.

4.3.3 TCP SYN Flood

TCP SYN flood attacks exploit the three-way TCP handshake pro-
cess by sending a large volume SYN requests to a target host with-
out ever completing the handshake process with the expected ACK
requests. This causes the target server to hold multiple partially
initiated connections, eventually filling its connection buffer and
thus preventing subsequent real connections from being established.
In some cases, this will result in crashes due to unhandled resource
starvation [37].

Therefore, for this attack, we needed to keep track of the state
of the TCP connection. After the initial SYN packet is sent and a
session is created, we defined four possible states for the connection,
with the first three mirroring the TCP states related to connection
establishment [40], only with a slight change of semantics because
the client and server states are combined:

• SYN SENT: The initial session state when the session is cre-
ated from a SYN packet sent by the source host. This means
the SYN packet was sent and the source host is now waiting
for the SYN-ACK packet.

• SYN RECEIVED: With the session at the SYN SENT state, the
destination host has sent the SYN-ACK packet meaning it
received the original SYN packet and is now waiting for the
ACK packet that will conclude the handshake.

• ESTABLISHED: The source host has sent the ACK packet
while the session was at the SYN RECEIVED state, which con-
cluded the three-way handshake, establishing the connection.
Once established, only FIN and RST packets can change the
state of the session.

• OTHER: A catch-all state that indicates any other scenario,
such as when the first packet of the session is not a SYN
packet.

Moreover, two other related properties, synFlagCount and
ackFlagCount, were added to the session edge to track the number

of packets added to the session that had the SYN flag and the ACK
flag set, respectively.

A limitation of this technique is that it requires the packet infor-
mation in the graph to be correct, which is not guaranteed in all cases.
Examples include cases where the network data injected into the
model is not complete, whether due to sampling or an unexpected
data loss, and also cases where the system has just gone live and
thus only started receiving the network data after the connections
were established. Another is the case where the system is fed with
NetFlow data instead of raw network data and the NetFlow applica-
tion did not properly track the TCP state or the number of packets
containing each flag in any given flow. In these cases, the model
is not able to properly track the correct state of the connections.
This makes fingerprints that rely on that information ineffective in
identifying attacks.

To mitigate those issues, some correction heuristics were em-
ployed to change a session’s attributes, such as the TCP state, in
cases where inconsistencies between the data and the attributes are
encountered. An example is when it is observed that large amounts
of data are being exchanged between two hosts on a TCP session,
indicating a fully established connection, but the state of the con-
nection indicates otherwise.

In short, the characteristics of a TCP SYN flood attack can be
summarized as follows:

• The attacker keeps sending SYN packets to the victim and
never replies to the SYN-ACK packet, resulting in a large
number of sessions in the SYN RECEIVED state.

• The time frame of any single session is very short.

The above pattern can be expressed in the following query:
Algorithm 7: Fingerprint for TCP SYN flood attack

SELECT s, d, count(e)
MATCH (s:HOST)-[e:SESSION]->(d:HOST)
WHERE e.tcpState = SYN_RECEIVED
AND e.synFlagCount / e.ackFlagCount >

synAckRatio

AND e.startTime > TIMESTAMP 'twStart'
AND e.stopTime < TIMESTAMP 'twEnd'

GROUP BY s, d
HAVING count(e) > sessionThr

where:

• destSize corresponds to the cumulative size of the packets
in the session sent by the destination of the session, in this
case, the target host.

• sizeThr defines a threshold for the maximum expected
destSize.

• duration corresponds to the total length of a session.

• durThr defines a threshold for the maximum expected
duration.

• destPort corresponds to the target ports.

• portThr defines a threshold for the minimum number of
distinct destination ports.

www.astesj.com 50

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

This query mostly follows the same pattern as the preceding
ones, with the distinction that it has a condition to only select a
session if its TCP state is SYN RECEIVED.

The post-processing phase follows the same pattern as the pre-
ceding ones as well, so distributed attacks can be identified and the
cntThr applied.

4.3.4 Other TCP “Out-of-State” Flood Attacks

Aside from the aforementioned SYN flood attack, there are many
other less common TCP-based layer 4 flood attacks variants that
exploit illegal or unexpected combinations of TCP packet flags sent
without first establishing a TCP connection (thus the “out-of-state”
term) with the objective of causing a DoS [41]. The lack of a prior
connection causes some systems to return RST packets, which can
exacerbate bandwidth consumption problems related to the attack.
Finally, bugs stemming from unexpected conditions can also cause
issues. Examples of flag combinations used in these attacks include:

• ACK-PSH

• PSH-RST-SYN-FIN

• ACK-RST

• URG-ACK-PSH-FIN

• URG

Because these attacks involve out-of-state packets that form the
initial packets of the sessions, it is possible to refine the session’s
TCP state property to track these cases. Specifically, a new property
called tcpFirstPktFlags was added to the session edge to track
the flags of the first packet of the session if it is a TCP packet and
the TCP state is set to OTHER.

With that, it is possible to define a generic query following the
same pattern as the SYN flood attack query, but parameterized by
the first packet flags corresponding to the sought after attacks:
Algorithm 8: Fingerprint for TCP “Out-of-State” flood attacks

SELECT s, d, count(e)
MATCH (s:HOST)-[e:SESSION]->(d:HOST)
WHERE e.protocol = 'TCP'
AND e.tcpState = OTHER
AND e.tcpFirstPktFlags = attackFlags
AND e.startTime > TIMESTAMP 'twStart'
AND e.stopTime < TIMESTAMP 'twEnd'

GROUP BY s, d
HAVING count(e) > sessionThr

The query requires the same post-processing as the SYN flood
attack. It is also possible to modify the fingerprint so that it matches
any of the possible out-of-state attack flag combinations instead of
matching each one individually by allowing tcpFirstPktFlags
to be equal to any of the known invalid flag combinations.

4.3.5 UDP Flood

UDP flood attacks are flood attack aimed at UDP datagrams. It
is considered a volumetric attack because it does not exploit any
specific characteristic of the UDP protocol. Instead, it works by

sending a large volumes of UDP packets to random or fixed ports
on a target host, depleting its available bandwidth, which makes it
unreachable by other clients. The attack can also consume a lot of
the target’s processing power as it tries to determine how to handle
the UDP packets [42].

In summary, the key characteristics of a UDP flood attack are as
follows:

• The attacker sends UDP packets to the victim at a high rate
of frequency.

• The amount of data exchanged per session is relatively fixed
and mostly the same.

• The time frame for any single session is very short.

These characteristics can be expressed by the following finger-
print:
Algorithm 9: Fingerprint for UDP flood attack

SELECT s, d, count(e)
MATCH (s:HOST)-[e:SESSION]->(d:HOST)
WHERE e.protocol = 'UDP'
AND e.destSize < sizeThr
AND e.startTime > TIMESTAMP 'twStart'
AND e.stopTime < TIMESTAMP 'twEnd'

GROUP BY s,d
HAVING count(e) > sessionThr

Once again, this query mostly follows the same pattern as the
preceding ones, with the distinction being the condition to only
select UDP sessions.

The post-processing phase follows the same pattern as the pre-
ceding ones as well, so distributed attacks can be identified and the
cntThr applied.

4.3.6 HTTP Flood

HTTP flood is a layer 7 DoS attack in which a target server is sat-
urated with a high volume of HTTP requests. This can slow the
server as it tries to handle the high volume and eventually makes
the servers unable to handle legitimate traffic [43].

Because a TCP connection must be established for these attacks
to be performed, the spoofing of IP addresses is not possible [35],
which makes the identification of source IP addresses more reliable.

An HTTP flood attack can use different types of requests and
methods (e.g. GET, POST), with the most damaging ones being
the heaviest requests for a server to handle, such as those involving
heavy processing of input or pushing large amounts of data into a
database [43, 35]. Consequently, less bandwidth is required to bring
down a web server using an HTTP flood attack than is required for
another type of DoS attack.

Several different techniques are employed in HTTP flood attacks.
Some send a large number of requests, while others send fewer, but
very large or very focused, requests. In either case, the attack in-
volves sending large amounts of IP packets to the target. Therefore,
the key characteristics of an HTTP flood attack as follows:

• The attacker sends HTTP packets to the victim at a high rate
of frequency.

• The amount of data exchanged per session is high.

www.astesj.com 51

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

Naturally, the fingerprint for these attacks needs to be able to
identify HTTP sessions. For this reason, a service property was
added to the session edge so that sessions can be marked as HTTP-
related. Note that this property can be used for other reasons as well,
such as identifying SSH or FTP sessions.

