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 Power losses exist naturally and have to be cared for in the operation of electrical power 
systems. Many researchers have worked on various methods and approaches to reduce 
losses by incorporating distributed generators (DG), particularly from renewable sources. 
These studies are based on the maximum unit penetration of the DGs, which is rarely 
achieved, resulting in inaccurate calculations. This paper proposes an advanced solution 
for calculating power losses by incorporating an Extreme Learning Machine (ELM) 
method for forecasting the solar irradiation.  The ELM algorithm was used to create a 
model for forecasting solar radiation in the Manokwari region and its surroundings. Daily 
solar radiation in the region has been predicted using the model. NASA's 8016 data on 
temperature and solar irradiation were used to train the ELM model. With an MAE value 
of around 0.6392 and a training time of 4.4375 seconds, the test results demonstrate that 
the built model has good accuracy. The operation of a 1000 kWp solar power plant based 
on the ELM data forecasting can reduce the power loss of the existing distribution network 
around the location from 1.5095 kW/hour to 0.9068 kW/hour. Furthermore, the power 
plant operation can minimize the power loss by 39.9249 percent, from 36.2280 kW to 
21.7640 kW. 
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1. Introduction  

Solar energy is the bedrock of alternative energy sources 
since it may be used to develop other renewable energies [1]. In 
addition, photochemical power operations and other physical 
processes both heavily rely on solar energy. The earth's surface 
will receive solar energy via a radiation mechanism. The 
radiation will be filtered into the atmospheric layer, which 
contains gaseous substances as well as other solid forms 
including water vapour, dust, and aerosols, before it reaches the 
surface of the planet [2]. This filtration procedure has lowered the 
solar radiation's intensity to the point where it will not damage 
earthly life. The geographic position of a region on the earth's 
surface affects the amount of solar energy that reaches that region 
[3]. As a result, there are three ways to gather information about 
the intensity of solar radiation in a given area: directly using 
pyranometers, pyrheliometers, and Campbell Stokest measuring 
instruments; using satellite image data; and numerical simulation 

through computer modeling to determine the potential for future 
radiation. However, due to a lack of measuring tools, there is still 
extremely little and difficult-to-access sun irradiation data 
available in Indonesia. Since satellite image data is 
internationally available, it is widely used [4]. 

The escalation of world energy demand and the need for 
environmentally sustainable development have attracted human 
attention to renewable energy sources [5]. Among the renewable 
energy sources, solar power has become increasingly prevalent as 
a utility-scale renewable energy supply due to its simplicity of 
installation and maintenance.  Furthermore, solar technology has 
matured, and mass manufacturing of PV panels as the core 
component of a solar power plant has reduced the cost. Thus, 
solar power integration into the grid is on the rise, and facilities 
might be present in the coming years [6]. 

Power losses in an electric power grid are caused by the 
current flowing in the conductor lines, where long conductor 
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lines with large loads will result in significant power losses. 
However, this power loss cannot be avoided, so the only thing 
that can be done is to minimize the loss. Some of the methods 
that have been offered in previous research to minimize the losses 
include power injection through flexible alternating current 
transmission systems (FACTS) [7,8], distributed generators 
(DGs) [9–13],  and optimal sizing and placement of capacitors 
[14–16], so that the voltage profile can be corrected, which 
results in minimal power losses. 

In this paper, a model for forecasting solar irradiation was 
created for use in the Manokwari region and its surrounds, which 
are located at latitude -0.8457 and longitude 134.0504. The 
model was created using an extreme learning machine (ELM) 
algorithm that is modified from a neural network to improve 
learning speed. The model is used to forecast the local daily solar 
irradiation intensity. The data is then used to calculate the 
potency for minimizing power losses through the interconnection 
of a 1 MWp solar power plant to an existing power grid around 
the location. Then the objectives of this paper are given as: 1) 
designing a suitable model for the specific area based on the 
ELM algorithm, 2) forecasting the day-ahead solar irradiance for 
that location, and 3) investigating the possibility of power loss 
minimization in a power grid based on the forecasting data. This 
paper is an extension of work originally presented at the 
CyberneticsCom conference [1]. 

The frame of the paper is structured as follows: Section II  
provides problem statement. Section III describes the research 
approach and the methods used. The data source, results, and 
explanations of the findings are presented in Section IV. The 
paper's primary research findings are summarized in Section V. 

