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 In this paper, an automatic method for detection of olive trees in RGB images acquired by 
an unmanned aerial vehicle (UAV) is developed. Presented approach is based on the 
implementation of RetinaNet model and DeepForest Phyton package. Due to fact that 
original (pretrained) model used in DeepForest package has been built on images of 
various types of trees but without images of olive trees, original model detection was 
unsatisfactory. Therefore, a new image dataset of olive trees was created using sets of 
images chosen from five olive groves. For neural network training, individual olive trees 
were manually labeled, and new models were generated. Each model has been trained on 
different set of images from selected olive groves. Pretrained model and new models were 
compared and evaluated for various test scenarios. Obtained results showed high precision 
and recall values of proposed approach and great improvement in performance compared 
to the pretrained model. 
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1. Introduction 

It is predicted that close to 10 billion people will live on Earth 
by 2050 [1]. At the moment, about 37% of the total land surface is 
used for food production [2], and it is estimated that the necessary 
increase in food production between 2010 and 2050 will be 
between 35% to 56% [3]. Needed increase in production can be 
achieved by increasing the share of agricultural land and/or 
increasing productivity on existing agricultural land by applying 
the so-called precision or smart agriculture [4]. Olive (Olea 
Europea) is one of the most widespread plants and plantations in 
the world. Olive oil is a basic ingredient in Mediterranean cuisine, 
and it is popular all over the world. Worldwide, consumption of 
olive oil has been constantly increasing [5]. According to the latest 
reports of the International Olive Council 
(https://www.internationaloliveoil.org), worldwide olive oil 
production for 2020/2021 crop year was just above 3.000.000 tons. 
Spain is the largest producer of olives and olive oil in the world 
(close to 50% of world production) and EU countries in total 
produce around 70% of world production. In 2019, the global olive 
oil market size was above 13 billion US dollars, and it is projected 
to reach 16.64 billion US dollars by 2027, with annual growth of 
3.2% during the forecast period (2020-2027) [6].  

Therefore, olive trees and olive oil are economically very 
important for the producing countries. On the demand side, world 
consumption of olive oil has also witnessed a substantial growth in 
the course of the three past decades [7]. This makes olive growing 
and oil production a good choice for research and implementation 
of new approaches aiming to respond to the challenges in food 
production. Complex systems such as those in agriculture should 
be continuously monitored, measured, and analyzed. The above 
implies the use of new information and communication 
technologies [8]. Remote sensing is the process of detecting and 
monitoring physical characteristics of larger areas [9] using 
satellites, aircraft, and drones. Therefore, farmers don’t need to 
physically visit all parts of the land to gather data that can be used 
to analyze different aspects of the crop and yield. The application 
of artificial intelligence and machine learning in agriculture is 
increasingly intensive due to its ability to understand, learn and 
react to different situations (based on learning) in order to increase 
the efficiency and quality of production.  

Images collected for agricultural applications can be obtained 
from satellites such as ESA Sentinel-2A. However, these types of 
images depend on weather conditions (cloudiness) and have a low 
spatial resolution (Sentinel up to 10 m), which is not satisfactory 
for certain treatments [10]. It is to be expected that the temporal 
and spatial resolution will improve over time, but problems with 
clouds will certainly remain. The use of drones for data collection 
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enables higher spatial resolution, the time of recording images is 
determined by the user, and data can be collected even in cloudy 
weather. A greater number of camera types are available (RGB, 
multispectral, hyperspectral, thermal). The collected data are of 
significantly higher quality than those collected by satellite [11]. 
Also, UAV-based imaging implies lower operational costs 
compared to imaging systems on manned aircraft or satellites, so 
it can be considered a preferred solution for monitoring smaller 
regions. The collected images can be used after applying different 
computer vision algorithms for different types of applications, 
such as counting and estimating the size of trees [12,13], assessing 
fruit maturity [14], assessing crops [15], plant diseases [16], etc. 

Importance of counting and identification of olive trees in 
aerial images can be explained by multiple reasons. Perhaps the 
most obvious reason is that the number of trees is a fundamental 
criterion for the access to public grants by olive tree farmers. 
Another reason is the fact that crop yield estimation is based on the 
number of trees in the orchard (along with other parameters such 
as number and volume of fruits). Furthermore, irrigation plans and 
water management are based on inventory and arrangement of the 
trees in the orchard [17][18]. Also, detection and localization of 
individual tree is prerequisite for more advanced analysis of plant 
health and fruit status using remote sensing technology. 

Counting of trees by humans is prone to errors but, first of all, 
it is tiresome and time-consuming. Therefore, automatization of 
this process is lately in focus of research community [19]. 
Availability of various sources of aerial images such as high-
resolution satellite images, images acquired by unmanned aerial 
vehicles (UAVs) combined with advanced image processing 
algorithms, makes this task solvable.  

