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 This paper extends the idea of creating a Quantum Machine Learning classifier and applying 
it to real weather data from the weather station behind the Pa Sak Jonlasit Dam. A systematic 
study of classical features and optimizers with different iterations of parametrized circuits is 
presented. The study of the weather behind the dam is based on weather data from 2016 to 
2022 as a training dataset. Classification is one problem that can be effectively solved with 
quantum gates. There are several types of classifiers in the quantum domain, such as 
Quantum Support Vector Machine (QSVM) with kernel approximation, Quantum Neural 
Networks (QNN), and Variational Quantum Classification (VQC). According to the 
experiments conducted using Qiskit, an open-source software development kit developed by 
IBM, Quantum Support Vector Machine (QSVM), Quantum Neural Network (QNN), and 
Variable Quantum Classification (VQC) achieved accuracy 85.3%, 52.1%, and 70.1% 
respectively. Testing their performance on a test dataset would be interesting, even in these 
small examples. 
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1. Introduction  

Programming computers to learn from data is the subfield of 
artificial intelligence (AI) known as machine learning (ML). In 
machine learning, support vector machines (SVM) are among the 
most frequently used classical supervised classification models 
[1]. The decision boundary and the hyperplane of the data points 
are divided into two classes by a pair of parallel hyperplanes that 
are discovered by SVM [2, 3]. However, there is also machine 
learning at the particle level called quantum computing. Quantum 
computing is computation using quantum mechanical phenomena 
such as superposition and entanglement. The difference is from the 
computer we use today, which is an electronic base on binary state 
based on transistors. Whereas simple digital computing requires 
data to be encoded into a binary number where each bit is in a 
certain state 0 or 1, quantum computing uses quantum bits (qubit). 
This can be a superposition of state, both 0 and 1 simultaneously. 
In quantum computing, a new algorithm is required for that 
problem, i.e., a normal algorithm used in a classical computer 
cannot be copied and run on a quantum computer at all. The 
Quantum Computer Algorithm for popular algorithms such as 
Prime factorization of integers Shor's algorithm is a quantum 
algorithm that can attack the algorithm RSA and encryption 
process of 90% of computer systems worldwide in a short period. 
Quantum computers can also operate on qubits using quantum 

gates and measurements that change the observed state. Quantum 
gates and problems encode input variables into quantum states. To 
facilitate further modeling of the quantum state, quantum 
algorithms often exhibit probabilities in which they provide 
guidance for valid only for known probabilities. Quantum machine 
learning (QML) is an emerging interdisciplinary research field that 
combines quantum physics and machine learning, using it to help 
optimize and speed up data processing on the quantum state. In 
addition to the widespread popularity of QML, there is also the 
variational quantum classifier (VQC) for solving classification 
problems. At present, IBM has developed a quantum computer 
open to researchers or anyone interested in using it called IBM Q 
Experience, with a set of instructions developed in Python called 
Qiskit, which has a simulated quantum computer and real 5- and 
15-qubit quantum computers to develop and test circuits. In this 
article, we present an experiment, which is a continuation of 
previous experiments [4, 5], that studied the forecast of water 
release from the dam and the weather forecast behind Pa Sak 
Jolasid Dam, respectively. Both experiments used a classical 
machine learning process that measures all model results as model 
accuracy. The model results are satisfactory." 

In this paper, an experiment was performed using a Quantum 
Machine Learning classifier and applying it to real data, which 
brought information from the weather station located behind the 
Pa Sak Jonlasit Dam. The Pa Sak Jolasid Dam is an earth dam with 
a clay core, 4,860 meters long, and 31.50 meters high. The 
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maximum storage water level is +43.00 MSL, and the water 
storage capacity is 960 million cubic meters. The total operational 
budget is 19,230.7900 million baht, and the satellite coordinates 
are n14.964687, e101.022677 (see Fig.1). The red dot on the map 
represents the location of the weather station. Studying weather 
conditions, especially forecasting rainy days, can benefit water 
inflow management from quantum machine learning classifier 
techniques applied to actual weather data from Table 1. The total 
number of data is 1743 samples, divided into 1220 samples of 
training data and 523 samples of testing data. The number of 
features has 4 samples or 4 input qubits, and the label has 2 classes. 
Table 2 shows a sampling of the values of the features, which are 
average wind, average temperature, average pressure, average 
humidity, and label values. 