2. Problem Statement 

Previous research on power losses has been argued in [17],  
who have developed the Power Voltage Sensitivity Constant 
(PVSC), which has been developed to determine the location and 
size of multiple DG units so that active power losses in a 
distribution system can be reduced. The method was tested on an 
IEEE 69 reconfigured bus system under three different total loads 
and heavy conditions. It can be concluded from the results that 
the proposed methodology gives maximum loss reduction while 
considering DG size. Authors in [18] presented the use of the 
multiobjective cuckoo search (MOCS) algorithm to strategically 
place the unified power flower controller (UPFC) in order to 
reduce transmission losses. For the multiobjective issue under 
consideration, the pareto-optimal technique is used to extract the 
pareto-optimal solution. The best compromise option is extracted 
from the set of pareto-optimal solutions using the fuzzy logic 
method. A typical IEEE 30 bus test setup is used to evaluate the 
suggested method. The results show that the MOCS algorithm is 
relatively more effective in optimizing the multiobjective 
problem. Authors in [19] presented a multiobjective optimization 
methodology to optimally place a STATCOM in electric power 
distribution networks. Total cost and power loss are the 
objectives to be met so that the STATCOM placement can 
minimize these issues. The combination of multiobjective ant 
colony optimization (MACO) and the bacterial foraging 
optimization algorithm (BFOA) successfully solved the problems 
of minimization by testing the method's effectiveness in a 5-bus 

system. Authors in [20] proposed a method to control droop 
optimization strategically for inverter control of the islanded 
microgrid operation, which includes PV penetration and battery 
energy systems. Two-level controls are used to achieve maximum 
power loss minimization. A perturbation and observation (P&O) 
method is used to make the droop functions more adaptable. Load 
and inverter capacity are changed in three cases to check the 
effectiveness of the proposed method. Under various loading 
scenarios and system topologies, simulation studies have shown 
that it is capable of minimizing microgrid power loss while 
maintaining frequency and voltage stability. The fundamental 
disadvantage of this approach is that it only relies on the blind 
exploration of unknown functions, which degrades performance 
as the complexity of the grid increases and makes it possible that 
complex power systems will not achieve the lowest global power 
loss.  

An extreme learning machine (ELM) is a single-layer feed-
forward neural network (FFNN), which is a family of artificial 
neural networks (ANN). Implementing a single hidden layer 
minimizes the computation while minimizing the FFNN 
structure. This simplification can shorten calculation time by 
thousands of times while overcoming the FFNN's primary 
learning speed drawback. ELM is one of the most well-liked 
model-based systems because of the continued high accuracy of 
the system. The use of ELM algorithms is widespread in control 
[21,22], diagnosis [23,24] and forecasting [4,25]. When it comes 
to particular forecasting, ELM excels at predicting the solar 
irradiation of the Lamongan and Muara Karang regions [4], and 
the stock performance of PT. Telkom [25]. 

The existing methods have provided outstanding solutions for 
power loss minimization in the power grid through the 
penetration of solar power. However, the methods are based on 
maximizing the penetration of solar PV. This condition is not 
fully true, since solar irradiation is very dependent on weather 
conditions. Therefore, this disadvantage can be addressed by 
incorporating solar irradiation forecasting into the calculation of 
optimal power flow. The proposed method is capable of 
achieving detailed power loss minimization, which improves 
system reliability. 

3. Methods 

3.1. Extreme Learning Machine 

A single hidden layer feed-forward neural network (SLFN), 
which has an effective training method, is the basis of an Extreme 
Learning Machine (ELM) [21]. This brilliance results from the 
absence of iteration in ELM. However, the hidden layer requires 
more neurons to provide effective prediction. The right number 
of neurons in the hidden layer of the ELM must also be 
determined using the trial-and-error method  [4].  

The ELM algorithm allows for the weightings to be selected 
at random without necessarily adjusting the input weights and 
hidden layer biases. The hidden layer output matrices can then be 
used to perform a generalized inverse operation to determine the 
SLFNs' output weight. The time for both training and 
performance has been shortened by this approach [21].  
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For a given n training set samples (xj, tj) where xj=[xj1, xj2,..., 
xjn]T and tj=[tj1, tj2,..., tjn]T, an SLFN with N hidden neurons and an 
activation function g(x) is expressed as [1,21,26]: 

 ( ) Nibxwgo
n

j
ijiij ,,2,1,

1
=+= ∑

=

β  (1) 

where wi=[wi1, wi2,..., win]T, βi=[βi1, βi2,..., βin]T, bi, and oj are 
the connecting weight of the i-th hidden neuron to the input 
neuron, the connecting weights of the i-th hidden neuron to the 
output neurons, the bias of the i-th hidden node, and the actual 
network output with respect to input xj respectively.  