The availability of different sensors has enabled different 
approaches in the detection of individual trees during the last 
decade. For example, some authors use hyperspectral and airborne 
laser scanning (ALS) for tree detection and classification [20]. In 
contrast to hyperspectral sensors that can use several hundreds of 
narrow frequency bands (10-20 nm) for detection, multispectral 
sensors usually use 3 to 15 frequency bands.  The width of these 
bands is usually slightly larger. For example, the multispectral 
camera used by the popular UAV DJI Phantom 4 has, in addition 
to the RGB sensor (visible spectrum), 5 more monochrome sensors 
with a width of 32 or 52 nm. Captured wavelengths are: blue (450 
nm ± 16 nm), green (560 nm ± 16 nm), red (650 nm ± 16 nm), red 
edge (730 nm ± 16 nm), near-infrared (840 nm ± 26 nm). Images 
obtained from hyperspectral sensors contain much more data than 
images from multispectral sensors and have a greater potential to 
detect differences among land and water features. However, 
multispectral sensors are very popular for precision agriculture 
because they are much cheaper than hyperspectral sensors. Also, 
from available multispectral information, various vegetation 
indexes can be calculated [21]. Vegetation indexes calculated for 
each image pixel can be used to enhance the presence of green, 
vegetation features and thus may distinguish plants from the other 
objects present in the image [22-24]. One of the most frequently 
used and implemented vegetation indexes calculated from 
multispectral information as normalized ratio between the red and 
near infrared bands is the Normalized Difference Vegetation Index 
(NDVI). NDVI correlates with chlorophyll, which in turn 
correlates with plant health (Figure 1). Based on calculated NDVI 

and utilization of red band thresholding, the algorithm for detection 
of olive trees, resulted in an overall estimation error of 1.3% [22]. 
Jan Peters et al. proposed an object-based classification method for 
detection of olive trees from multi-spectral images [23]. This 
approach was comprised of a four-step model: image 
segmentation, feature extraction, classification, and result 
mapping. Obtained overall accuracy was 84.3%. 

 
Figure 1: Example of a NDVI olive orchard image obtained with multispectral 

camera. 

Sensor data can be used for more advanced image processing 
and analysis. The most popular classical methods of image 
analysis include machine learning (K-means, support vector 
machines - SVM), wavelet-based filtering, vegetation indices and 
regression analysis [25, 26]. In the image processing procedure, a 
preprocessing step is common (image segmentation, contrast 
enhancement and edge detection, color model selection, noise 
removal by filtering, feature extraction by various transformations, 
dimensionality reduction), after which object-based image analysis 
(OBIA) is performed [27].  

An approach that uses classical image methods for the 
automatic detection and recognition of a single tree and labelling 
is presented in [28]. Authors pre-processed the images with the 
unsharp masking followed by improved multi-level thresholding-
based segmentation. The circular Hough transform was applied for 
the identification of the circular blobs that presented single trees. 
Another study presented an algorithm that used RGB satellite 
images for a classification system. The system consists of several 
steps: it includes image pre-processing, image segmentation, 
feature extraction and classification [29]. All images were 
preprocessed to suppress the additive noise. Next, the region of 
interest was segmented from the pre-processed images using K-
Means segmentation, through which statistical features were 
extracted and classified. The best classification results reported in 
that paper were achieved with Random Forest that outperformed 
other tested algorithms by an overall accuracy of 97.5%. 

As in many other areas, deep learning has played an 
increasingly important role in the field of image processing in 
agriculture in recent years [30]. Changes in lighting, camera 
position and camera distance (height) to the ground significantly 
affect the performance of classical methods compared to methods 
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that use deep learning. Compared to classical methods, the 
approach using deep learning requires larger computing resources 
and larger databases of labeled images for learning. The 
aforementioned limitations have been overcome or largely 
removed in recent years due to the availability of advanced 
graphics processors and tools for easy labeling of learning images. 
Also, publicly available image databases such as PASCAL Visual 
Object Classes (PASCAL VOC), Microsoft Common Objects in 
COntext (COCO) and ImageNet, which contain thousands of 
object classes and millions of images and are available to 
researchers for model training, are also useful in this area. Deep 
learning models can be tuned and trained to detect fruits on these 
bases using transfer learning. However, it can be noted that the 
mentioned bases do not contain images of orchards [31]. 