A systematic study of the classical feature and optimizer with 
the different iterations of the parametrized circuits is presented. 
The study of the weather behind the dam is based on weather data 
from 2016 to 2022 as a training dataset. Classification is one 
problem that can be effectively solved with quantum gates. There 
are several types of classifiers in the quantum domain, such as 
Quantum Support Vector Machine (QSVM) with kernel 
approximation, Quantum Neural Networks (QNN), and Variable 
Quantum Classification (VQC). According to the experiment, 
Quantum Support Vector Machine (QSVM), Quantum Neural 
Network (QNN), and Variable Quantum Classification (VQC) 
achieved 90% accuracy. All of these algorithms were performed 
using Qiskit, an open-source software development kit (SDK) 
developed by IBM. 

The classification is one problem that can be effectively solved 
with quantum gates. There are several types of classifiers in the 
quantum domain such as Quantum Support Vector Machine 
(QSVM) with kernel approximation [6-8], Quantum Neural 
Networks (QNN) [9, 10], and Variable Quantum Classification 
(VQC) [11-14]. The experimental results proved that we can use 
QML to solve real-world problems that are classically trained and 
tested before encoding the feature map, evaluating the model, and 
optimizing it from the algorithm above. 

In this article, we will discuss the origin of the theory of 
quantum applied in section 2, followed by the steps and methods 
in section 3. Section 4 discusses the experimental results and 
explains the reasoning. Finally, section 5 provides a summary of 
the experiments and recommendations. 

Regarding the experiment, we applied Quantum Machine 
Learning classifiers to real data from the weather station located 
behind the Pa Sak Jolasid Dam. This earth dam has a clay core, 
and it is 4,860 meters long and 31.50 meters high, with a maximum 
storage water level of +43.00 MSL, and a water storage capacity 
of 960 million cubic meters. The total operational budget is 
19,230.7900 million baht, with satellite coordinates: n14.964687, 
e101.022677 (see Fig.1). The red dot on the map represents the 
location of the weather station, which studies weather conditions, 
especially forecasting rainy days, and can benefit water inflow 
management from quantum machine learning classifier techniques 
applied to actual weather data from Table 1. 

The total number of data is 1743 samples, divided into 1220 
samples of training data and 523 samples of testing data. The 
number of features has 4 samples or 4 input Qubits, and the label 

has 2 classes. Table 2 shows a sampling of the values of the 
features, which are average wind, average temperature, average 
pressure, average humidity, and label values. We present a 
systematic study of the classical feature and optimizer with the 
different iterations of the parametrized circuits. 

In conclusion, the experimental results demonstrate that QML 
can be used to solve real-world problems, which are classically 
trained and tested before encoding the feature map, evaluating the 
model, and optimizing it from the algorithm above. Therefore, the 
potential applications of quantum machine learning classifiers are 
promising, and more research in this area should be encouraged  

2. Related work 

Since we have the weather dataset for the dam, we can make 
predictions based on the training data. This is a binary 
classification problem with an input vector x and binary output y 
in {0, 1}. The goal is to build a quantum circuit that produces a 
quantum state based on the following study. 

2.1. Quantum Computing  

What exactly is a quantum computer then? In a nutshell, it 
could be described as a physical implementation of n qubits with 
precise state evolution control. A quantum algorithm, according 
to this definition of quantum computers, is a controlled 
manipulation of a quantum system followed by a measurement to 
obtain information from the system. This basically means that a 
quantum computer can be thought of as a special kind of sampling 
device. However, because it is a quantum state, the configurations 
of the experiments are very important. Any quantum evolution 
can be approximated by a series of elementary manipulations, 
known as quantum gates, according to a theorem in quantum 
information [15]. Quantum circuits of these quantum gates are the 
basis for many quantum algorithms. The idea of a qubit came from 
upgrading classical bits [16, 17], which are 0 or 1, to a quantum 
state. 
 