The challenge in this case is populating the field, given that
HTTP is a layer 7 protocol and can, in many cases, be encrypted.
We employed two techniques for this purpose. The first was per-
forming deep packet inspection (DPI) to search for identifiers of
HTTP messages, such as the version, in packet content. Once a
session is identified as being “HTTP-related”, it is marked as such
and no DPI is required thereafter. A limitation of this technique
is that it requires clear text traffic, which in most scenarios today
would require the AEN to be deployed after a TLS termination
proxy. DPI is also computationally expensive.

For those reasons, a second technique was employed using a
service registry comprised of IP addresses and ports of services of
interest, such as web services and SSH. This allows for a quick
discovery of services but also for some false positives if invalid
packets are sent to those servers, such as when non-HTTP packets
are sent to an HTTP service.

With the capacity to identify HTTP sessions, a query can be
defined as follows:
Algorithm 10: Fingerprint for HTTP flood attack

SELECT s, d, count(e), sum(e.pktCount)
MATCH (s:HOST)-[e:SESSION]->(d:HOST)
WHERE e.protocol = 'TCP'
AND e.service = 'HTTP'
AND e.srcSize < sizeThr
AND e.startTime > TIMESTAMP 'twStart'
AND e.startTime < TIMESTAMP 'twEnd'

GROUP BY s, d
HAVING sum(e.pktCount) > pktCntThr

This query is somewhat distinct from the preceding ones be-
cause it is based on the number of packets exchanged in a given
time window rather than the number of sessions and also because it
does not consider short-term sessions. Both differences are a conse-
quence of the fact that HTTP flood attacks require fully established
connections. The seemingly redundant clause to select only TCP
sessions when there is already a clause to select only HTTP sessions
is included to filter out part of the invalid packets, such as UDP
packets sent to that specific service, in case the service registry was
used.

Finally, the post-processing phase follows the same pattern as
the preceding queries as well, with a further aggregation per destina-
tion host so that distributed attacks can be identified and the cntThr
applied.

4.4 Password Guessing

Password guessing is when the attacker tries to gain access to a sys-
tem by persistently attempting to guess user passwords [44, 45]. The
passwords attempted are normally derived from either leaked pass-
word associated with a particular user or dictionaries of common
passwords, in which case the attack is also known as a brute-force
attack.

There are a few different types of password guessing attacks, but
they all share the main characteristic of generating a high volume of
failed login attempts, which are normally logged by the applications
into which the authentications are attempted. For this reason, the
AEN ingests application and system logs, like those from SSH, to
extract authentication information and insert that it into the graph
through nodes of type ACCOUNT and edges of type AUTH ATT (“au-
thentication attempt”) that link an account with the target host of
the authentication. To track whether the authentication attempt was
successful, the edge has a Boolean property called succ.

Another important characteristic of password guessing attacks
is that they do not necessarily happen in a short time frame. Some-
times the whole process can last for days, or even longer. That
means there is no need to consider the time frame of the attempts.
Incidentally, that means the AEN must keep authentication-related
elements for longer than it would for many other types of elements.

In this study, we investigated three types of password guessing
attacks:

• Basic: One account on one host is targeted with a brute-force
attack.

• Spraying: Multiple accounts on one host are each attacked
one or a few times.

• Stuffing: The same account is targeted on multiple hosts one
or a few times per host.

4.4.1 Basic password guessing

A basic password guessing attack is one where a single account on
a single host is targeted with a brute-force attack. It is the most
common type of password guessing attack [44, 45]. Because it
only focuses on one-to-one relations, the graph patterns should be
(:ACCOUNT)-[:AUTH ATT]->(:HOST). For the sake of brevity the
whole fingerprint will not be described because it is a generalization
of the spraying password guessing fingerprint that follows.

4.4.2 Spraying password guessing

In a spraying password guessing attack, instead of multiple pass-
words being tried with a single account, the attacker tries to breach
multiple accounts with a single password or a few passwords [46].
In this manner, the attacker can circumvent the most common au-
thentication protection measures, such as account lockouts.

These attacks can be performed either from a single source, in
which case tracking attempts per IP address might be a useful de-
tection method, or from distributed sources, which makes detection
harder. This is one of the strengths of the proposed fingerprint, as
it focuses exclusively on authentication attempts per victim host,
which makes it, by design, effective regardless of the number of
source hosts involved.

In summary, spraying password guessing attacks have the fol-
lowing characteristics:

• One host is targeted with a high number of authentication
attempts.

• The attempts are spread over several accounts such that no
account has more than a few attempts.

www.astesj.com 52

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

• One or more hosts can participate in the attack.

• The time frame of an attack can be very long.

Based on the above characteristics, the query is defined as fol-
lows:
Algorithm 11: Fingerprint for spraying password guessing attack

SELECT h, count(DISTINCT a), ARRAY_AGG(e.id) as
attempts

MATCH (a:ACCOUNT)-[e:AUTH_ATT]->(h:HOST)
WHERE count(!e.succ) > attemptThr
GROUP BY h
HAVING count(!e.succ) / count(e) >

authFailRatioThr

AND count(DISTINCT a) > accountThr

where:

• attemptThr defines a threshold for the minimum number of
failed attempts per account to exclude regular login attempt
failures from real users.

• authFailRatioThr defines a threshold for the minimum
ratio of failed attempts in relation to the total number of au-
thentication attempts.

• accountThr defines a threshold for the minimum number of
distinct accounts that will trigger the fingerprint.

Each match returned by the query contains the victim host, the
associated number of distinct target accounts on the host and, as a
special output, the array of identifiers of the matching edges, called
attempts, which is used in the post-processing step to retrieve the
list of targeted accounts by fetching from the graph the source nodes
of the edges in the array.

Furthermore, if retrieving the hosts responsible for the attack
is desired, another query can be performed to find the source hosts
of the authentication attempts in the attempts array based on its
source properties.

4.4.3 Credential Stuffing

The credential stuffing attack, also known as a targeted password
guessing attack, consists of trying the same credentials (e.g. user
name and password combination) on multiple hosts [45]. The cre-
dentials used in these attack are traditionally obtained from leaks of
previous attacks or are default passwords in systems that have them.
The latter type is particularly common in IoT devices [47]. More
advanced attacks use slight variations of the passwords for cases
where the user has the same base password with small modifications
per host. Ultimately, this type of attack targets password reuse by
the same user on different websites and hosts or poorly designed
systems. This consequently means the attacker will not try more
than a few different combinations per account but will try the same
combinations against multiple targets.

As with any password guessing attack, credential stuffing can
be performed from either a single source or distributed sources.
However, because this attack targets multiple hosts that normally
do not coordinate their detection and prevention efforts, the attacker

is more likely to be able to carry out the attack using a single source
than with other types of password guessing attacks.

In practice, a single attack campaign can perform credential
stuffing on several accounts at once. This type of attack would be
detected by the fingerprint as multiple credential stuffing attacks
happening together, or possibly as multiple spraying attacks, de-
pending on the number of accounts targeted. Also note that the
AEN does not have access to the password, so it cannot determine
if the same passwords are being used in multiple hosts, only that
multiple failed authentication attempts are being performed for a
given account on multiple hosts.

In summary, credential stuffing attacks have the following char-
acteristics:

• Multiple hosts are targeted with a high number of authentica-
tion attempts across them.

• Only one account is targeted.

• Only a few attempts are made per host.

• One or more hosts can participate in the attack.

• The time frame of an attack can be very long.

Based on the above characteristics, the query is defined as fol-
lows:
Algorithm 12: Fingerprint for credential stuffing attack

SELECT a, count(DISTINCT h), ARRAY_AGG(e.id) as
attempts

MATCH (a:ACCOUNT)-[e:AUTH_ATT]->(h:HOST)
WHERE count(!e.succ) > attemptThr
GROUP BY a
HAVING count(!e.succ) / count(e) >

authFailRatioThr

AND count(DISTINCT h) > hostThr

where hostThr defines a threshold for the minimum number of
distinct hosts that will trigger the fingerprint.

In contrast to the spraying query, this query groups by account
rather than host and counts the number of matching hosts instead
of the number of matching accounts. As a result, each match re-
turned by the query contains the targeted account, the associated
number of distinct hosts where authentications were attempted and
the attempts array, which in this case is used to retrieve the list of
victim hosts by fetching from the graph the destination nodes of the
edges in the array in the post-processing phase.

As with the previous query, retrieving the hosts responsible for
the attack is possible by performing another query to find the source
hosts of the authentication attempts in the attempts array, based
on its source properties.