The standard SLFN can minimize the deviation between tj 
and oj, so that (1) can be rewritten as follows. 
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The simplification of (2) is T=Hβ and the output weight 
matrix β can be solved using the least squares method as 
specified in (3). 

 β=ΗϯΤ  (3) 

The completed forms of the network output matrix T and 
hidden layer output matrix H are given as follows. 
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3.2. Solar Power Plant 

The sun emmits electromagnetics radiation with an effective 
temperature of 5777 K. Radiant energy, the ammount of energy 
within the radiation, is spread over the time and measured as 
radiant power also known as irradiance. The radiant power that 
reach the Earth surface is normaly measured in square meter 
through a pyranometer. Extraterrestrial irradiance (EXT) is very 
observable due to the absence of interference when the radiance 
traveling thru the space. The amount of irradiance reaching the 
earth's surface is approximately 1361.1 W/m2, which is also 
known as global horizon irradiance (GHI) expressed in terms of 
clear-sky irradiance and is one of the most useful variables to 
calculate when working with solar data. This variable represents 
the best scenario for a photovoltaic system since it represents the 
maximum that could be received on the day, resulting in 
uninterrupted generation [2]. 

A solar power plant has at least one solar panel to convert 
energy directly from the sun. An inverter is also required to meet 
the output needs, and some accessories are involved to protect the 
process. The energy from a solar power plant depends on solar 
irradiation, while the constant parameters in calculating output 
power are the covered area and efficiency of the solar PV 

modules. Therefore, the output power of a solar power plant is 
formulated as follows [27].  

 ηirPVcPV SNAP =  (6) 

where PPV, Ac, Sir, and η are output power (W) dimension of 
solar PV modules (m2), number of PV modules, solar irradiance 
(W/m2) and efficiency of the solar PV modules.  

3.3. Forward Backward Method 

The voltage, power, and power loss in a radial distribution 
network are calculated in this research using the forward 
backward approach. This approach was created by reference [29] 
as it is described in their paper. By figuring out three fundamental 
computations, this method expands on the Distflow method to 
finish the analysis of power flow in distribution networks. The 
computations are used to determine the voltage magnitude, active 
power, and reactive power. 

Pi, Qi

Pi0, Qi0

VnVi+1ViV0

PLi+1, QLi+1

Vi1

Vin

P0, Q0

QCi+1

 
Figure 1: Single line diagram of a general distribution system 

Consider the balanced three-phase, radial distribution feeder 
in Figure 1 with n branches/nodes and nc shunt capacitors. 
Without a branch from Vk to Vkn on the figure, the power and 
voltage at each node from V0 to Vn can be calculated by the 
following equations [28–30]. 
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where PLi+1 and QLi+1 are loads connected at node i+1; Pi+1 and 
Qi+1 are the effective real and reactive power flows from node 
i+1; ri+1 and xi+1 are resistance and capacitance of the line leading 
to bus i+1; Pi and Qi are real and reactive power flowing from 
bus i; Vi and Vi+1 are the voltage magnitudes on bus i and bus 
i+1; and QCi+1 is an additional reactive power of the capacitor on 
the bus i+1. 
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The aforementioned equations are referred to as the forward 
equation, and each procedure is referred to as a forward update. 
Other calculating techniques and sequences in the Distflow are 
known as "backward updates" and "backward equations." The 
initial values of P0 and Q0 in this approximation method are 
determined by summing the active and reactive power of loads. 
V0 is the initial voltage, which is also utilized as the system's base 
voltage in the approach method's calculation procedure [29]. The 
parameters in the bracket of equations (7) and (8) denote active 
and reactive power losses. At the end of each branch, the active 
and reactive power should be equal to zero [28–30].  

3.4. Optimal Power Flow  

An important method for improving a system's performance 
and lowering operational costs is optimization. A power system 
subject to dispersing loads amongst power plants is called 
optimal power flow (OPF). It is possible to decrease the overall 
fuel cost of all committed plants while still adhering to network 
limits. The OPF problem was generally expressed as follows [31–
33]: 

 Min f(x, u) (10) 

subjected to 

 g(x, u) = 0  (11) 

 h(x, u) ≤ 0 (12) 

Where f, g and h are the objective functions, the equality 
constraints represent power flow equations and the system 
operating constraints, respectively.  