0 → |0⟩ = �
1
0
� , 1 → |1⟩ = �

0
1
� 

 

However, what are qubits? Because it is a two-level system defined 
on ℂ2, a qubit is frequently referred to as the simplest possible 
quantum system. This state can be formulated as 
 

|𝜓𝜓⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩                            (1) 

with ℂ  (α, β) and |α|2 + |β|2 = 1, where |0⟩  and are hardware-
defined orthonormal states known as computational basis states. 
The qubit is significant because it is in a superposition—that is, it 
is a either |0⟩  or |1⟩  at the same time—which means that, in 
contrast to classical bits, it possesses a mixture of both. Using 
tensor products, we can generalize this to include n untangled 
qubits. 

|𝜓𝜓⟩ ≡ |𝑞𝑞1⟩ ⊗ |𝑞𝑞2⟩ ⊗ …⊗ |𝑞𝑞𝑛𝑛⟩                 (2)  
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Figure 1: Pa Sak Jolasid Dam, Coordinates: n14.964687, e101.022677. 

 

Table 1. Dataset Attributions 

Datasets Number of Class Number of Features Train Size Test Size Total Size 

Weather behind 
Dam 2 4 1220 523 1743 

 

Table 2. Partial Dataset  

Date Avg. Wind  Avg. Temp Avg. Pressure Avg. Humid Rainfall 

2016/10/14 2.3 28 999.4 46 Yes 
2017/01/04 6.6 26 1003.7 64 No 
2018/03/07 3.3 25.9 1002.8 27 Yes 
2019/08/01 3.9 25.4 998.4 86 Yes 
2020/10/11 3.4 27.8 999.3 73 Yes 
2021/02/22 2.1 26.9 1003.2 48 No 
2022/05/12 2.7 28 1000.5 82 Yes 
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where |𝑞𝑞𝑖𝑖⟩ stands for qubits. However, the state |𝜓𝜓⟩  would no 
longer be separable if the qubits were entangled, and every qubit 
would either be |0⟩ or |1⟩, resulting in 
 

|𝜓𝜓⟩ = 𝛼𝛼1|0 … 00⟩ + 𝛼𝛼2|0 … 01⟩ + ⋯+ 𝛼𝛼2𝑛𝑛−1|1 … 11⟩  (3) 
 

with 𝛼𝛼𝑖𝑖 ∈ ℂ , and ∑ |𝛼𝛼𝑖𝑖|2 2𝑛𝑛−1
𝑖𝑖=0  = 1. Wherever we use the 

abbreviated notation |𝑎𝑎⟩⨂|𝑏𝑏⟩ := |𝑎𝑎𝑏𝑏⟩. To make the notation more 
elegant, we see that the basis states can be written as follows: 
|000⟩↔|0⟩,…,|111⟩↔|7⟩ giving us the straightforward equation. 
This allows us to translate the notation from binary numbers to 
integers. 

|𝜓𝜓⟩ = � 𝛼𝛼𝑖𝑖

2𝑛𝑛−1

𝑖𝑖=0

|𝑖𝑖⟩                                       (4) 

 

As a result, {|0⟩ …, |i⟩} and n serve as the computational 
foundation for n qubits. Since there are 2n distinct strings, one 
requires 2n amplitudes 𝛼𝛼𝑖𝑖 to describe the state of n qubits, as we 
can see. In other words, quantum information is "larger" than 
classical information because the information stored in a quantum 
state with n qubits is exponential in n, whereas classical 
information is linear in n. which suggests quantum advancements 
thus far. 

2.2. Quantum Circuit 

       We must begin by examining quantum gates in order to 
construct a quantum algorithm or quantum circuit [18, 19, 20], as 
mentioned earlier. Unitary transformations are the means by 
which quantum gates, or rather quantum logic gates, are produced. 
A straightforward transformation can serve as a quick reminder of 
what this means. 
 

|∅⟩ = 𝑈𝑈|𝜓𝜓⟩     
 

where |∅⟩ and |𝜓𝜓⟩ are two vector spaces in which U is a unitary 
operator. By "unitary," mean that the hermitian conjugate of the 
operator is the inverse, U† = U-1, and that the operator is linear. 
This is important because we can use it to, for example, display 
 

⟨∅|∅⟩ =  �𝜓𝜓�𝑈𝑈†𝑈𝑈 |𝜓𝜓⟩ = ⟨𝜓𝜓|𝜓𝜓⟩ = 1 

where, if |𝜓𝜓⟩ is normalized, then by construction it is |∅⟩. 