5 Anomaly Detection based on the AEN
Graph Model

5.1 Measure of Anomalousness

Anomaly detection approaches use statistical methods to help
identify outliers or rare events, which are flagged as anomalous.

www.astesj.com 53

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

Anomaly is defined as something that deviates from what is stan-
dard, normal or expected [3]. When applied to intrusion detection,
this involves assuming that anomalous events are more likely to be
malicious.

In [48], the authors defined the anomaly score of an event as
the negative log likelihood of that event, which was later adapted
by Ferragut et al. [4] as the bits of rarity metric. Formally, given a
random variable X with probability density or mass function f , the
rarity of an event x is defined as:

R(x) = − log2 P f (x) (1)

The negative means that rarer events have a higher rarity value.
Moreover, using the log helps with numerical stability, while the
base 2 causes the rarity of the event to be measured in bits. Finally,
note that the negative log of zero is defined by convention to be
positive infinity.

In [4], the authors also demonstrated that the bits of rarity metric
has some important limitations when used for anomaly detection
because it is not regulatable or comparable between two different
types of data. As a supporting example, the authors defined two
uniform discrete distributions, one with 100 values and one with
2000 values. If a threshold of 10 is chosen to define what is anoma-
lous or not, then no event of the first distribution will be considered
anomalous while all events of the second distribution will be even
though they are all equally likely.

Note how, in this example, a predefined threshold cannot be
used to regulate the number of anomalous events identified in a
sample of any distribution. Furthermore, note how it is not possible
to compare the rarity of the events of two distinct distributions be-
cause the rarity metric of an event is an absolute value that does not
describe the rarity of that event relative to its distribution.

For these reasons, the authors proposed a regulatable and com-
parable anomalousness metric called bits of meta-rarity based on
the “probability of the probability” of the event rather than just the
probability of an event. More formally, given a random variable X
with probability density or mass function f defined on the domain
D, the bits of meta-rarity anomaly score A : D → R≥0 of en event
x is defined as:

A(x) = − log2 P f (f (X) ≤ f (x)) (2)

Going back to the previous example, note how for any value
x of either distribution, P f (f (X) ≤ f (x)) = 1 and consequently
A(x) = − log2 1 = 0. This implies that neither distribution has any
anomalous event, regardless of the threshold used (as long as it is
greater than 0), and also that the anomaly scores of the different
distributions can be compared.

Moreover, for a given threshold θ, the probability that A(x) ex-
ceeds that value is bounded by 2−θ such that the ratio of events
flagged as anomalous in a sample is never more than 2−θ as long
as f fits the sample well. This condition applies for any f which
makes the anomaly regulatable through θ.

Note here the importance of a high goodness of fit of f , without
that the above condition will not hold.

For a continuous variable, P f (f (X) ≤ f (x)) is defined as the
area under f restricted to those t such that f (t) ≤ f (x), that is

P f (f (X) ≤ f (x)) =
∫
{t| f (t)≤ f (x)}

f (t)dt (3)

For a discrete variable, P f (f (X) ≤ f (x)) is defined as the sum
of all probabilities less than or equal to P f (x), that is

P f (f (X) ≤ f (x)) =
∑

{t| f (t)≤ f (x)}

f (t) (4)

As a further example, consider the discrete variable X =

{x1, x2, x3}, such that f (x1) < f (x2) < f (x3). Thus, the anomaly
scores of these events are given by

A(x1) = − log2(f (x1))
A(x2) = − log2(f (x1) + f (x2))
A(x3) = − log2(f (x1) + f (x2) + f (x3))

In this case, it is clear that A(x1) > A(x2) > A(x3); in other
words, as the events become more common, they become less
anomalous.

Bringing this to the scope of our work, the variables are the fea-
tures we extract from the graph as described in subsection 5.2. Each
feature is a multinomial variable with k categories, each defined by
an n-tuple. For instance, the categories of feature totalsessions
are defined by the 2-tuple (S ourceHost, DestinationHost), whose
values are defined by the total number of sessions between those
hosts.

Now recall the importance of a suitable distribution for each
variable. This is normally obtained through a training phase. How-
ever, because our model is fully unsupervised, it does not contain
a training phase. Instead, we estimate the probability of each ob-
served value online based on the frequency of that observation in
the sample extracted from the graph, which collectively describe
the probability mass function of the feature.

This implies that, although the values of each category of a
variable might be continuous in theory, they are discrete in practice,
which may cause some issues. Consider, for example, the following
sample of a feature: {x1 = 22, x2 = 11, x3 = 22, x4 = 555, x5 =

10, x6 = 9}.
Intuitively, x4 should have the higher anomaly score as its value

is farther from the values of the others, but that is not the case.
Instead, when considering the frequency of each value, x1 and x3
have the same values and thus the same higher probability (i.e. 2/6)
and the same anomaly score. The other values, including the value
for x4, each appear only once and thus result in the same lower
probability (i.e. 1/6) and the same anomaly score.

To overcome this issue, we discretize the values into bins such
that neighbouring values will be mapped to the same bins and thus
have a higher probability. In practice, given a bin width h, the
binned value of x is defined as

b(x) = h
⌊ x
h

⌋
(5)

Note that multiplying by h is only done to keep the binned values
near to the original values but is not required in practice.

To help with understanding, Table 1 shows the binned values of
a sample using different bin widths. The values with lower probabil-
ities, meaning the most anomalous, for each bin width are bolded.

www.astesj.com 54

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

Table 1: Value binning examples

Category Bin Width

1 5 25
x1 22 20 0
x2 11 10 0
x3 22 20 0
x4 555 555 550
x5 10 10 0
x6 9 5 0

It can be seen that as the bin width increases, more similar values
are mapped into the same bins, which increases their probabilities.
With the bin width of 25, all values except that of x4 are mapped to
the same bin, resulting in a probability of 5/6, while x4 continues to
have a probability of 1/6, making it the most anomalous event in
the sample for this bin width.

To compute the features, we first split the time range of the data
into time windows, with the windows treated independently from
each other. For that, we employed the previously discussed sliding
window mechanism. Then, for each time window, we extract the
features from the AEN graph.

Afterwards, for each feature X = {x1, . . . , xk} where k is the
size or number of categories of X, its values are binned according
to (5). After this process, there will be n bins, with each bin rep-
resenting a value range. The probability of each bin, p(b j), where
j = {1, . . . , n}, is defined as the ratio of the number of elements in
the bin over the total number of categories of the feature:

p(b j) =
|b j|

k
(6)

Clearly, the distribution of p approximates the distribution of f
such that P f (f (X) ≤ f (xi)) can be approximated through p(b(xi)).
Therefore, it is useful to define the anomaly score of a bin b j follow-
ing (2) and (4):

A(b j) = − log2

∑
{bm |p(bm)≤p(b j)}

p(bm) (7)

From that, the anomaly score of xi is defined as equal to the
anomaly score of its binned value:

A(xi) = A(b(xi))

= − log2

∑
{bm |p(bm)≤p(b(xi))}

p(bm) (8)

The last step of the anomaly detection is to compare the anomaly
scores with a predefined threshold such that if the anomaly score
of an element is greater than the threshold, that element is consid-
ered anomalous. Specifically, the source element of the anomalous
feature tuples are the ones actually considered anomalous. For in-
stance, for feature totalsessions, it is the source host, not the
destination host, that is reported as anomalous.

5.2 Feature Model

In this subsection, we describe the proposed feature model, which
contains a wide range of features extracted from the AEN graph.

The features are categorized into session features, which are ex-
tracted from session data, and authentication features, which are
extracted from authentication data.

Note that all features are contained within a time window, mean-
ing that each operation described below is performed only on the
edges that were created in that time window. Also note that the
features are directed, so any feature extracted for a pair of hosts h1
and h2 is different from that same feature between h2 and h1.

5.2.1 Session Features

The main type of edge in the AEN graph model is the session edge,
which represents a communication session between two hosts. Our
detection model leverages session edges to extract useful features
that can support threat identification.

There are a total of nine session features:

• Total sessions: The total number of sessions between a pair
of hosts.

• Unique destination ports: The number of unique ports of a
destination host for which there are sessions from a source
host.

• Unique destination hosts with same destination port: The
number of unique destination hosts to which a source host
connected with the same destination port.

• Unique destination ports for a source host: The number of
unique destination ports for which a host has sessions.

• Mean time between sessions: The mean time between the
start of the subsequent sessions between a pair of hosts.

• Mean session duration: The mean duration of the sessions
between a pair of hosts.

• Mean session size ratio: The mean ratio of the destination
size (bytes sent from the destination host of the session) over
the source size (bytes sent from the source host of the session)
for a pair of hosts.

• Mean session velocity: The mean velocity of the sessions
between a pair of hosts. The session velocity is defined as the
ratio of the total number of packets of a session to the total
duration of the session, which is expressed in packets/sec.