One recent example of implementation of deep learning for 
identification and mapping of trees can be found in [32]. In the 
presented approach, the UAV RGB photograph of the forest was 
automatically segmented into several tree crown objects using 
color and 3D information and the slope model. After that, an 
object-based CNN classification was applied for each crown 
image. Classification results of the presented system showed good 
results in classifying seven tree classes, including several tree 
species with more than 90% accuracy. Another recent paper 
presents deep learning-based approach for estimating the 
biovolume of individual trees [33]. In this paper, authors used 
Mask R-CNN and UAV images for olive tree crown and shadow 
segmentation. 

DeepForest is an open-source (MIT license) Python package 
that uses deep learning object detection networks to predict 
bounding boxes corresponding to individual trees in RGB imagery 
[34]. In order to make training models for tree detection simpler, 
DeepForest use the RetinaNet model [35, 36] from the 
TorchVision package [37]. More precisely, the model was trained 
on images from 40m x 40m windows obtained from 1km x 1km 
maps downloaded from National networks of ecological 
observatories (NEON) using a semi-supervised LiDAR-based 
algorithm to generate millions of moderate-quality annotations for 
model pretraining. In the next step, the pretrained model was 
retrained on over 10,000 hand annotations of RGB imagery from 
six NEON sites which further improved generalization abilities. 
Obtained model can be used directly to make predictions for new 
data or used as a foundation for retraining the model using labelled 
data from a new application. 

Individual tree detection may not seem particularly difficult 
computer vision task at first, but it can be a demanding task for 
various reasons. Perhaps the biggest problem are closely planted 
trees forming joint crowns. In olive growing, this type of problems 
is related to extensive types of orchards (orchards with lower 
productivity per hectare, low mechanization level, small amount 
of labor relative to the area under cultivation) which is not usual 
for larger plantations with larger production of olive fruits and oil. 
Other challenges are related to varying sizes of trees in an orchard, 
misaligned plantation of trees, different types of soil and 
vegetation under trees, etc. As a result, there is quite vivid research 
activity in this field. 

Although the use of other types of sensors, such as 
multispectral ones, could make the detection and labeling of 

individual trees simpler (as could be assumed by analyzing Figure 
1), in this work we are focused on the use of RGB sensors as the 
most widespread and cheapest. In order to simplify and speed-up 
the process, only 2D information from the obtained terrain maps 
was used. Our approach is based on the implementation of deep 
neural networks for detection, more precisely on adaptation of the 
DeepForest package. Due to fact that original (prebuilt) model 
used in DeepForest package has been built on images from various 
types of trees but without images of olive trees, it was expected 
that results obtained on that model would not be good enough for 
implementation on olive groves.  Therefore, a new image dataset 
of olive trees was created, individual olive trees were labeled, and 
new models were created. New models were built using different 
sets of images chosen from five olive groves. Since those olive 
groves had different characteristics, choice of olive groves used for 
model creation was important for detection results. This paper is 
an extension of work originally presented in conference 2022 
International Conference on Software, Telecommunications and 
Computer Networks [38]. In this work, comparing to conference 
paper, a more detailed explanation of multiple models creation will 
be given. Also, in addition to detailed comparison of various 
models, analysis of the detection results for one olive orchard 
monitored in different seasons of year will be done.  

Contributions of this paper are following: we propose a 
methodology for automatic olive trees detection based on 
adaptation of publicly available open source DeepForest package. 
Image dataset of five olive orchards were annotated and used for 
further research. Also, we present analysis on the variability of the 
olive trees detection results with the same neural network model in 
the case of olive grove surveillance at different times of year. 

 The remainder of the paper is organized as follows: in Section 
2 the proposed methodology is described, along with the test sites 
description and used software tools. In Section 3, a detailed 
description of used procedure is given. Section 4 presents the 
results of the tree detection based on implementation of our 
models. The discussion and conclusion are then presented in 
Section 5. 

2. Materials and Methods 

2.1. Study Sites 

For this study, five olive orchards were surveyed (Figure 2). 
Two orchards were in Mravinci, north of Split, Croatia 
(Mravinci01: 43°31’40.7” N, 16°30’57.8” E and Mravinci02: 
43°31’37.4” N, 16°30’57.8” E). Both olive orchards at this 
location can be classified as extensive. They are characterized with 
irregular pruning and non-uniform shaping of trees. Most of the 
trees are free vise shaped while smaller number of trees have 
monoconical and globe shaped plants. Other three orchards were 
located in Tinj, south-west of city of Benkovac in Zadar County, 
Croatia (Tinj01: 44°00’49” N, 15°28’13.2” E, Tinj02: 44°01’10.6” 
N, 15°28’19.5” E and Tinj03: 44°00’26” N, 15°29’31.0” E). All 
olive trees at this location were vise shaped and rather heavy 
pruned. Since olive orchard at Tinj03 location is quite large 
(12.000 olive trees), surveillance with UAV did not cover all 
plants. In four separate flights (Flight01, Flight02, Flight03, 
Flight04), around 5% of total area was covered (around 600 olive 
plants detected and annotated). Each flight for this olive grove was 
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used for generating separate map and, in this paper, each is treated 
individually for the analysis. 