2.2.1 A single Qubit 

If we return to the subject of quantum gates, equation (1), the 
state would either be in the state |0⟩, which has a probability of 
|α|2  or in the state |1⟩, which has a probability of |β|2. Formally,  
2 x 2 unitary transformations are used to describe single-qubit 
gates. We can begin by considering the X gate, which functions 
as the quantum equivalent of the classical NOT gate. 

 

|0⟩ ⟼ |1⟩   
 

and the reverse This matrix is easily identifiable as one of the 
Pauli matrices, which are unitary by definition. As a result, we 
know that we can have at least X, Y, and Z gates with the unitary 
operators Pauli matrices. 
 

𝜎𝜎𝑥𝑥 = �0 1
1 0� , 𝜎𝜎𝑦𝑦 = �0 −𝑖𝑖

𝑖𝑖 0 � , 𝜎𝜎𝑧𝑧 = �1 0
0 −1�           (5) 

  

The Pauli rotations are yet another useful set of gates. which are 
expressed as Pauli gates that are exponential 
 

                                    𝑅𝑅𝑗𝑗(𝜃𝜃) = 𝑒𝑒−𝑖𝑖
𝜃𝜃
2 𝜎𝜎𝑗𝑗                                              (6) 

 

where j is (x, y, z). Since the global phase (𝑒𝑒𝑖𝑖𝑖𝑖),  the azimuthal (𝜃𝜃) 
and polar (∅) angles can be written into any quantum state, 
 

                   |𝜓𝜓⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩ 

                 = 𝑒𝑒𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐𝑐𝑐
 𝜃𝜃
2

|0⟩ + 𝑒𝑒𝑖𝑖∅𝑠𝑠𝑠𝑠𝑠𝑠
𝜃𝜃
2

 |1⟩)                (7) 

2.2.2 Multi Qubit 

The controlled U gate is introduced because that work on multiple 
qubits simultaneously. where U can be any unitary gate with one 
qubit. For instance, the CNOT gate is obtained by setting U = x, 
and the NOT (X) operation is carried out when the first qubit is in 
state|1⟩; otherwise, nothing changes in the first qubit. A variety 
of quantum gates, their circuit, and how they are represented in a 
matrix show table 3. In a controlled gate, the U is a general unitary 
operator. We refer to j as (x, y, z) and  𝜎𝜎𝑗𝑗 denotes the appropriate 
Pauli matrix Eq. (5) 

Table 3. Summary of all the gates in circuit and matrix representation. 

 
Gate 

Circuit 
representation 

Matrix 
representation 

 
 

H, Hadamard 
 

 

 
1
√2

�1 1
1 −1� 

 
 
Z, Phase Flip 

 

 

 

�
1
0

  
0
−1

 � 
 

 
U, Unitary 

 

 

�
1
0

  
0
𝑈𝑈

 � 

 
Controlled Not 
Controlled X 
CNot 

 

 

 

�
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

� 
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Swap 

 

 

�
1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

� 

 
 

2.3. Validation and Measurement 

The measurement process is the final step in the theory for 
quantum computers regarding the quantum circuits that make up 
a quantum evolution [20]. From quantum mechanics, projectors 
of the Eigen spaces provide the probability of measuring a state. 
The probability of measuring i = {0, 1} is 

 

𝑝𝑝(𝑖𝑖) = 𝑇𝑇𝑇𝑇(𝑃𝑃𝑖𝑖|𝜓𝜓⟩⟨𝜓𝜓|) = ⟨𝜓𝜓|𝑃𝑃𝑖𝑖|𝜓𝜓⟩ = |𝛼𝛼𝑖𝑖|
2         (9) 

 

The qubit's state changes to 
 

|𝜓𝜓⟩ →
𝑃𝑃𝑖𝑖|𝜓𝜓⟩

�⟨𝜓𝜓|𝑃𝑃𝑖𝑖|𝜓𝜓⟩
= |𝑖𝑖⟩ 

 

The qubits that are able to write the observables as a spectral 
decomposition of the computational basis are used to estimate 
the expectation value. 
 

𝒪𝒪� = �𝜆𝜆𝑖𝑖
𝑖𝑖=1

|𝑖𝑖⟩⟨𝑖𝑖| 

 

where Pi is present. Using a Z gate, the observable yields an 
eigenvalue of +1 for state |0⟩ and -1 for state |1⟩ so that we can 
computationally determine which state it is in (9). 