The vector x is the dependent variable and consists of the 
voltage magnitude of load buses, the phase angle of all buses 
except that of the slack bus, the active power of the slack 
generator, and generators' reactive power. The vector of x is also 
called a state variable, and it is formulated in the following 
equation: 

 ]S,,S,,,,V,,V,[P lTLl1GNCG1LNLL1G1
T  QQx =  (13) 

The vector u is a control variable that includes the active 
output power of generators at generator buses PG, the terminal 
voltage magnitude at generation bus bars VG, the output of shunt 
VAR compensators QC, and the tap setting of the tap regulating 
transformers T. Therefore, the vector u can be modeled as 
follows: 

 ]T,,T,Q,,Q,V,,V,P,,[P NT1CNCC1GNGG1GNGG1
T =u  (14) 

where Sl is transmission line loading and the subscripts NL, TL, 
NG, NC, and NT denote the number of load buses, transmission 
lines, generators, shunt VAR compensators, and regulating 
transformers, respectively. 

The objective function in an OPF problem is to minimize the 
generators' costs in the operations. The cost function represents 
the relationship between operating costs and output power as 

expressed in equation (15), where ai, bi, and ci are the coefficients 
of the fuel cost model. 

 ∑
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There are certain equality and inequality restrictions in the 
problem of optimal power flow. The power flow equations are 
represented by the equality constraints g, as computed as follows: 

 ( )( )∑
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Where PGi and QGi are the i-th generator's active and reactive 
power; PDi and QDi are the i-th bus's active and reactive demand. 
Vi and Vj are the voltage magnitudes at buses i and j; Yij models 
the element of the admittance bus matrix at row i and column j; 
NB is the number of buses; δi, δj, and θij are the angels of Vi, Vj, 
and Yij, respectively. 

The inequality constraint h limits the physical devices as well 
as system security. The inequality constraints consist of generator 
constraints in equations (18) to (20), transformer constraints in 
equation (21), and shunt capacitor constraints in equation (22). 
System security constraints, on the other hand, are given in 
equations (23) and (24). 

 NGiPPP GiGiGi ,,1maxmin =≤≤  (18) 

 NGiQQQ GiGiGi ,,1maxmin =≤≤  (19) 

 NGiVVV GiGiGi ,,1maxmin =≤≤  (20) 

 NTiTTT iii ,,1maxmin =≤≤  (21) 

 NGiQQQ CiCiCi ,,1maxmin =≤≤  (22) 

 NLiVVV iii ,,1maxmin =≤≤  (23) 

 TLiSS ijij ,,1max =≤  (24) 

where PGi
min and PGi

max are the minimum and maximum active 
power of i-th generator and QGi

min and QGi
max denote the 

minimum and maximum reactive power of i-th generator; Sij and 
Sij

max are line flow and maximum line flow between bus i and j. 

3.5. Model Validation  

The developed model needs to be evaluated in order to detect 
and prevent any potential problems that might appear after 
running the ELM model. The mistakes will be eliminated through 
the validation process, making the model sufficiently precise for 
the simulation to match reality as predicted. The model is verified 
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using the mean absolute error (MAE). It can be expressed as 
follows [4]: 

 
Y

y-y
 = MAE 1

ii∑
=

Y

i



 (25) 

where ŷi, yi and Y are forecasting data, real data and number of 
samples, respectivelly. 

4. Result and Discussion 

4.1. Datasets 

NASA [34] provided the datasets used to train the ELM 
model, which are located at latitude -0.8457 and longitude 
134.0504. The data is based on Modern-Era Retrospective 
analysis for Research and Applications, Version 2 (MERRA-2) 
that starts to provide data from 1980. The elevation from 
MERRA-2 is average for a 0.5 x 0.625 degree latitude/longitude 
region about 944.25 meters. For the entire year 2021, there are 
8016 data items in the dataset for both solar irradiance and 
ambient temperatures. The solar irradiance data ranges from 0 to 
1033.38 Wh/m2, which is clear-sky surface shortwave downward 
irradiance combined with the all-sky insolation clearness index. 
In same way the ambient temperature ranges from 18.47 to 26.5 
°C, which is the MERRA-2 temperature at 2 meters.  The model 
can be used in the research area based on location-specific data. 
In fact, the model can be used in any other field that has the 
necessary data for the defined domains and is available to be 
trained. 