 
Figure 2: Locations of surveyed olive groves (Dalmatia region, Croatia). Three 

olive orchards in Tinj and two in Mravinci. 

Also, one of the orchards (Tinj02) has been mapped in two 
different seasons of year (May and December) in order to analyze 
differences in detection performance not only for different 
orchards but also for the same orchard surveilled at different 
seasons and times of day.   

Both observed regions have a Mediterranean climate 
characterized by dry summers and mild, wet winters. The UAV 
flights were performed on five dates: 10 May 2021 (Mravinci01), 
11 May 2021 (Tinj01 and Tinj02), 20 December 2021 (Tinj02), 18 
January 2022 (Mravinci02) and 5 April 2022 (Tinj03). 

2.2. UAV for Images Acquisition 

Nine image datasets were acquired using high resolution 
sensors onboard UAV platform to monitor the olive groves. RGB 
and multispectral images were collected using the camera on DJI 
Phantom 4 Multispectral drone. DJI Phantom 4 Multispectral 
drone is equipped with camera with six 1/2.9” CMOS 
(Complementary metal–oxide–semiconductor) image sensors. 
One CMOS sensor is RGB sensor for visible light imaging while 
other five sensors are used for multispectral imaging. Each sensor 
has 2.08 megapixels (MP).  

For this research, we used only information from RGB sensor. 
In order to collect images needed for making the map of an olive 
orchard, UAV was programmed to fly at 35 m above ground 
altitude (AGL) with airspeed of 5 m/s. The forward and sideway 
image overlaps were 75%. Ground sampling distance (GSD) was 
2 cm. 

2.3. Software Tools 

DJI Terra (https://www.dji.com/hr/dji-terra) was used as a 
flight planner software. Also, this software was used for stitching 

of the collected multispectral and RGB images and production of 
2D terrain maps of monitored olive orchards (Figure 3). Since 
maps generation is a compute-intensive process, minimum 
hardware configuration for map reconstruction using DJI Terra is 
16GB RAM and a NVIDIA graphics card with at least 4GB 
VRAM. For this purpose, one NVIDIA GForce RTX 3060 GPU 
with 12 Gb VRAM was used.  

 
Figure 3: Maps of olive groves. a) Mravinci01, b) Mravinci02, c) Tinj01, d) 

Tinj02, e1) Tinj03 – Flight01, e2) Tinj03 – Flight02, e3) Tinj03 – Flight03, e4) 
Tinj03 – Flight04. 

Labeling of individual olive trees on generated olive orchard 
maps was done using Computer Vision Annotation Tool 
(https://www.cvat.ai/). It is a free (for individual data scientists and 
small teams) web-based image and video annotation tool used for 
labeling data for computer vision algorithms. Labeled annotations 
for object detections was done in Pascal VOC format [39]. Each 
label is defined with four values (xmin, ymin, xmax, ymax): where xmin 
and ymin are coordinates of the upper left corner of the rectangle 
label and xmax and ymax are coordinates of the lower right corner of 
the rectangle label. 
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Implementation and evaluation of object (olive tree) detectors 
and image processing was done using Python 3.10.4. programming 
language with the DeepForest package that comes with the prebuilt 
RetinaNet model from the torchvision package. Proposed 
implementation has been done on Windows operating system 
although the package has been tested also on MacOS, and Linux. 

2.4. RetinaNet Detector 

Popular object detection models can be broadly classified into 
two categories: two-stage and single-stage detectors. Two-stage 
detectors are using one model to extract regions of objects (first 
stage), and a second model is used to classify and further refine the 
localization of the object (second stage). Single-stage detectors 
have only one model which skip the region proposal stage of two-
stage models and run detection directly over a dense sampling of 
locations. Comparing to two-stage detectors, these types of models 
usually have faster inference (possibly at the cost of performance) 
[40]. RetinaNet is a single-stage detector which is fast and has 
accuracy comparable to two-stage detectors. RetinaNet uses a 
feature pyramid network (FPN) [41] which enables the detection 
of objects at multiple scales and introduces a new loss, the Focal 
loss function [35], to alleviate the problem of the extreme 
foreground-background class imbalance. Focal Loss function 
approach addresses this problem that occurs in single-stage 
detectors by assigning less weight to easily classified examples and 
focusing on correcting misclassified ones. RetinaNet’s network 
architecture FPN backbone is on top of a feedforward ResNet 
architecture [42] with the goal of generating rich, multi-scale 
convolutional feature pyramid. RetinaNet attaches two 
subnetworks to this backbone, one for classifying anchor boxes 
and one for regressing from anchor boxes to ground-truth object 
boxes (Figure 4). 