⟨𝜓𝜓|𝒪𝒪�|𝜓𝜓⟩ = �𝜆𝜆𝑖𝑖
𝑖𝑖

|𝛼𝛼𝑖𝑖|
2                        (10) 

Since all that is required to determine the eigenvalues, 𝜆𝜆𝑖𝑖 is an 
estimation of the state's amplitudes. Since statistics can be used to 
measure states' amplitudes directly. They introduce a random 
Bernoulli variable called yij, where P(yij = 0) = 1 - |𝛼𝛼𝑖𝑖|

2 and  P(yij 
= 1) = |𝛼𝛼𝑖𝑖|

2 [21]. If repeatedly prepare the state|𝜓𝜓⟩ and measure 
it in the computational basis and collect S samples (yi1, …, yiS), 
additionally, be aware that |𝛼𝛼𝑖𝑖|

2 the frequents estimator 𝑝̂𝑝𝑖𝑖 can 
estimate |𝛼𝛼𝑖𝑖|

2 by 

|𝛼𝛼𝑖𝑖|
2 ≈ 𝑝̂𝑝𝑖𝑖 =

1
𝑆𝑆
�𝑦𝑦𝑖𝑖𝑖𝑖

𝑆𝑆

𝑗𝑗=1

 

where 𝑝̂𝑝𝑖𝑖 's standard deviation can be found 

𝜎𝜎�𝑝𝑝�𝑖𝑖� = �𝑝𝑝�𝑖𝑖(1 − 𝑝𝑝�𝑖𝑖)
𝑆𝑆

 

where 𝒪𝒪(𝑆𝑆−1/2) represents the error. Can now approximate (10) 
to 

⟨𝜓𝜓|𝒪𝒪�|𝜓𝜓⟩ ≈�𝜆𝜆𝑖𝑖
𝑖𝑖

𝑝̂𝑝𝑖𝑖 ± �𝑝̂𝑝𝑖𝑖(1 − 𝑝̂𝑝𝑖𝑖)
𝑆𝑆

               (11) 

 

2.4. Quantum Support Vector Machine (QSVM) 

To efficiently compute kernel inputs, the quantum support 
vector machine QSVM and the quantum kernel estimator 
(QSVM-Kernel) [20, 22] make use of the quantum state space as 
a feature space. By applying a quantum circuit Γ𝜙𝜙(𝑥⃗𝑥) to the initial 
state|0⨂𝑛𝑛⟩, this algorithm nonlinearly maps the classical data x to 
the quantum state of n qubits: 

 

|𝜙𝜙(𝑥⃗𝑥)⟩ =Γ𝜙𝜙(𝑥⃗𝑥)|0⨂𝑛𝑛⟩                              (12) 
 

The 2n-dimensional feature space created by the quantum circuit 
Γ𝜙𝜙(𝑥⃗𝑥)  (where n is the number of qubits) is challenging to 
classically estimate. There are two consecutive layers in this 
circuit. 
 

Γ𝜙𝜙(𝑥⃗𝑥) = 𝑈𝑈𝜙𝜙(𝑥⃗𝑥)𝐻𝐻⨂𝑛𝑛𝑈𝑈𝜙𝜙(𝑥⃗𝑥)𝐻𝐻⨂𝑛𝑛              (13) 
 

where 𝑈𝑈𝑃𝑃ℎ𝑖𝑖(𝑥⃗𝑥)  is a unitary operator that encodes the traditional 
input data, and H is a Hadamard gate Fig. 2.  

 

During the training phase, the kernel entries are evaluated for 
the training data and used to locate a separation hyperplane. After 
that, during the test phase, the new data x and the training data, 
which are used to classify the new data x according to the 
separation hyperplane, are used to evaluate the kernel inputs. 
Quantum computers evaluate the kernel inputs, while classical 
computers, like those used in a traditional SVM, are used for data 
classification and separation hyperplane optimization. 

2.5. Variational Quantum Circuit 

 
Figure 2: The Circuit of QSVM 
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A variational circuit with four features is proposed in [22] to 
classify the dataset Fig. 3. The variational circuit performs the 
following operations. The |0⟩ state is used to initialize the circuit's 
four qubits. The qubits are then placed in a superposition of |0⟩ 
and |1⟩ by applying the Hadamard gate one at a time. Then, a 
unitary square matrix designed for state preparation is used to 
perform a unitary operation on each qubit. The classical data (bits) 
are encoded into qubits in this method. 