4.2. Training and Validation 

The training is carried out using the Windows X-compatible 
MatLab 2021b program. The PC’s hardware includes a Core i7-
2600 CPU running at 3.40 GHz with 4 GB of RAM. 

The datasets of 8016 from NASA are used to train the ELM 
model. The training time of 4.4375 seconds demonstrates the 
ELM's superiority, and its precision is sufficient, as indicated by 
a little modest MAE value. The test data is made up of data for 24 
hours, which is the average amount of time for the entire year 
2021. Training and testing with 5000 neurons take approximately 
4.4375 seconds and 0.0625 seconds, respectively. The validation 
of the model was done using mean absolute error (MAE), with an 
error of about 0.6392 for the developed model. 

4.3. Simulations 

The simulations are performed to forecast the Manokwari 
region's daily solar irradiation and ambient temperatures. Then 
the results are presented in Figures 2 to 5.  

The distribution of solar irradiation data is depicted in Figure 
2 as fluctuating between 0 and a maximum of 1022.9 Wh/m2. On 
the other side, hourly fluctuations occur at 14:00, when the 
difference between the minimum and maximum is rather large, 
measuring about 142.45 Wh/m2. The graph also demonstrates 
that the forecasted results were located within these gaps [1]. 

 
Figure 2: Solar irradiation distribution 

 
Figure 3: Forecasting of solar irradiation 

As shown in Figure 3, a candlestick diagram is used to 
present the data between the minimum and maximum as well as 
factual and forecasted data. A thin line in this graph joins the 
minimum and maximum data points. On the other side, a thick 
line connects the error rate, which is the discrepancy between the 
actual and forecasted data. According to the simulation results in 
Figure 3, the highest error rate occurs at 8:00, around 55.75 
Wh/m2. The thick line is currently white, implying that the 
difference is negative in size as a result of the projected result 
being greater than the actual data  [1]. 

 
Figure 4: Ambient temperature distribution 

 
Figure 5: Forecasting of ambient temperature 
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The ELM model also outputs ambient temperature in 
accordance with solar irradiation forecasts. The forecasted 
environmental temperatures are given in Figures 4 and 5 [1]. As 
seen in Figure 4, the data distribution simultaneously displays a 
relatively significant variation in the Manokwari region, in 
contrast to the distribution of data from solar irradiation. This 
region is close to the equator and directly adjacent to the Pacific 
Ocean, which indicates a considerable change in environmental 
circumstances. 

The candlestick diagram in Figure 5 depicts data changes 
between maximum and minimum data for the remainder of the 
year, with the highest data difference occurring at noon and being 
4.02 °C. The figure also shows the discrepancy between the actual 
and anticipated data, with the largest variance of approximately 
1.10 °C occurring around 16:00  [1]. 

4.4. Model Performances  

Using the same ELM data for both training and testing, a 
straightforward feedforward neural network (FFNN) is used to 
assess the model's performance. The results of the performance 
test indicate that more than 1000 neurons cannot be operated on 
the same machine, while the FFNN requires 203.3281 seconds 
for training and 0.1250 seconds for testing. The average 
deviations for both approaches are 0.03 °C and 0.28 Wh/m2, 
respectively  [1]. The comparisons revealed that the ELM model 
has the same accuracy as the FFNN in extremely fast computing. 
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Figure 6: Single line diagram 

4.5. Power Losses Minimization  

Surrounding the research location, a distribution line, namely 
the Rajawali feeder, is operated. The feeder consists of 33 load 
buses connected to 32 lines, as figured in Figure 6, with data 
attached in Tables 1 and 2 [29].  

Based on Figure 6, it can be seen that the distribution lines are 
connected in a radial connection. The longest line is from bus 1 to 
bus 18, where some tabs are taken from bus 6 to connect buses 26 

and 33 and a tab is added for the solar power plant penetration. 
The other branches of the feeder are taken from bus 2 to connect 
buses 19 and 22 and from bus 3 to connect buses 23 and 25. 