• Mean session source size: The mean source size of the ses-
sions sent from a host.

5.2.2 Authentication Features

The authentication data contained in the AEN graph are potential
sources of useful information for the detection of anomalous authen-
tication behaviour. There are a total of six different authentication
features:

• Total authentication failures: The total number of failed au-
thentication attempts between a pair of hosts.

• Total authentication failures per account per host: The total
number of failed authentication attempts by a host using a
specific account to all other hosts.

www.astesj.com 55

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

• Total authentication failures per account: The total number of
failed authentication attempts between a pair of hosts using a
specific account.

• Unique accounts: The number of unique accounts that were
used in failed authentication attempts between a pair of hosts.

• Unique accounts per host: The number of unique accounts
that were used in failed authentication attempts by a host to
all other hosts.

• Unique target hosts per host per account: The total number of
hosts that a host attempted, but failed, to authenticated using
a specific account.

6 Experimental Evaluation

6.1 Setup and Procedures

The proposed ensemble intrusion detection mechanism was evalu-
ated in two separate sets of experiments, one using the ISOT-CID
Phase 1 dataset and one using the CIC-IDS2017 dataset. These
datasets were selected because they contain benign and malicious
network traffic data that can be used to build an AEN graph. Ad-
ditionally, both datasets include examples of the attacks for which
fingerprints have been developed, allowing their performance to be
assessed.

The goal of the experiments was to evaluate the model’s perfor-
mance in correctly classifying hosts as malicious or benign. Specifi-
cally, each of the two detection schemes were assessed individually,
and afterwards, a final ensemble classification was performed.

Separate experiments were performed for each day of each of
the datasets according to the following procedure:

• An AEN graph was generated based on the available data of
the specific day.

• Each of the two schemes were executed against the generated
graph, and the results were collected.

• Each host node was given three classifications, one for each
of the two detection schemes and one for the combined classi-
fication. The rules employed for each classifier are described
later.

• The classification performance of each of the two individual
schemes and that of the ensemble classifier were calculated
based on the actual and predicted classifications.

The details for each of the two schemes are described in the
following sections.

6.1.1 Fingerprint Matching

The fingerprint matching scheme classifies a host as malicious if the
host is found to be part of an attack by at least one fingerprint.

Table 2 shows the parameters adopted for the experiment. Pa-
rameters with the same values used by multiple fingerprints are
marked as “Multiple/Default”, while parameters that are unique to

a single fingerprint or values that are distinct from the default are
marked according to the fingerprint.

Table 2: Attack fingerprint experiment parameters

Fingerprint Parameter Value

Multiple/Default

attemptThr 50
authFailRatioThr 0.8
cntThr 700
sessionThr 100
sizeThr 600 bytes
twSize 20 seconds
twStep 10 seconds

Basic Pwd Guessing attemptThr 4
Credential Stuffing hostThr 4

HTTP Flood

pktCntThr 15000
sizeThr 1200 bytes
twSize 2 minutes
twStep 1 minute

IP Fragmentation Attack
fragPckCntThr 600
fragRatioThr 0.8
sessionThr 20

Spraying Pwd Guessing accountThr 4
TCP SYN Flood synAckRatio 100
UDP Flood sessionThr 300

Vertical Port Scanning durThr 1 second
portThr 50

Finally, to measure the performance of the fingerprints, we used
precision (positive predicted value – PPV) and sensitivity (true posi-
tive rate – TPR) because they describe the detection performance
of the scheme without taking into consideration the true negatives,
which is desirable for evaluating the performance of a signature-
based intrusion detection scheme. Specifically, precision is better
suited for the task because it describes the ratio of true positives
among all predicted positive elements, which is expected to be high
for a signature-based intrusion detection scheme. In contrast, sensi-
tivity, indicates the ratio of true positives among all actual positive
elements. This is not necessarily expected to be high given that the
provided fingerprints only cover a few specific types of attacks and
not all attack types that exist in the dataset.

6.1.2 Anomaly Detection

The anomaly detection scheme classifies a host as malicious if it is
found to be the source of any anomalous behaviour, that is, if any
of the features reports a score for the host above the experiment’s
threshold.

The algorithm has four parameters, bin width, time window size,
time window step and threshold. To assess the performance of the
scheme under different combinations of parameters, and identify
the optimal threshold value, we defined the following set of values:

• Bin width: 1, 2, 4, 12 and 64.

• Time window size: 30 minutes, 1 hour, 4 hours and 12 hours.

• Time window step: Half the time window size.

www.astesj.com 56

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

• Threshold: From 0 to 20 bits at 0.5 intervals.

As a consequence, for each day experiment, the anomaly detec-
tion was executed 20 times, once for each parameter combination
(excluding the threshold). Afterwards, the scores were evaluated
against the 40 thresholds, resulting in a total of 800 sets of results.

Finally, to measure the performance of the anomaly detection
scheme, three metrics were chosen: F1 score, bookmaker informed-
ness (BM), and the Matthews correlation coefficient (MCC). As
discussed later, both datasets are unbalanced; therefore, traditional
metrics like the accuracy, precision and recall were not suitable, and
as such, they were not used for the evaluation. Conversely, the three
chosen metrics, particularly the latter two, were chosen because
they are generally considered to be better suited for this scenario
[49, 50].

Nonetheless, we provide the resulting receiver operating char-
acteristic (ROC) curve for each of the parameter combinations,
representing the classifications of the separate days combined to-
gether, to show the general performance behaviour of the scheme
under different parameters and different thresholds. This serves
as a basis for selecting the best parameter combinations and, ac-
cordingly, discussing the performance of the algorithm. We also
present the sensitivity and the false positive rate (1 − specificity)
when discussing the performance of the best parameter combination
so it can be correlated to the ROC curves.

6.1.3 Ensemble Classification

The ensemble classification was performed by fusing the classi-
fication of the individual schemes (classifiers) in two ways: One
with an and rule, meaning a host is only considered malicious if
both classifiers agree that it is malicious, and the other with an or
rule, meaning that a host is considered malicious if either of the
classifiers consider it malicious.

Naturally, the and rule is expected to generate few false posi-
tives and more false negatives. In contrast, the or rule is expected to
generate more false positives and few false negatives. In practice,
the classifier with fewer positive predictions sets an upper limit on
those numbers when using the and rule and a lower limit when the
or rule is applied.

6.2 ISOT-CID Phase 1

The ISOT-CID Phase 1 dataset [5] contains systems calls, system
and event logs, memory dumps and network traffic (TCPdump) data
extracted from Windows and Linux virtual machines (VMs) and
OpenStack Hypervisors collected from a production cloud comput-
ing environment, more specifically, Compute Canada’s WestGrid.
It includes both benign and malicious traces of several human-
generated attacks and of unsolicited Internet traffic.

The dataset includes the time stamps and IP addresses related to
each attack, as well as the IP addresses that generated benign traffic.
There is also a label file that labels each packet in the dataset’s net-
work traffic data as benign or malicious, and the malicious packets
are labelled by the type of attack. Unsolicited traffic is labelled as
malicious but does not have an attack type label.

6.2.1 Graph Generation

In this study, we used only the network traffic data from which we
extracted communication patterns between hosts, and system logs
from which we extracted authentication information.

The graph elements are labelled based on the dataset labels,
with host nodes labelled as malicious if they are the source of at
least one packet labelled as malicious. The labels of other elements
are derived from the host labels such that elements related to the
host inherit its labels. For instance, a session edge is labelled as
malicious if its source host is labelled as malicious. The malicious
session edges are also labelled with the attack type when available.
Note that labels are independent for each day of the data, meaning
that they are not maintained from one day to the next.

The details of the generated AEN graphs for each day are shown
in Table 3, and the sessions’ attack type labels are shown in Ta-
ble 4. As can be seen in both tables, there is a high prevalence of
malicious hosts and sessions; however, most malicious sessions are
not labelled with an attack type. Moreover, each day has at least a
few samples of different known types of attacks, but there were no
samples of any DoS attacks.

Table 3: Graph details for ISOT-CID Phase 1 dataset

Day Nodes
Hosts

(malicious) Edges
Sessions

(malicious)

Day 1 376
78

(60 – 77%) 12432
8313

(7279 – 88%)

Day 2 635
134

(116 – 87%) 45334
17544

(14276 – 81%)

Day 3 653
86

(70 – 81%) 31405
9355

(8741 – 93%)

Day 4 491
94

(78 – 83%) 8258
4637

(3882 – 84%)

Combined 2155
392

(324 – 83%) 97429
39849

(34178 – 86%)

Table 4: Malicious session attack type labels for ISOT-CID Phase 1 dataset. PG
stands for password guessing, PS for post scanning and UL for unauthorized login.