 

Using multiple layers of interleaved rotational gates in data 
and auxiliary qubits, the variational circuit is designed following 
state preparation. Optimization is used to adjust the parameters.  
Fig. 4. shows the seven-layer initial implementation of the circuit 
as well as the architecture of the variational circuit model. The 
class label is obtained by processing the resulting qubits and 
measuring the auxiliary qubits. 

2.6. Quantum Amplitude Estimation (QAE)  

In [20, 23], a hybrid quantum autoencoder (HQA) variant of 
the Quantum Amplitude Estimation (QAE) algorithm was 
proposed [24, 25]. Quantum neural networks (QNNs) based on 
parameterized quantum circuits (PQC) were utilized in this model, 
which incorporates both classical and quantum machine learning. 
The model's overall structure consists of an encoder and a subset 
of real vector space V of dimension v = dim(V), that transports a 
quantum state from Hilbert space 𝐻𝐻⨂𝑛𝑛, as well as a decoder that 
does the opposite of that. The encoder and decoder's functional 
forms are specified, but the models themselves are not specified. 
As depicted in Fig. 5, the € encoder is a vector α controlled 
quantum circuit. The circuit applies the unitary U1(α) after 

receiving some |𝜓𝜓𝑖𝑖𝑖𝑖⟩  states. On the system that combines the 
input state (v-n) with auxiliary qubits. 

 

3. Methodology 

The weather dataset from the Thai Meteorological Department 
was used as the comparative dataset in the research. The dataset 
consists of 1773 data sets collected from 2016 to 2022, with 1220 
of them being designated for training and 523 for testing. The data 
is divided into 4 variables for the features and 2 classes for the 
labels, as shown in Tables 2 and 3. However, there is a fairly 
standard approach to preprocessing. These strategies are not 
generally reasonable for planning adequate information for 
quantum classifiers while working with genuine informational 
collections. It has proposed a preprocessing strategy in this study, 
as depicted in Fig. 6, which encrypts the data before the QML 
algorithm uses it. Two QML classifiers are used in this article: 

• A quantum support vector machine  
• Build a quantum neural network (also known as Variational 

Classifier) 

Both of the QML classifiers utilized preparation of feature 
maps, implementation of variational circuits, and measurement. 
The study analyzed the optimizer's feature map, the depth of the 
variational circuit [26], and the depth of the feature map to 
understand why these models perform optimally, and attempted to 
determine if the new information can be effectively condensed.  

We have using the Qiskit framework for quantum computing. 
A typical quantum machine learning model consists of two parts, 
as shown in Fig. 6, A classical part for pre- and post-processing 
data and a quantum part for leveraging the power of quantum 
mechanics to simplify certain calculations. 

 
Figure 6: Experimental procedures 

 
Figure 3. Variational Quantum Circuit  

 

 

 

 
Figure 4. The Variational Quantum Circuit Architecture 

 

 

 

 
Figure 5. The Quantum Amplitude Estimation Architecture 
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This study's experimental design is depicted in Fig. 7. The 
challenge of training very complex machine learning models on 
large data sets is one reason for utilizing quantum machine 
learning. 

3.1. Data preparing and normalization 

We shuffle the data to ensure randomness, remove less 
relevant features, and normalize the information between the 
ranges of 0 and 2π, and 0 and 1 to properly use the Hilbert space. 
The data is divided into a training set for model building and a 
testset for model testing, with the testset size being kept at 30% of 
the total dataset. This is a common practice in traditional machine 
learning such as neural networks and support vector machines. 

3.2. Data encoding 

Data encoding or state preparation in quantum feature mapping 
is similar to a classical feature map in that it helps translate data 
into a different space. In the case of quantum feature mapping, the 
data is translated into quantum states to be input into an algorithm. 
The result is a quantum circuit where the parameters depend on the 
input data, which in our case is the classical weather behind the 
dam.  

It's worth noting that variational quantum circuits are unique in 
that their parameters can be optimized using classical methods. We 
utilized two types of feature maps pre-coded in the Qiskit circuit 
library, namely the ZZFeaturemap and PauliFeaturemap. To 
evaluate the performance of different models [27, 28], we varied 
the depths of these feature maps. 