Table 1: Bus data 

No Bus 
Type* 

Voltage 
(pu) 

Angle 
(deg) 

Load Generation 
P (kW) Q (kVar) P (kW) Q (kVar) 

1 1 1.00  0.00  0.00  0.00  0.00  0.00  
2 2 1.00  0.00  100.00  60.00  0.00  0.00  
3 2 1.00  0.00  90.00  40.00  0.00  0.00  
4 2 1.00  0.00  120.00  80.00  0.00  0.00  
5 2 1.00  0.00  60.00  30.00  0.00  0.00  
6 2 1.00  0.00  60.00  20.00  0.00  0.00  
7 3 1.00  0.00  200.00  100.00  1000.00  0.00  
8 2 1.00  0.00  200.00  100.00  0.00  0.00  
9 2 1.00  0.00  60.00  20.00  0.00  0.00  
10 2 1.00  0.00  60.00  20.00  0.00  0.00  
11 2 1.00  0.00  45.00  30.00  0.00  0.00  
12 2 1.00  0.00  60.00  35.00  0.00  0.00  
13 2 1.00  0.00  60.00  35.00  0.00  0.00  
14 2 1.00  0.00  120.00  80.00  0.00  0.00  
15 2 1.00  0.00  60.00  10.00  0.00  0.00  
16 2 1.00  0.00  60.00  20.00  0.00  0.00  
17 2 1.00  0.00  60.00  20.00  0.00  0.00  
18 2 1.00  0.00  90.00  40.00  0.00  0.00  
19 2 1.00  0.00  90.00  40.00  0.00  0.00  
20 2 1.00  0.00  90.00  40.00  0.00  0.00  
21 2 1.00  0.00  90.00  40.00  0.00  0.00  
22 2 1.00  0.00  90.00  40.00  0.00  0.00  
23 2 1.00  0.00  90.00  50.00  0.00  0.00  
24 2 1.00  0.00  420.00  200.00  0.00  0.00  
25 2 1.00  0.00  420.00  200.00  0.00  0.00  
26 2 1.00  0.00  60.00  25.00  0.00  0.00  
27 2 1.00  0.00  60.00  25.00  0.00  0.00  
28 2 1.00  0.00  60.00  20.00  0.00  0.00  
29 2 1.00  0.00  120.00  70.00  0.00  0.00  
30 2 1.00  0.00  200.00  600.00  0.00  0.00  
31 2 1.00  0.00  150.00  70.00  0.00  0.00  
32 2 1.00  0.00  210.00  100.00  0.00  0.00  
33 2 1.00  0.00  60.00  40.00  0.00  0.00  

*Type of bus: 1:slack; 2:load; 3:generator 
Table 2: Line data 

No 
Line 

(From - 
To) 

Impedance (Ohm) 
No 

Line 
(From - 

To) 

Impedance (Ohm) 

R jX R jX 

1 1 - 2 0.0922 0.0470 17 14 - 15 0.5910 0.5260 
2 2 - 3 0.4930 0.2511 18 15 - 16 0.7463 0.5450 
3 2 - 19 0.1640 0.1565 19 16 - 17 1.2890 1.7210 
4 3 - 4 0.3660 0.1864 20 17 - 18 0.7320 0.5740 
5 3 - 23 0.4512 0.3083 21 19 - 20 1.5042 1.3554 
6 4 - 5 0.3811 0.1941 22 20 - 21 0.4095 0.4784 
7 5 - 6 0.8190 0.7070 23 21 - 22 0.7089 0.9373 
8 6 - 7 0.1872 0.6188 24 23 - 24 0.8980 0.7091 
9 6 - 26 0.2030 0.1034 25 24 - 25 0.8960 0.7011 
10 7 - 8 0.7114 0.2351 26 26 - 27 0.2842 0.1447 
11 8 - 9 1.0300 0.7400 27 27 - 28 1.0590 0.9337 
12 9 - 10 1.0440 0.7400 28 28 - 29 0.8042 0.7006 
13 10 - 11 0.1966 0.0650 29 29 - 30 0.5075 0.2585 
14 11 - 12 0.3744 0.1238 30 30 - 31 0.9744 0.9630 
15 12 - 13 1.4680 1.1550 31 31 - 32 0.3105 0.3619 
16 13 - 14 0.5416 0.7129 32 32 - 33 0.3410 0.5302 
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A solar power plant has been prepared to be installed on the 
Rajawali feeder, which is planned to be integrated into the grid 
through the feeder. The power plant has an output power of 1000 
kW, and the plant consists of 3498 PV panels with an output 
power of 260 Wp. The PV panel data is provided as follows. 