 
Figure 4: ResNet network architecture. 

3. Procedure 

After collecting sets of images for five olive orchards 
(parameters described in Section 2.2.), maps of olive groves for 
each flight were obtained with DJI Terra software. Each map was 
annotated using CVAT i.e. individual olive trees were labeled as a 
ground truth. However, generated maps have higher resolution 
than the images used for training the prebuilt RetinaNet model 
from the DeepForest package. Furthermore, their resolution may, 
generally, vary depending on the flight parameters and used 
sensor.  

In order to get better predictions, it is necessary to divide each 
map into smaller windows that are more similar to the data on 
which the DeepForest model was trained. When forecasting, the 
input map is divided into smaller overlapping windows and then 
the model in each window tries to detect trees. Detections from all 
windows are then collapsed into detections (predictions) on the 

entire map, while redundant filtering is carried out frame by the 
non-max suppression method. This method keeps only the highest 
reliability frame from all detections whose predicted limit frames 
match more than the default intersection over union (IoU) 
threshold (Figure 5).  

 
Figure 5: IoU illustration. 

First detection results were obtained using the pretrained 
DeepForest model. Different window sizes (ranging from 600 x 
600 to 1000 x 1000 pixels with a step of 50) with different 
"overlaps" (10-40% with a step of 5%) were tested and evaluated 
on maps Tinj1 and Tinj2 (Figure 3). During inference, the model 
tries to detect olive trees on each window, and afterwards, 
detections from all windows are compressed into detections on the 
whole map.  

Finally, the windows size of 750 x 750 pixels was chosen with 
an overlap of 20%. For the pretrained model, the best predictions 
were obtained using confidence limit (τ) of 0.3. 
Table 1: Models trained, N – total number of trees in maps (ground truth objects) 

Model Trained on maps N 
M1 Tinj02 69 
M2 Tinj03 – Flight01 133 
M3 Tinj02, Tinj03 – Flight01 202 
M4 Tinj02, Tinj03 – Flight01, Tinj03 – Flight04 356 
M5 Tinj03 – Flight01, Tinj03 – Flight04 287 
M6 Tinj02, Tinj03 – Flight01, Mravinci02 277 
M7 Tinj02, Tinj03 – Flight01, Tinj03 – Flight04, 

Mravinci02 
431 

M8 Tinj01, Tinj03 – Flight01, Tinj03 – Flight04, 
Mravinci02 

381 

Since the prebuilt model had been trained on various types of 
trees and not olives, further steps were needed in order to improve 
predictions and reduce the number of other trees being detected as 
olive trees. Therefore, an adaptation of the pretrained RetinaNet 
model to the local data using transfer learning was done. During 
this step, eight new models were trained. For each model, different 
labeled maps were used for training (Table 1). 

Again, for new models, various windows sizes with different 
"overlaps" were tested. After tests, an image size of 1000 × 1000 
pixels with 40% overlap was chosen. 

Each network was trained for five epochs with stochastic 
gradient descent with a momentum of 0.9, a learning rate equal to 
0.001 and a confidence threshold of 0.7. All trained models used a 
confidence threshold of 0.5 at inference time. As already written, 
a confidence threshold of 0.3 was chosen for the pretrained model 
because, in this case, all predicted bounding boxes had low 
confidence scores. 
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4. Results 

4.1. Performance Evaluation 

In order to evaluate the proposed methodology, exact number 
of olive trees in the evaluation areas was determined by a human 
observer (ground truth). The performance assessment of the 
methodology was approached by comparing the actual number of 
plants, and their distribution with the results of detection of a deep 
neural network for eight created models (and pretrained model).  

A number of metrics defined below are proposed for 
quantitative assessment.  

 
Figure 6: Examples of TP, FP and FN bounding boxes when default IoU = 0.5. 

Using the calculated IoU value each predicted bounding box is 
classified into one of the following categories (illustrated in Figure 
6): 

• True Positive (TP): detection is correct (predicted frame 
matches with correct) if valid IoU >= threshold, 

• False Positive (FP): the detection is wrong (a frame is 
provided for the object which is not in the picture, or the 
intended frame does not match the correct one) if IoU < 
threshold, 

• False Negative (FN): the object in the image is not detected.  
Precision: presents the hit ratio for the trees found by the 
algorithm. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

= 𝑇𝑇𝑇𝑇
𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

  (1) 

where TP (true positives) is the number of olive trees correctly 
identified by the algorithm, and FP (false positives) is the number 
of instances wrongly proposed by the algorithm as potential olive 
trees. 