Day PG Ping PS UL Unknown
Day 1 21 1 3 13 7241
Day 2 38 – 11 4 14223
Day 3 20 – 12 2 8707
Day 4 – – – 2 3880

Combined 79 1 26 21 34178

6.2.2 Fingerprint Matching Results

The results obtained after running the fingerprints on the generated
graph for each of the four days of the dataset are shown in Tables 5
and 6, with the former showing the classification performance of the
proposed fingerprints combined for each day and the latter showing
the individual performance of each fingerprint. Fingerprints for
which no matches were found are omitted.

www.astesj.com 57

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

Table 5: Classification performance of the proposed fingerprint matching scheme for
ISOT-CID Phase 1 dataset

Day TP TN FP FN PPV TPR
Day 1 28 17 1 32 0.97 0.47
Day 2 24 18 0 92 1.00 0.21
Day 3 38 16 0 32 1.00 0.54
Day 4 23 16 0 55 1.00 0.29

Combined 113 67 1 211 0.99 0.35

As shown in Table 5, the fingerprints had very high precision
for all days of the dataset with only a single false positive match
resulting in a combined precision of over 0.99, which, as discussed
previously, was expected given that the scheme is signature-based
and given the high prevalence of malicious hosts in the dataset. The
sensitivity was medium to low, depending on the day, which was
once again expected, given the small number of attack types covered
by the fingerprints.

Table 6: Individual fingerprint performance for ISOT-CID Phase 1 dataset. PG stands
for password guessing. Fingerprints for which no matches were found are omitted.

Fingerprint Day 1 Day 2 Day 3 Day 4

TP FP TP FP TP FP TP FP
Basic PG 24 0 19 0 35 0 22 0
Spraying PG 28 1 24 0 38 0 23 0

Looking at the performance of the individual fingerprints in
Table 6, we can see that there were only two fingerprints for which
matches were found, namely the basic password guessing finger-
print and the spraying password guessing fingerprint. To understand
the reason for that, we need to refer back to Table 4, where two
notable pieces of information are shown. The first is that there
are no known samples of DoS attacks in the dataset, which means
that none of those fingerprints were expected to be matched. The
second is that, while there were a few port scanning attacks, they
involved a very small number of sessions (the maximum being 26
on day 4), which maps to a small number of ports scanned in total
since each session only has one destination port. Moreover, as the
dataset documentation states, these attacks were horizontal scans
targeting only a few ports across several hosts in the network, while
the available port scanning fingerprint is designed for vertical scans.
Therefore, it was expected to find no matches for that fingerprint.

Note that it would be possible for samples of those attacks to be
unknowingly present in the dataset from the collected unsolicited
traffic. However, no instances of those attacks were observed, except
for some instances of password guessing attacks.

Also of note is the fact that the network data in the dataset were
sampled and thus contain gaps that can skew some of the graph
elements. This can also explain some false negatives and even cause
false positives.

6.2.3 Anomaly Detection Results

After running the experiments as previously described, the results
from different days were combined, and an ROC curve was plotted
for each of the parameter combinations. The curves are shown in

Figure 2. Marked in each plot is the point where the threshold is
equal to 0.5.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

30 min 1 hour 4 hours 12 hours

1
2

4
12

64

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Time Window × Bin Width

False Positive Rate (1 − Specificity)

Tr
ue

 P
os

iti
ve

 R
at

e
(S

en
si

tiv
ity

)

Figure 2: ROC curves of the anomaly detection scheme for the ISOT-CID Phase 1
dataset under different parameter combinations. The point in each plot marks where
the threshold is equal to 0.5.

All curves show a similar pattern in which the sensitivity is poor
while the threshold is high, until a point where it sharply rises until
reaching its peak performance close to where the threshold is equal
to 0.5. After that, it just goes straight to the top-right endpoint. Both
of these characteristics can be explained by the exponential nature
of the score, which means that a linear increase in the threshold
will cause an exponential decrease in the true positives identified by
the model. For this reason, it is common for the maximum score
reported by any feature to be between 0 and 0.5, but the probability
is exponentially smaller for higher scores.

When comparing the different ROC curves with regard to the
other two parameters, a slightly better performance can be observed
with longer time windows of 4 and 12 hours and with smaller bin
widths of 1 and 2. That demonstrates that the extra information
available with longer time windows allows the model to better dis-
tinguish anomalous behaviour. However, there is a limit to this,
considering that too-long time windows could possibly be hiding
shorter duration attacks. Also, the smaller bin widths allow for a
greater variability of behaviours to be modelled. In practice, bin
widths that are too large result in low resolutions of the distribu-
tions of variables that is caused by very diverse values being binned
together.

These findings become even more clear when analyzing the

www.astesj.com 58

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

other performance metrics, which are more suitable for the unbal-
anced nature of this dataset. Therefore, we selected a threshold of
0.5, bin width of 2 and time window size of 12 hours to discuss the
findings further. Table 7 shows the daily and combined results of
the model under that specific parameter combination.

Table 7: Performance of the proposed anomaly detection model for the ISOT-CID
Phase 1 dataset

Day TP TN FP FN TPR FPR F1 BM MCC
Day 1 52 8 10 8 0.87 0.56 0.85 0.31 0.32
Day 2 94 7 11 22 0.81 0.61 0.85 0.20 0.16
Day 3 61 7 9 9 0.87 0.56 0.87 0.31 0.31
Day 4 71 7 9 7 0.91 0.56 0.90 0.35 0.37
Comb. 278 29 39 46 0.86 0.57 0.87 0.28 0.27

As can be seen, under the selected parameters, the model was
able to detect the majority of the malicious hosts but also generated
a relatively high number of false positives. That behaviour can be
observed in the other metrics as well, with a combined F1-score of
0.87, a combined BM of 0.28 and a combined MCC of 0.27. An-
other notable aspect is the mostly consistent performance observed
for each individual day, with only the results for day 2 having a
greater deviation from the average.

In general, the observed behaviour was expected, given that the
model is anomaly-based and thus prone to generating false alarms.
Moreover, the high prevalence of hosts in the dataset means that
the malicious behaviour is in fact not anomalous in the dataset. On
the contrary, most of the traffic and hosts are labelled as malicious,
which explains why the scheme generated a high number of false
positives and points to a general limitation of anomaly-based de-
tection, which can produce degraded results when the malicious
behaviour is not uncommon.

6.2.4 Ensemble Classification Results

The ensemble classification using the and rule resulted in the same
predictions as the fingerprint matching already shown in Table 5.
This outcome means that all hosts classified as malicious by finger-
print matching were also classified as malicious with the anomaly
detection. In contrast, but for the same reason, the ensemble classi-
fication using the or rule resulted in the same predictions as the as
anomaly detection, which are summarized in Table 7.

In practice, in a real environment, where the anomaly detection
threshold is not optimally chosen, the divergence between the clas-
sifiers will be greater, thus causing the performance of the ensemble
classification to be distinct. Other ensemble classification rules,
such as soft voting could also be used as a middle ground between
the two rules evaluated in this paper.

6.3 CIC-IDS2017

The CIC-IDS2017 dataset [6] contains network traffic data (both
pcap and NetFlow) of benign traffic, as well as several samples of
attack scenarios including SSH and FTP password guessing, DoS,
web attacks and instances of host infiltration. The dataset is labelled
on the flow level, with each flow being labelled as either benign or
with the attack performed.

6.3.1 Graph Generation

To build the graph, the packet data (pcap files) were used to extract
the communication patterns between hosts since packets are more
finely detailed than flow data. Because no system or application
logs were available, we could not extract authentication information
from the data. As a consequence, no authentication-related elements
(account nodes and authentication attempt edges) are present in
the graphs of this dataset which in turn means that no password
guessing instances can be found with the fingerprints as designed.

The graph labelling followed the same rules as the previous
dataset, with host nodes labelled as malicious if they were the
source of at least one flow labelled as malicious and with the labels
of other elements being derived from the host labels. One distinction
was how to define the attack type labels. For that, we first combined
the dataset labels into generic attack type labels. For instance, the
“DoS slowloris” and “DoS GoldenEye” labels were combined into
the “Denial of Service” label. Then, each flow was matched with
its respective session edge that was labelled with the generic attack
type.

In a few cases, sessions had more than one attack type. This
was an artifact of how the sessions are created from packets such
that one session can map to more than one flow. Moreover, some
malicious sessions have no attack type labels in cases where none
of their mapped flows were labelled as malicious, even though their
source hosts were labelled as such.