 

3.3. Variational quantum circuit 

The model circuit is constructed using gates that evolve the 
input state. It is based on unitary operations and depends on 

external parameters that can be adjusted. Given a prepared state, 
|𝜓𝜓𝑖𝑖⟩, the model circuit U(w) maps |𝜓𝜓𝑖𝑖⟩ it to another vector, 

                    |𝜓𝜓𝑖𝑖⟩ = U(w) |𝜓𝜓𝑖𝑖⟩.  

U(w) is comprised of a series of unitary gates.  

4. Results & Discussion 

In this research, we make use of the ZZFeaturemap and 
PauliFeaturemap precoded featuremaps from the Qiskit circuit 
library. To test the effectiveness of the various models, we changed 
the featuremaps depths (2). We incorporate more entangle-ment 
into the model and repeat the encoding circuit by increasing the 
depth of a feature map. After we used our feature map, a classifier 
may locate a hyperplane to divide the input data, and a quantum 
computer can evaluate the data in this feature space as Fig.7. Then 
we utilized the RealAmplitudes variational circuit from Qiskit. By 
increasing the depth of the variational circuit, more trainable 
parameters are introduced into the model that show in Fig. 8. The 
variational Featuremaps and RealAmplitudes reduced form was 
applied to write the QNN in Fig. 9. In order to determine the 
experimental target value in each cycle, the objective function 
value per iteration of the test was shown in Fig. 10, i.e. QSVM 
gave less objective value than QNN and VQC in Fig. 11 and Fig. 
12, respectively. 

 
Figure 10: QSVM opjective function value per iteration. 

 
Figure 7: QSVM Featuremaps depths (2). 

 
 

 
Figure 8: QSVM RealAmplitudes Variational circuit depths (3). 

 

 
Figure 9: QNN Featuremaps and RealAmplitudes Variational 
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Figure 11: QNN opjective function value per iteration. 

Table 4 presents the performance of our models: QSVM, QNN, 
and VQC. The QSVM obtained an accuracy of 85.3%, while the 
quantum models QNN and VQC recorded 52.1% and 70.1% 
accuracy, respectively. The ZZFeaturemap encoding with 
RealAmplitudes technique was implemented on the model using 
the weather dataset, with a depth of 3 layers and 300 epochs. The 
validation accuracy achieved is depicted in Figure 8. Despite the 
use of three separate attention processes in conjunction with the 
VQC model, the results of this investigation were satisfactory. 

 
Figure 12: VQC opjective function value per iteration. 

Table 4. Classifier test score  

Classifier Score 
QSVM 0.853 
QNN 0.521 
VQC 0.701 

5. Conclusion   

In this article, we implemented three quantum models using 
RealAmplitudes techniques. We used ZZFeaturemap encoding as 
an evaluation optimization, but we acknowledge that this should 
not be the only optimization used to improve a quantum 
framework. Furthermore, state preparation is just one aspect of 
QML algorithms to benefit from when implemented into quantum 
machine learning. We suggested a pre-processing approach to 
improve the quantum state preparation for VQC. Our results 
showed achieved efficiencies of 85.3%, 52.1%, and 70.1%. 
According to our findings, the QSVM optimizer had the best 
performance, followed by VQC and QNN. We used 
ZZFeatureMap with a depth of two and the RealAmplitudes 
variational form with a depth of three. Moving forward, we plan to 

explore the use of different data encoding techniques such as 
RealAmplitudes, amplitude encoding, angle encoding, or other 
encoding methods to enhance the QML models and increase the 
number of features to improve performance relative to the 
established models and cutting-edge techniques. The study was 
based on a relatively small data set. Therefore, it may influence the 
assessment of model effectiveness and not discuss data pre-
processing techniques because we are primarily interested in the 
efficiency of quantum models. 

Abbreviation 

QML Quantum Machine Learning 

QSVM Quantum Support Vector Machine  

QNN  Quantum Neural Networks  

VQC  Variational Quantum Classifier 

SDK  Software Development Kit 

HQA  Hybrid Quantum Autoencoder 

QAE  Quantum Amplitude Estimation 

PQC  Parameterized Quantum Circuits 
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