Optimum operating voltage (Vmp) : 30.60 V 
Optimum operating current (Imp) : 8.50 A 
Open–circuit voltage (Voc) :37.70 V 
Short–circuit current (Isc) : 9.15 A 
Maximum power (Pmax) : 260 W 
Efficiency :16 % 
Operating module temperature : -40 to 85 °C 
Maximum system voltage :1000 VDC 
Maximum series fuse rating :15 A 
Power tolerance : 0–3% 
Solar cell type : Monocrystalline 
Number of cells : 60 
Dimensions (mm) : 1636x992x45 

The solar power plant will be used as a model to investigate 
the use of ELM forecasting results to investigate the penetration 
effect of the solar power plant in increasing the voltage profile 
and thus improving power losses. The results will be compared 
with the existing operating conditions, which probably have high 
power losses in operation. 

The simulation is carried out using forecasting data from both 
NN and ELM methods. The forecasting results will then be 
converted into electrical energy, which will be integrated into the 
grid according to the specifications of the solar panels used and 
calculated using equation (6). The results of hourly load 
forecasting will also be influenced by the pattern of changes in 
load on each bus, which varies according to peak load times. The 
simulation results show an improvement in the voltage profile 
and power loss, as shown in Tables 3 and 4, and also illustrated in 
Figure 7. 

Table 3: Average voltage magnitude (p.u.) and load profile (kW) 

Bus Existing NN ELM Load Bus Existing NN ELM Load 
1 1.000 1.000 1.000 135.06 18 0.928 0.941 0.941 59.64 
2 0.997 0.998 0.998 85.47 19 0.995 0.996 0.996 74.16 
3 0.986 0.987 0.987 120.79 20 0.992 0.991 0.991 84.24 
4 0.983 0.985 0.985 66.00 21 0.990 0.990 0.990 93.02 
5 0.976 0.981 0.981 96.91 22 0.989 0.989 0.989 80.38 
6 0.968 0.978 0.978 80.29 23 0.985 0.984 0.984 73.44 
7 0.963 0.984 0.984 99.46 24 0.983 0.978 0.978 133.77 
8 0.955 0.976 0.976 113.71 25 0.983 0.975 0.975 63.01 
9 0.954 0.970 0.970 73.32 26 0.962 0.974 0.974 88.08 
10 0.953 0.965 0.965 94.15 27 0.961 0.971 0.971 67.16 
11 0.948 0.962 0.962 73.55 28 0.956 0.960 0.960 65.13 
12 0.941 0.958 0.958 69.21 29 0.953 0.952 0.952 62.47 
13 0.936 0.951 0.951 85.46 30 0.951 0.948 0.948 65.37 
14 0.935 0.949 0.949 69.00 31 0.949 0.944 0.944 77.83 
15 0.933 0.947 0.947 82.24 32 0.948 0.943 0.943 78.92 
16 0.929 0.944 0.944 140.82 33 0.948 0.942 0.942 99.92 
17 0.928 0.942 0.942 98.08 Avg 0.962 0.968 0.968 86.37 
 

The outer buses on the feeder are those of 18, 22, 25, and 33, 
which have the lowest average voltage on the lines. After the 
penetration of the solar power plant, the average voltages are 

increasing on the buses, except for bus number 22, which is 
highly influenced by the slack bus voltage, as shown in Table 3. 
Overall, the average voltage of the feeder is increased by the solar 
power plant from 0.962 to 0.968 for both NN and ELM 
forecasting. The voltage profile improvement also occurs in many 
cases of power plant injection into a grid, which acts as a 
distributed generator, as reported in references [9–11,14,17]. 

Table 4: Power Loss Minimization (kW) 

Time Existing NN ELM Time Existing NN ELM 
1 1.4050 1.4050 1.4050 14 1.6290 1.0760 0.4550 
2 1.4270 1.4270 1.4270 15 1.6020 1.0760 0.4660 
3 1.4110 1.4110 1.4110 16 1.5960 1.0760 0.4560 
4 1.4810 1.4810 1.4810 17 1.5510 1.0760 0.4560 
5 1.4840 1.4840 1.4840 18 1.5460 1.0760 0.4480 
6 1.4960 1.0760 0.4270 19 1.5640 1.5640 1.5640 
7 1.5020 1.0760 0.4320 20 1.5060 1.5060 1.5060 
8 1.5210 1.0760 0.4320 21 1.4780 1.4780 1.4780 
9 1.5060 1.0760 0.4380 22 1.4020 1.4020 1.4020 
10 1.5270 1.0760 0.4350 23 1.4050 1.4050 1.4050 
11 1.5960 1.0760 0.4420 24 1.4020 1.4020 1.4020 
12 1.5980 1.0750 0.4580 Σ 36.2280 29.9520 21.7640 
13 1.5930 1.0760 0.4540 % 100.0000 17.3236 39.9249 