The details of the generated AEN graphs for each day are shown
in Table 8, and the sessions’ attack type labels are shown in Table 9.
As shown by the tables, there was a very small prevalence of mali-
cious hosts, while the prevalence of malicious sessions varied from
low (approximately 3% on day 1) to high (approximately 87% on
day 4). As for the attack type labels, there was a high number of
attack samples from all days. However, the types of attacks present
for each day varied with most types of attacks only present for one
day. Moreover, the number of sessions with unknown attack was
high on days 3 and 4, which stems from the fact that those days had
combined multiple attack sessions.

Table 8: Graph details for the CIC-IDS2017 dataset

Day Nodes
Hosts

(malicious) Edges
Sessions

(malicious)

Day 1 27653
8498

(1 – 0.01%) 279271
243264

(6954 – 3%)

Day 2 29216
9017

(1 – 0.01%) 298033
259938

(16571 – 6%)

Day 3 27828
8545

(2 – 0.02%) 323502
287272

(89523 – 31%)

Day 4 27035
8331

(10 – 0.12%) 460893
425649

(370297 – 87%)

Comb. 111732
34391

(14 – 0.04%) 1361699
1216123

(483345 – 40%)

www.astesj.com 59

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

Table 9: Malicious session attack type labels for CIC-IDS2017 dataset. BN stands
for botnet, Inf for infiltration, PG for password guessing, PS for port scanning, WA
for web attack and Unk for unknown.

Day BN DoS Inf PG PS WA Unk
Day 1 – – – 6953 – – 1
Day 2 – 16537 1 – – – 33
Day 3 – – 6 1363 – 643 87511
Day 4 1228 45392 – – 158678 – 165026
Comb. 1228 61929 7 8316 158678 643 252571

6.3.2 Fingerprint Matching Results

The results obtained after running the fingerprints on the generated
graph for each of the four days of the dataset are shown in Tables
10 and 11, with the former table showing the classification per-
formance of the proposed fingerprints combined for each day and
the latter showing the individual performance of each fingerprint.
Fingerprints for which no matches were found are omitted.

Table 10: Classification performance of the proposed fingerprints for the CIC-
IDS2017 dataset

Day TP TN FP FN PPV TPR
Day 1 0 8494 3 1 0.00 0.00
Day 2 0 9011 5 1 0.00 0.00
Day 3 2 8542 1 0 0.67 1.00
Day 4 6 8320 1 4 0.86 0.60

Combined 8 34367 10 6 0.44 0.57

Table 11: Individual fingerprint performance for the CIC-IDS2017 dataset. PS stands
for port scanning. Fingerprints for which no matches were found are omitted.

Fingerprint Day 1 Day 2 Day 3 Day 4

TP FP TP FP TP FP TP FP
HTTP Flood 0 0 0 0 0 0 1 0
TCP SYN Flood 0 0 0 0 2 0 1 0
UDP Flood 0 1 0 2 0 0 1 0
Vertical PS 0 2 0 4 2 1 5 1

As shown in Table 10, the general performance was not as high
as with the previous dataset. There were no true positive matches
on days 1 and 2, resulting is precision and sensitivity of 0 for those
days. In contrast, days 3 and 4 had better performance, particularly
day 4, with a precision of 0.86.

Having no true positives was expected for day 1 because this day
only had password guessing attacks but graph had no authentication
elements, which are part of the password guessing fingerprints. This
was not the case for day 2, which had DoS attacks that were HTTP-
based, but no matches were found for the HTTP flood fingerprint.
Still, this can be explained by the types of attacks performed, such
as Heartbleed and Slowloris, which are not flood attacks, making
the HTTP flood fingerprint unsuitable for this case. Tuning the
fingerprint parameters might allow for these attacks to be found but
might also result in some false positives. Moreover, the very low
prevalence of malicious hosts, with only a single one for both days
1 and 2, means that not finding that host will result in a precision
and sensitivity of 0 as observed.

Continuing onto day 3, there were matches for the two mali-
cious hosts for both the TCP SYN flood fingerprint and the vertical
port scanning fingerprint. Note that according to the dataset labels,
as shown in Table 9, neither type of attack was expected to be
present. However, the dataset documentation states that both port
scans and nmap scans were performed on that day, although not
labelled, which explains the positive matches.

As for day 4, there were matches for four different fingerprints,
including three DoS fingerprints and the port scanning fingerprint.
The day’s data are labelled as having both of those types of at-
tacks, as well as a botnet attack. Sessions with all three labels were
matched. Note that the dataset’s documentation is not clear on ex-
actly which attacks were executed as part of the botnet attack, but in
any case, the attack’s data were the source of some of the matches,
too.

Finally, all days had false positives, which would not be expected
from a signature-based scheme; however, the absolute number of
false positives was low compared to the total number of hosts in
the dataset. Moreover, as shown in Table 11, this was mostly from
the vertical port scanning fingerprint. When analyzing the benign
sessions that were matched by that fingerprint, almost 60% had port
UDP/137, which is used by the NetBIOS name service. However, in
these cases, it was not the destination port that was fixed at 137, but
instead, the source port was 137, while the destination port varied.
This behaviour is an artifact of how name queries are broadcast
in NetBIOS, but the replies are directed to the host that made the
query on what was originally the source port of the broadcast query.
The rest of the false positives do not have such a clear explanation.
Tuning the fingerprint parameters could reduce them but would also
reduce the detection rate.

6.3.3 Anomaly Detection Results

After running the experiments as previously described, the results
from different days were combined, and an ROC curve was plotted
for each of the parameter combinations. The curves are shown in
Figure 3. Marked in each plot is the point where the threshold is
equal to 0.5.

All parameter combinations showed high levels of performance,
with an area under the ROC curve (AUC) of over 0.99. However,
that metric by itself is deceiving, given the highly unbalanced nature
of the dataset. In reality, the model was able to detect all 14 mali-
cious hosts with thresholds between 0.5 to 5.5 under most parameter
configurations, but it reported a decreasing number of false positives
as the threshold increased. Nonetheless, the relative variation was
small in terms of the total number of benign hosts in the dataset.

Although not distinguishable from the ROC curves, the be-
haviour observed for the previous dataset with regards to the bin
width can also be observed for this dataset when analyzing the other
metrics, with values of 1 and 2 resulting in a better performance
on average than the others. However, the benefit of a longer time
window parameter is not as clear for this dataset, which shows a
more mixed performance with different values for this parameter.

Based on that, we selected a threshold of 5, bin width of 1 and
time window size of 12 hours for further discussion. Table 12 shows
the daily and combined results of the model under that specific
parameter combination.

www.astesj.com 60

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

30 min 1 hour 4 hours 12 hours

1
2

4
12

64

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Time Window × Bin Width

False Positive Rate (1 − Specificity)

Tr
ue

 P
os

iti
ve

 R
at

e
(S

en
si

tiv
ity

)

Figure 3: ROC curves of proposed scheme under different parameter combinations
for the CIC-IDS2017 dataset. The point in each plot marks where the threshold is
equal to 0.5.

Table 12: Performance of the proposed anomaly detection model for the CIC-
IDS2017 dataset

Day TP TN FP FN TPR FPR F1 BM MCC
Day 1 1 8481 16 0 1.00 0.01 0.11 0.99 0.24
Day 2 1 9001 15 0 1.00 0.01 0.12 0.99 0.25
Day 3 2 8529 14 0 1.00 0.01 0.22 0.99 0.35
Day 4 10 8313 8 0 1.00 0.01 0.71 0.99 0.75
Comb. 14 34324 53 0 1.00 0.01 0.34 0.99 0.46

As can be seen, under the selected parameters, the model was
able to detect all malicious hosts in all days with a relatively low
number of false positives. As a point of comparison, using the same
parameters as the previous dataset (threshold of 0.5 and bin width
of 2) would not affect the number of true positives but would result
in an extra 145 false positives and only slightly worse performance.

Because of the very small prevalence of malicious hosts in the
dataset, the observed performance resulted in a low F1-score and a
medium MCC for all days except day 4, which had a higher num-
ber of malicious hosts that can compensate for the false positives.
Conversely, the BM was above 0.99 for all four days.

In summary, the scheme obtained very good results for this
dataset with a varied number of parameter configurations. This
shows that the scheme is suitable for detecting malicious behaviour
when the prevalence of malicious hosts is low and, therefore anoma-
lous.

6.3.4 Ensemble Classification Results

As with the previous dataset, the ensemble classification using the
and rule resulted in the same predictions as the fingerprint matching
shown in Table 10, while the the ensemble classification using the
or rule resulted in the same predictions as the anomaly detection.
These are summarized in Table 12.