Recall: presents the proportion of the trees correctly found by 
the algorithm. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

= 𝑇𝑇𝑇𝑇
𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

  (2) 

where FN (false negatives) is the number of olive trees that were 
not identified.  

F1 score: the harmonic mean of precision and recall, 

𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1
1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+
1

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
= 2𝑥𝑥 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
 (3) 

For the calculation of previous metrics, IoU value of 0.5 was 
used (the most commonly used values for IoU are 0.5 and 0.75 
[43]). 

Average precision (AP): summarizes the precision recall curve 
into one number, it can be interpreted as the area under the 
precision-recall (PR) curve. 

𝐴𝐴𝐴𝐴 = ∫ 𝑝𝑝(𝑟𝑟)𝑑𝑑𝑑𝑑1
0    (4) 

where p(r) is Precision for particular Recall value.  

Precision – Recall (PR) curve is obtained by plotting points 
(r(τ), p(τ)) where r(τ) and p(τ) denote precision and recall at 
confidence threshold τ. In practice, the area is calculated under 
interpolated monotone curve instead of the actual ”zig-zag” PR 
curve. Average precision is calculated according to MS COCO 
[44]. For AP calculation, 101 recall points on the PR curve are used 
(0 to 1 with a step size of 0.01). More precisely, AP@0.5 
calculated with a fixed IoU threshold of 0.5 is used, while AP is 
obtained by averaging AP@α for IoU thresholds α from 0.5 to 0.95 
with a step size of 0.05. 

4.2. Evaluation Results 

In this section, the evaluation results for the trained olive tree 
detectors will be presented. Tables 2 and 3 show evaluation results 
of all 9 models on maps Tinj03 - Flight02 and Tinj03 - Flight03. 
As it can be seen from Table 1, these maps weren’t used for any 
model’s training. 

Combined results for both maps (Tinj03 - Flight02 and Tinj03 
- Flight03) are presented in Table 4.  

This maps present parts of a large orchard (each map 
corresponds to one drone flight). Since the implementation of  
computer-based tree counting and labeling is particularly 
interesting for large orchards (small orchards are economically less 
significant), results for that type of orchards are the focus of our 
interest and basis for a future applications. 

As expected, model (M5) for which training phase used only 
other parts (maps) of the same orchard (Tinj03), showed slightly 
better results than others but differences were not significant, 
moreover, two models have higher precision (M2 and M8) and one 
(M8) has higher AP. Recall and F1 measure, as can be seen, of the 
pretrained model lags significantly behind models trained on  
images of olive groves obtained by drone. 

Table 2: Results for map Tinj03 – Flight02 

Model Precision Recall F1 AP@0.5 AP 
pretrained 0.1212 0.0258 0.0426 0.0069 0.0044 
M1 0.3333 0.1935 0.2449 0.1034 0.0354 
M2 0.9434 0.9677 0.9554 0.9585 0.6484 
M3 0.9212 0.9806 0.9500 0.9754 0.6652 
M4 0.9375 0.9677 0.9524 0.9567 0.6037 
M5 0.9500 0.9806 0.9651 0.9750 0.6441 
M6 0.9379 0.9742 0.9557 0.9632 0.6408 
M7 0.9157 0.9806 0.9470 0.9645 0.6367 
M8 0.9487 0.9548 0.9518 0.9479 0.6512 

Table 3: Results for map Tinj03 – Flight03 

Model Precision Recall F1 AP@0.5 AP 
pretrained 0.2667 0.0500 0.0842 0.0194 0.0092 
M1 0.4545 0.2188 0.2954 0.1565 0.0352 
M2 1.0000 0.8875 0.9404 0.8812 0.5256 
M3 0.9605 0.9125 0.9359 0.9094 0.5650 
M4 0.9813 0.9813 0.9813 0.9787 0.6016 
M5 0.9691 0.9813 0.9752 0.9799 0.6514 
M6 0.9419 0.9125 0.9270 0.8968 0.5034 
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M7 0.9398 0.9750 0.9571 0.9604 0.5981 
M8 0.9810 0.9688 0.9748 0.9601 0.6474 
Table 4: Mean metrics value on maps Tinj03 – Flight02 and Tinj03 – Flight03 

Model Precision Recall F1 AP@0.5 AP 
pretrained 0.1939 0.0379 0.0634 0.0131 0.0068 
M1 0.3939 0.2061 0.2701 0.1300 0.0353 
M2 0.9717 0.9276 0.9479 0.9199 0.5870 
M3 0.9409 0.9466 0.9429 0.9424 0.6151 
M4 0.9594 0.9745 0.9668 0.9677 0.6026 
M5 0.9596 0.9809 0.9701 0.9774 0.6478 
M6 0.9399 0.9433 0.9413 0.9300 0.5721 
M7 0.9277 0.9778 0.9520 0.9625 0.6174 
M8 0.9649 0.9618 0.9633 0.9540 0.6493 

According to the results from table 4, it can be commented that 
models M5 and M8 stand out as the best possible options in this 
case.  