The data in Table 4 shows that at night, the power loss 
forecast for the line will be the same as the existing condition. 
Therefore, the power loss simulation is carried out using the 
forward backward sweep (FBS) method. Furthermore, when the 
sun starts to shine, the power loss is analyzed by the Optimal 
Power Flow (OPF) method. This is a fact of the system because it 
is a pure radial distribution system without solar power 
penetration. Then the power loss problem needs to be solved with 
the FBS method because it will cause simulation calculation 
errors with the OPF method that is used for a complex power 
system. In a different way, during the day, there is energy 
penetration on the system's bus 7, transforming the system into a 
multi-machine system connected to a radial distribution system, 
where power loss problems should be counted using the OPF 
method.  

When the solar power starts to penetrate at 6 a.m., the ELM 
simulation shows a decrease in power loss until it reaches a 
maximum at around 12 p.m., and after noon, the power loss 
slowly increases as the solar radiation reaching the PV panel is 
reduced. The ELM method is smaller than the NN method 
because the ELM prediction gives more accurate results 
compared to the NN forecast, which yields a high percentage of 
power loss minimization. Data on the table shows that average 
power loss without solar power penetration is about 1.5095 
kW/hour, which is reduced in average by the penetration of about 
1.2480 kW/hour and 0.9068 kW/hour of NN and ELM 
forecasting, respectively. 

On the other hand, the simulation results show that the power 
loss simulated through NN forecasting tends to be constant 
throughout the solar power plant's operation. This resulted in less 
solar power penetration, and its contribution to the power loss is 
also less, as indicated by the small percentage of power loss, 
which is only 17.3236 % compared to the ELM forecasting 
percentage that reached 39.9249 %. 
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The standard deviations of power losses have decreased from 
6.9441 in the existing condition to 5.7440 and 4.2015 for both 
NN and ELM, respectively. This indicates that the performance 
of the system has improved with the penetration of solar power 
plants. However, the smallest standard deviation values indicate 
that power loss minimization represents a more accurate result of 
the ELM algorithm. 

 
Figure 7: Power losses improvement 

Figure 7 depicts the difference in power loss for the following 
day of the normal calculation versus the improved results due to 
the penetration of the 1000 kWp solar power plant on bus 7. The 
figure shows that there is a high power loss improvement 
predicted with ELM compared to the NN prediction, which tends 
to be stable throughout the operating time of the solar power 
plant. The prediction results show the accumulated power loss 
through NN predictions of 29.9520 kW and ELM predictions of 
21.7640 kW, which is slightly lower than the normal calculation 
of about 36.2280 kW. This prediction result is not high for 
predictions in the day ahead, but it will change significantly for 
long-term forecasting. 

Overall, the proposed method is done in the sequence of 
forecasting solar irradiation a day ahead in [1], injecting the solar 
irradiation into a power grid, calculating power flow in the grid, 
and investigating the power losses by comparing the results with 
another method. It is found that by applying the proposed method 
in a microgrid system, the average voltage is raised to 0.968 p.u. 
and further power losses in day-ahead operation can be 
minimized to 0.79% of the total load of 2763.84 kW. The 
proposed method is also valid in terms of accuracy as measured 
by standard deviation.  

5. Conclusions 

In this study, an ELM model has been developed to forecast 
solar data for the following day as well as data on the ambient 
temperature. The ELM model includes 5000 neurons in the 
hidden layer and was trained using annual datasets of about 8016 
items. The forecasting process takes 0.0625 seconds, while 
training takes 4.4375 seconds of CPU time. The model has been 
verified using the MAE approach and has a relatively low error 
rate of 0.6392, making it considered accurate enough to be used 
to forecast solar irradiation and the surrounding air temperature at 
the sampling sites. The ELM model's performances have also 
been compared with those of a straightforward feed-forward 
neural network (FFNN), which has the same accuracy but 
requires less time to train and evaluate. 

Power loss minimization for the day-ahead operation of a 
1000 kWp solar panel based on the ELM data forecasting can 

reach 21.7640 kW, or about 39.9249 percent, compared to the 
existing operation without solar penetration of about 36.2280 
kW. The power loss is reduced by the penetration of the solar 
power plant from 1.5095 kW/hour to 0.9068 kW/hour. 
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