This again shows that hosts that were classified as malicious
by fingerprint matching were also classified as malicious with the
anomaly detection.

7 Conclusion
This paper presented an unsupervised ensemble intrusion detection
mechanism composed of two detection schemes, one signature-
based that employs isomorphic subgraph matching of graphical pat-
terns of known attacks, called attack fingerprints, and one anomaly-
based, which consists of an anomaly score developed based on the
work of Ferragut et al. [4].

To validate the proposed scheme we presented a collection of
attack fingerprints for the AEN graph model, which were expressed
using PGQL and covered common attacks, such as port scanning,
DoS and password guessing, along with a subgraph matching algo-
rithm specific for finding subgraphs isomorphic to the fingerprints.
Furthermore, a total of 15 anomaly features, including nine extracted
from session data and six extracted from authentication data.

The proposed schemes were evaluated individually and as an
ensemble in the capacity for identifying malicious hosts using two
datasets: The ISOT-CID Phase 1 dataset and the CIC-IDS2017
dataset.

The evaluation of the fingerprint matching scheme showed a
combined precision of 0.99 and a combined sensitivity of 0.35 for
the former dataset, while the latter dataset resulted in a combined
precision of 0.44 and a combined sensitivity of 0.57. The observed
results are promising, particularly considering the limited number
of fingerprints available and the specific types of errors encountered.
Ultimately, they demonstrate that the method is capable of identi-
fying known attacks and is particularly suited to identifying stealth
attacks, which is a weakness of traditional signature-based intrusion
detection systems.

The evaluation of the anomaly detection was particularly en-
couraging for the CIC-IDS2017 dataset, with a BM of over 0.99 and
an MCC of 0.46. This shows that the scheme has a high capacity for
detecting anomalous behaviour when there was a low prevalence of
malicious elements in the network.

The evaluation of the ensemble classification showed that one
classifier could end up dominating the ensemble classification. This
underscores the need for future exploration of possible benefits from
using ensemble classification rules, such as soft voting.

As limitations, we identified the amount of effort needed to cre-
ate the fingerprints, the binning of the values anomaly features that
can result in suboptimal distributions and the high computational
power required to build and maintain the graph. Another limitation
is the high computation cost involved in searching for isomorphic
subgraphs given the high complexity of the subgraph matching al-
gorithms, although the use of indexes helps alleviate that issue with
the cost of extra memory requirements.

www.astesj.com 61

http://www.astesj.com

P.G. Quinan et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 2, 44-63 (2023)

In our future work, we aim to improve and extend the proposed
fingerprint database to add other types of attacks, particularly those
that are traditionally harder to detect, such as HTTP request smug-
gling, and to increase the feature space of the anomaly detection
model by introducing more features. We believe this can help im-
prove detection accuracy, particularly in environments that have a
high prevalence of malicious hosts.

We also plan to implement more advanced classification rules
as part of the anomaly detection scheme and also in the ensemble
classification of the two detection schemes. In addition, we plan to
employ adaptive bin width values according to the value range of
each given variable to improve the fitness of the bin distributions.

Finally, we aim to conduct further evaluations using other
datasets, such as the ISOT-CID Phase 2 dataset and the 2018 CIC
Intrusion Detection Evaluation Dataset (CSE-CIC-IDS2018) [51].

References
[1] C. Nie, P. G. Quinan, I. Traoré, I. Woungang, “Intrusion Detection using

a Graphical Fingerprint Model,” in 2022 22nd IEEE International Sympo-
sium on Cluster, Cloud and Internet Computing (CCGrid), 806–813, 2022,
doi:10.1109/CCGrid54584.2022.00095.

[2] R. Sommer, V. Paxson, “Outside the Closed World: On Using Machine Learn-
ing for Network Intrusion Detection,” in Proceedings of the 2010 IEEE Sym-
posium on Security and Privacy, SP ’10, 305–316, IEEE Computer Society,
Washington, DC, USA, 2010, doi:10.1109/SP.2010.25.

[3] A. Aldribi, I. Traoré, B. Moa, O. Nwamuo, “Hypervisor-based cloud intrusion
detection through online multivariate statistical change tracking,” Computers
& Security, 88, 2020, doi:10.1016/j.cose.2019.101646.

[4] E. M. Ferragut, J. A. Laska, R. A. Bridges, “A New, Principled Approach to
Anomaly Detection,” 2012 11th International Conference on Machine Learning
and Applications, 2, 210–215, 2012, doi:10.1109/ICMLA.2012.151.

[5] A. Aldribi, I. Traore, B. Moa, Data Sources and Datasets for Cloud Intrusion
Detection Modeling and Evaluation, 333–366, Springer International Publish-
ing, Cham, 2018, doi:10.1007/978-3-319-73676-1 13.

[6] I. Sharafaldin, A. H. Lashkari, A. A. Ghorbani, “Toward generating a new
intrusion detection dataset and intrusion traffic characterization.” in ICISSP,
108–116, 2018, doi:10.5220/0006639801080116.

[7] C. Phillips, L. P. Swiler, “A Graph-based System for Network-vulnerability
Analysis,” in Proceedings of the 1998 Workshop on New Security Paradigms,
NSPW ’98, 71–79, ACM, New York, NY, USA, 1998, doi:10.1145/310889.
310919.

[8] O. Sheyner, S. Haines, Jand Jha, R. Lippmann, J. M. Wing, “Automated gen-
eration and analysis of attack graphs,” in Proceedings of the Symposium on
Security and Privacy, IEEE, 2002, doi:10.1109/SECPRI.2002.1004377.

[9] S. Jha, O. Sheyner, J. Wing, “Two formal analyses of attack graphs,” in Pro-
ceedings 15th IEEE Computer Security Foundations Workshop. CSFW-15,
49–63, 2002, doi:10.1109/CSFW.2002.1021806.

[10] X. Ou, G. Sudhakar, A. A. W., “MulVAL: A Logic-based Network Security
Analyzer,” in Proceedings of USENIX Security Symposium, volume 8, 2005,
doi:10.5555/1251398.1251406.

[11] K. Ingols, R. Lippmann, K. Piwowarski, “Practical Attack Graph Generation
for Network Defense,” in 2006 22nd Annual Computer Security Applications
Conference (ACSAC’06), 121–130, 2006, doi:10.1109/ACSAC.2006.39.

[12] L. Akoglu, H. Tong, K. D., “Graph based Anomaly Detection and Description:
A Survey,” Journal Data Mining and Knowledge Discovery, 29(3), 626–688,
2015, doi:10.1007/s10618-014-0365-y.

[13] F. Jemili, M. Zaghdoud, M. B. Ahmed, “Intrusion detection based on “Hybrid”
propagation in Bayesian Networks,” 2009 IEEE International Conference on
Intelligence and Security Informatics, 137–142, 2009, doi:10.1109/ISI.2009.
5137285.

[14] P. Xie, J. H. Li, X. Ou, P. Liu, R. Levy, “Using Bayesian networks for cyber
security analysis,” 2010 IEEE/IFIP International Conference on Dependable
Systems & Networks (DSN), 211–220, 2010, doi:10.1109/DSN.2010.5544924.

[15] L. Xiao, Y. Chen, C. K. Chang, “Bayesian Model Averaging of Bayesian
Network Classifiers for Intrusion Detection,” 2014 IEEE 38th International
Computer Software and Applications Conference Workshops, 128–133, 2014,
doi:10.1109/COMPSACW.2014.25.

[16] K. K. Gupta, B. Nath, K. Ramamohanarao, “Conditional Random Fields for In-
trusion Detection,” in 21st International Conference on Advanced Information
Networking and Applications Workshops (AINAW’07), volume 1, 203–208,
IEEE, 2007, doi:10.1109/AINAW.2007.126.

[17] H. Ma, Y. Xie, S. Tang, J. Hu, X. Liu, “Threat-Event Detection for Dis-
tributed Networks Based on Spatiotemporal Markov Random Field,” IEEE
Transactions on Dependable and Secure Computing, 19(3), 1735–1752, 2022,
doi:10.1109/TDSC.2020.3036664.

[18] K. Peng, V. C. M. Leung, L. Zheng, S. Wang, C. Huang, T. Lin, “Intrusion
Detection System Based on Decision Tree over Big Data in Fog Environ-
ment,” Wireless Communication and Mobile Computing, 2018, 2018, doi:
10.1155/2018/4680867.

[19] C. Yin, Y. Zhu, J. long Fei, X.-Z. He, “A Deep Learning Approach for Intrusion
Detection Using Recurrent Neural Networks,” IEEE Access, 5, 21954–21961,
2017, doi:10.1109/ACCESS.2017.2762418.