Since majority of models used some maps from Tinj03 orchard 
(7 out of 9), more objective detection results may be the ones 
obtained for Tinj02 orchard (5 out of 9). Results for Tinj02 are 
presented in Table 5. 

Again, the best model (M4) in this case, used map of the 
orchard in the training phase. The best model for previous case 
(M5) showed rather low precision result (0.7941) while one of the 
best models for detections on Tinj03 maps – M8 showed rather 
high precision (0.9552) and recall (0.9275) values on this map, 
also.  Both models, M5 and M8 have not used Tinj02 maps in 
training phase. Detections obtained by applying these two models 
to two evaluation maps and the Tinj02 map (neither of these 
models used Tinj02 map for the training) compared to detections 
of the pretrained model are presented in Figure 7.  

Table 5: Results for map Tinj02 (flight from May 2021). 

Model Precision Recall F1 AP@0.5 AP 
pretrained 0.6585 0.7826 0.7152 0.669 0.2795 
M1 0.9296 0.9565 0.9429 0.9465 0.5526 
M2 0.873 0.7971 0.8333 0.7472 0.2496 
M3 0.8481 0.971 0.9054 0.9669 0.5378 
M4 0.9571 0.971 0.964 0.9661 0.5688 
M5 0.7941 0.7826 0.7883 0.7358 0.1567 
M6 0.9286 0.942 0.9353 0.9374 0.5684 
M7 0.9167 0.9565 0.9362 0.9291 0.512 
M8 0.9552 0.9275 0.9412 0.9146 0.4582 

Corresponding to this, Table 6 presents the exact number of 
detected olive trees, ground-truth labels, TP, FP, and FN. It can be 
noted that, on map Tinj03 - Flight 02 (Figure 7), in both models 
(M5 and M8), some of the fig trees planted between olives were 
mistaken for olive trees.  

Next evaluation was done on the detection results for an 
extensive orchard that has not been used for training of any model 
(Mravinci01 – Figure 3.a.). Mravinci01 can be seen as a special 
case of the olive grove because it is characterized by irregular 
pruning, overlapping tree crowns, and the non-uniform shaping of 
trees. Moreover, in this aerial image, various types of trees are also 
present, apart from olives. In the case of the map Mravinci01, even 

human annotators have a hard time labeling olive trees. Precision 
and recall values are significantly lower than in previous cases. 

 
Figure 7: Detections made by model M5, model M8 and pretrained models. True 

positive (TP) detections are shown in blue, false positive (FP) detections are 
shown in red. 

Table 6: Model M5, model M8 and pretrained model detections on maps Tinj03 
– Flight02, Tinj03 – Flight03 and Tinj02 

map true 
boxes 

model detections TP FP FN 

Tinj03 – 
Flight02 

155 M5 160 152 8 3 
M8 156 148 8 7 
pretrained 33 4 29 151 

Tinj03 – 
Flight03 

160 M5 162 157 5 3 
M8 158 155 3 5 
pretrained 30 8 22 152 

Tinj02 69 M5 68 54 14 15 
M8 67 64 3 5 
pretrained 82 54 28 15 

Best precision was achieved with model M6 (0.5068) and 
highest recall was achieved with model M3 (0.6138). This is 
expected due to aforementioned reasons, as well as lack of proper 
training examples for model generation (only Mravinci02 map can 
be considered as extensive orchard but with larger distances 
between trees). However, even here, significant improvement of 
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generated models over pretrained model can be confirmed - 
precision for pretrained model was 0.1205 and recall 0.0516. The 
pretrained model produced drastically more false positives, 
especially on the part of the map with the pine trees (Figure 8). 

 
Figure 8: Special case: M6 vs Pretrained model comparison for olive grove 

Mravinci01. 

Finally, we present analysis results of differences in detection 
performance for the same orchard surveilled at different seasons 
and times of day.  One of the test orchards (Tinj02) has been 
mapped in May (and used for generating some of models presented 
in Table 1) and later in December of the same year (2021). 
Detection results for second flight (map) are given in Table 7. 

Table 7: Results for map Tinj02 (flight from December 2021). 

Model Precision Recall F1 AP@0.5 AP 
pretrained 0.6706 0.7215 0.6951 0.5425 0.1995 
M1 0.8462 0.8354 0.8408 0.8217 0.367 
M2 0.75 0.6456 0.6939 0.4926 0.1676 
M3 0.8222 0.9367 0.8757 0.9039 0.4976 
M4 0.9605 0.9241 0.9419 0.92 0.5043 
M5 0.9016 0.6962 0.7857 0.6863 0.2983 
M6 0.9737 0.9367 0.9548 0.9302 0.5083 
M7 0.9012 0.9241 0.9125 0.9124 0.4457 
M8 0.9733 0.9241 0.9481 0.9196 0.4576 

As opposite to results presented in Table 5, for the second 
flight, the best performance has been achieved with model M6. 
Interesting, performance of some models was better for December 
flight than for May flight (M6, M8). Precision and recall 
comparison for all models is presented in Figures 9 and 10.  

 
Figure 9: Precision comparison for Tinj02 maps. 

 
Figure 10: Recall comparison for Tinj02 maps. 

When compared to variations (absolute differences) in results 
for all models between two similar maps taken the same day in the 
same large orchard, absolute differences were similar. For 
instance, average absolute difference for precision results between 
maps generated for Tinj02 flights is 0.048 while the average 
absolute difference for precision results between maps generated 
for Tinj03-Flight02 and Tinj03-Flight03 is 0.054. This implies that 
detection results for the same olive orchard are not to be 
significantly degraded during period of several months. However, 
this should be confirmed on a larger number of test cases.   

5. Discussion and conclusion 

Automatic olive tree detection is a task with many challenges. 
Acquired images of the olive groves can vary significantly due to 
different types of soil and vegetation in orchards, changes in 
vegetation during seasons, the age of the orchard and tree sizes, 
irregular pruning and pruning types, the non-uniform shaping of 
trees, changes in weather conditions and illumination. Also, trees 
in the orchard can be planted very closely, forming joint crowns, 
and making it very difficult, even for human annotator, to label 
individual tree. In this paper, we presented a procedure for 
development of a deep learning object detector for detecting 
individual olive trees from aerial RGB images by fine-tuning the 
prebuilt RetinaNet model on local data.  

During development of the olive trees object detector, several 
models were trained using a different training set of images - 
different olive grove maps. Maps of five diverse olive groves 
(small and large) were generated but the focus was on 
automatization of monitoring a large olive grove such as Tinj03. 
Comparison of model performance for the olive tree detection in 
different times of the year was presented. As it can be seen from 
the obtained results, there was generally no degradation in 
detection. For some particular tests such as evaluation of detections 
from diverse parts of the orchard in Tinj03, the best performing 
models were the model M5 which uses only other parts of the same 
orchard as the training data, and model M8, which expands that 
data with images from two other olive groves (Tinj01 and 
Mravinci02). As already said, even though the olive groves such 
as Tinj03 will be the focus of future research, a trained detector 
should be generalizable to orchards with diverse vegetations and 
various-sized olive trees. In this context, for further use, we 
propose the model M4 and, alternatively, M8. Although there is no 
clear winner between tested models, perhaps M4 could be 
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considered as the most reliable. Proposed model (M4) has been 
trained on 356 ground truth olive trees while the runner-up (M8) 
has been trained on 381 ground truth olive trees which classifies 
them in top 3 models according to the number of trees used for 
training. This indicates that further improvements can be expected 
with additional training examples.  

Comparing to the prebuilt model that showed very poor 
performance in olive trees detection, experimental results have 
shown the dominance in performance of fine-tuned models. 
Achieved precision and recall even with the relatively small 
training dataset (generally > 95% for heavy pruned orchards) 
makes this approach useful for the implementation. 

Findings related to the fairly stable detection results of the same 
olive orchard taken several months apart are certainly interesting 
because, to the best of our knowledge, there has been no such 
analysis in the literature so far. 

There are several directions for future research. The most 
imminent one should be utilizing the olive-tree detector for olive 
groves analysis, such as crop yield estimation and monitoring plant 
health and fruit status using vegetation indices. Automated 
collection of images of individual olive trees will greatly speed up 
and facilitate the analysis process. Image processing procedures 
aimed at obtaining information about plant health (e.g. from NDVI 
index values) or plant water status (e.g. from thermal camera data) 
will be able to be automated, because in this way only the part of 
the image related to an individual tree (output from the detector) 
will be brought to the input. 

Moreover, as noted, there is still room for further improvement 
of the obtained detection model(s) by expanding the existing 
training datasets with more aerial images of olive trees from 
different localities, types of pruning and in different seasons to 
obtain more robust olive detectors. 
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