[20] Y. Zhang, P. Li, X. Wang, “Intrusion Detection for IoT Based on Improved
Genetic Algorithm and Deep Belief Network,” IEEE Access, 7, 31711–31722,
2019, doi:10.1109/ACCESS.2019.2903723.

[21] Z. Wang, Y. Zeng, Y. Liu, D. Li, “Deep Belief Network Integrating Improved
Kernel-Based Extreme Learning Machine for Network Intrusion Detection,”
IEEE Access, 9, 16062–16091, 2021, doi:10.1109/ACCESS.2021.3051074.

[22] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings
of the third annual ACM symposium on Theory of computing, 151–158, 1971,
doi:10.1145/800157.805047.

[23] J. E. Hopcroft, J.-K. Wong, “Linear time algorithm for isomorphism of planar
graphs (Preliminary Report),” in Proceedings of the sixth annual ACM sympo-
sium on Theory of computing, 172–184, 1974, doi:10.1145/800119.803896.

[24] J. R. Ullmann, “An algorithm for subgraph isomorphism,” Journal of the ACM
(JACM), 23(1), 31–42, 1976, doi:10.1145/321921.321925.

[25] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, “A (sub)graph isomorphism
algorithm for matching large graphs,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26, 1367–1372, 2004, doi:10.1109/TPAMI.2004.75.

[26] W.-S. Han, J. Lee, J.-H. Lee, “Turboiso: towards ultrafast and robust sub-
graph isomorphism search in large graph databases,” in SIGMOD ’13, 2013,
doi:10.1145/2463676.2465300.

[27] M. Han, H. Kim, G. Gu, K. Park, W.-S. Han, “Efficient Subgraph Match-
ing: Harmonizing Dynamic Programming, Adaptive Matching Order, and
Failing Set Together,” Proceedings of the 2019 International Conference on
Management of Data, 2019, doi:10.1145/3299869.3319880.

[28] P. G. Quinan, I. Traoré, I. Woungang, “Activity and Event Network Graph and
Application to Cyberphysical Security,” in I. Traoré, I. Woungang, S. Saad, edi-
tors, Artificial Intelligence for Cyber-Physical Systems Hardening, chapter 10,
217–233, Springer, 2022, doi:10.1007/978-3-031-16237-4 10.

[29] O. van Rest, S. Hong, J. Kim, X. Meng, H. Chafi, “PGQL: a property graph
query language,” in GRADES ’16, 2016, doi:10.1145/2960414.2960421.

[30] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault,
S. Plantikow, M. Rydberg, P. Selmer, A. Taylor, “Cypher: An Evolving Query
Language for Property Graphs,” Proceedings of the 2018 International Confer-
ence on Management of Data, 2018, doi:10.1145/3183713.3190657.

www.astesj.com 62

http://www.astesj.com

[31] M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita, “Surveying Port Scans and
Their Detection Methodologies,” The Computer Journal, 54, 1565–1581, 2011,
doi:10.1093/comjnl/bxr035.

[32] S. Staniford, J. A. Hoagland, J. M. McAlerney, “Practical Automated Detec-
tion of Stealthy Portscans,” Journal of Computer Security, 10, 105–136, 2002,
doi:10.3233/JCS-2002-101-205.

[33] M. De Vivo, E. Carrasco, G. Isern, G. O. de Vivo, “A review of port scan-
ning techniques,” ACM SIGCOMM Computer Communication Review, 29(2),
41–48, 1999, doi:10.1145/505733.505737.

[34] J. Mirkovic, P. L. Reiher, “A taxonomy of DDoS attack and DDoS defense
mechanisms,” Comput. Commun. Rev., 34, 39–53, 2004, doi:10.1145/997150.
997156.

[35] R. Tandon, “A Survey of Distributed Denial of Service Attacks and Defenses,”
ArXiv, abs/2008.01345, 2020, doi:10.48550/arXiv.2008.01345.

[36] E. Cambiaso, G. Papaleo, G. Chiola, M. Aiello, “Slow DoS attacks: definition
and categorisation,” International Journal Trust Management in Computing
and Communications, 1, 300–319, 2013, doi:10.1504/IJTMCC.2013.056440.

[37] M. Bogdanoski, T. Suminoski, A. Risteski, “Analysis of the SYN flood DoS
attack,” International Journal of Computer Network and Information Security
(IJCNIS), 5(8), 1–11, 2013, doi:10.5815/IJCNIS.2013.08.01.

[38] V. K. Yadav, M. C. Trivedi, B. Mehtre, “DDA: an approach to handle
DDoS (Ping flood) attack,” in Proceedings of International Conference on
ICT for Sustainable Development, 11–23, Springer, 2016, doi:10.1007/
978-981-10-0129-1 2.

[39] T. H. Ptacek, T. N. Newsham, “Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection,” Technical report, Secure Networks inc
Calgary Alberta, 1998.

[40] “Transmission Control Protocol,” RFC 793, 1981, doi:10.17487/RFC0793.

[41] MazeBolt, “Layer 4 — MazeBolt Knowledge Base,” .

[42] A. Bijalwan, M. Wazid, E. S. Pilli, R. C. Joshi, “Forensics of random-UDP
flooding attacks,” Journal of Networks, 10(5), 287, 2015, doi:10.4304/jnw.10.
5.287-293.

[43] I. Sreeram, V. P. K. Vuppala, “HTTP flood attack detection in application
layer using machine learning metrics and bio inspired bat algorithm,” Applied
Computing and Informatics, 2019, doi:10.1016/j.aci.2017.10.003.

[44] C. Paar, J. Pelzl, B. Preneel, “Understanding Cryptography: A Textbook for
Students and Practitioners,” 2010, doi:10.1007/978-3-642-04101-3.

[45] D. Wang, Z. Zhang, P. Wang, J. Yan, X. Huang, “Targeted online password
guessing: An underestimated threat,” in Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, 1242–1254, 2016, doi:
10.1145/2976749.2978339.

[46] Mitre, “Brute Force: Password Spraying,” .

[47] M. Patton, E. Gross, R. Chinn, S. Forbis, L. Walker, H. Chen, “Uninvited
connections: a study of vulnerable devices on the internet of things (IoT),” in
2014 IEEE joint intelligence and security informatics conference, 232–235,
IEEE, 2014, doi:10.1109/JISIC.2014.43.

[48] G. Tandon, P. K. Chan, “Tracking user mobility to detect suspicious behavior,”
in Proceedings of the 2009 SIAM International Conference on Data Mining,
871–882, SIAM, 2009, doi:10.1137/1.9781611972795.75.

[49] A. Luque, A. Carrasco, A. Martı́n, A. de las Heras, “The impact of class imbal-
ance in classification performance metrics based on the binary confusion ma-
trix,” Pattern Recognit., 91, 216–231, 2019, doi:10.1016/j.patcog.2019.02.023.

[50] D. Chicco, G. Jurman, “The advantages of the Matthews correlation coefficient
(MCC) over F1 score and accuracy in binary classification evaluation,” BMC
Genomics, 21, 2020, doi:10.1186/s12864-019-6413-7.

[51] Canadian Institute for Cybersecurity, “CSE-CIC-IDS2018 on AWS: A collabo-
rative project between the Communications Security Establishment (CSE) &
the Canadian Institute for Cybersecurity (CIC),” .

www.astesj.com 63

https://www.astesj.com

	Introduction
	Literature Review
	Graph-based Intrusion Detection
	Isomorphic Subgraph Matching

	AEN Graph Overview
	Attack Fingerprints in the AEN Graph Model
	AEN Fingerprints Framework
	Attack Fingerprint Visualization
	Problem Definition
	Describing Attack Fingerprints
	Attack Fingerprint Matching

	Scanning Attacks
	Denial of Service
	ICMP ping flood
	IP Fragmentation Attack
	TCP SYN Flood
	Other TCP ``Out-of-State'' Flood Attacks
	UDP Flood
	HTTP Flood

	Password Guessing
	Basic password guessing
	Spraying password guessing
	Credential Stuffing

	Anomaly Detection based on the AEN Graph Model
	Measure of Anomalousness
	Feature Model
	Session Features
	Authentication Features

	Experimental Evaluation
	Setup and Procedures
	Fingerprint Matching
	Anomaly Detection
	Ensemble Classification

	ISOT-CID Phase 1
	Graph Generation
	Fingerprint Matching Results
	Anomaly Detection Results
	Ensemble Classification Results

	CIC-IDS2017
	Graph Generation
	Fingerprint Matching Results
	Anomaly Detection Results
	Ensemble Classification Results

	Conclusion

